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An index formula for chains
by

ROBIN HARTE (Dublin) and WOO YQUNG LEE {Suwon}

Abstract., We darive a formula for the index of Fredholm chaing on normed spaces.

0. Introduction. The theory of the “index” of a Fredholm complex of
bounded linear operators between Banach spaces seems to be complicated,
involving ({2], [16]) “gaps” between subspaces, in contrast to the situation
in Hilbert space, where with the help of the adjoint we can reduce the
discussion to single operators ([6], [14], [15]). Following an idea of Putinar
[12], Harte [10] showed how to some extent a “generalized inverse” could
be used to the same coffect on Banach spaces. We continue this discussion
here, obtaining an expression for the “Fuler number” of a Fredholm chain
of bounded operators.

If X and Y are normed spaces we shall write BL{X,¥) for the set of
all bounded linear operators from X to ¥, and BL for the category of all
bounded linear operators between normed spaces. Many of our definitions
and results remain valid in more general additive categories; two important
examples would be a single Banach algebra with identity, and the Calkin
category obtained by quotienting out the compact operators KL(X,Y) from
each BL(X,Y). I T e BL{X,Y) and S € BL(Y, Z) satisfy

(0.1) ST =0
we slall call the pair (9, 7) a chain, and write
(0.2) (5,7) € BL(X, ¥, Z);

in particular, the pair (5,7 is compatible in the gense that the product ST
is defined at all. More generally, a chain is a sequence Ty : X; — X1 (J =
0,1,...,n) for which

(03) TyTjy =0 (j=1,...,n),

written (Ty,..., T, Th) € BL(Xy, Xy, ..., Xn+1). Whether or not the chain
condition (0.1) is satisfied, the compatible pair (8, T) will be called invertible
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284 R. Harte and W. Y, Lee

if there are T’ € BL(Y, X) and &' € BL(Z,Y) for which
(0.4) S8 +TT =1,
a longer sequence (To,Ty,...,Tn) will be called invertible if each pair

(Tj, Tj—1) satisfies the condition (0.4). We shall call the pair (5,T) weakly
invertible if there is implication, for arbitrary compatible U and V' in BL,

(0.5) UT =58V =0=UV =0,

with the corresponding extension to longer sequences. Necessary and suf-
ficient for the chain condition (0.1) is the inclusion T(X) € §7%(0), or
equivalently

(0.8) cdT(X) € S0y
for the weak invertibility (0.5) (with or without (0.1)) the condition is
(0.7) 5710) € ol T(X).

We shall call the pair (S, T} regular if each operator is, so that there is a
pair (T7, 8") for which

(0.8) §=8588 and T =TT'T.

It is familiar that ¥ T’ € BL(X,Y) has a generalized inverse then it also has
a normalized generalized inverse, T, for which

(0.9) T=T7'T and T'=TTT,

if (0.8) holds with 77 = U then (0.9) holds with TV = UTU. What is less
familiar is that if a chain (S, 7") is regular in the sense of (0.8) then (see [10],
Theorem 2) {0.8) holds with another chain {17, 58") € BL(Z,Y, X'}: indeed,
if (0.8) is satisfied with (77,5") = (U, V') then (0.8) is also satisfied with the
chain (TV,8") = (UTU, (I - TU)V). If (1",5') is a generalized inverse for
the chain (S, T) then the projections S’ and TT' satisfy §'STT' = 0 and
hence (see [9], Theorem 2.5.4) (I —TT")(I—5'9) is another projection, with

(0.10) STHO) =T(X)® (I — TT' (I — §'S)(Y).

It is of course clear ({8], Theorem 1.6; [9], Theorem 10.3.3; [10], Theorem 1)
that a chaln is invertible iff it is both regular and weakly invertible; also
([10], Theorem 2), an invertible chain always has at least one inverse which
is also a chain (for the same reason as a generalized inverse). Notice too
([10], Theorem 2) that the invertibility of a regular chain can be tested by
that of a single operator:

1. TueoreM. If (TV,5') is a generalized inverse for the chain (9,T)
then

(L.1) (8,1) invertible < S'S + TT' invertible.
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Proof If (I7,5) is a generalized inverse for a weakly invertible (S, T)
then (0.1), (0.5) and (0.8) give

(1.2) S8+ TT =1 +TT'SS = (I - TT'S'S)™,
so that S'S 4 TT" is invertible; conversely, if

(L3) J(S'S+TTY=1=(88+TT")J
then

(L.4) (I -TTIWI—J§'S) = 8'STTT,

so that for the invertibility of (9,7 it is sufficient that
(1.5) §'8I*TT =0,

But now (I",5') is a generalized inverse for (8, T); thus
SIT = S(S'SH(JTTNT = ST - TT' I - J'S)T = 0. »

Notice that the generalized inverse (T7, S") was not required to be nor-
malized, nor to be a chain, for (1.1); if it is a chain then (1.2) gives $/S +
TT' = I. Whether or not (1", 5") is even a generalized inverse, if (77, 5") is
a chain for which §'8 «+ TT = J~! is invertible, then $'S commutes with
TT' and hence also with J, so that (1.5) again holds and (§,7) is invertible.
Harte ([10], (2.8)) asked whether the condition (1.5) could be dispensed with
altogether; the following rather simple example shows not:

2. EXaMPLE. If v E — E and v: E — E satisfy vu = 1 3 wv and
g = 0 l-ww) (EY (B
R 0 ‘\E E
(2.1)
7ot 0y (E . E
TA\0 w) \E E
then

(2.2) S T is invertible and (S, T) 13 not invertible.
Proof An inverse for the operator § -+ T' is given by

J 0
I—ww u '

but the condition (0.5) fails: indeed, with
U

SV=UTI'=0#UV. o« o
If for example u and v are the unilateral shifts on one of the sequence
spaces F then § < 1" is essentially the bilateral shift.

Use=(l~uv 0),

we have
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Theorem 1 extends to chains of three or more operators ([10], Theo-
rem 3): if the chain (R, 5,T) has a generalized inverse (1,5, R') then
S'S+ 11 0

0 R'R+ 55
We should remark that if the chain (R, S,T) is (generalized) invertible, so
that (5, T') and (R, §) have (generalized) inverse chaing (T, 8") and (5", R")
respectively, then ([10], Theorem 3) we can arrange §" = §":
(24) S'9+TI'=1=R'R+ 85"
= 88+TT =I=(I~-88)R'R+59.

Chains which begin and end in zeroes are special: for example ([10],

Theorem 5), in the situation of {2.3),

(2.3) (R, S8, T) invertible & ( ) invertible.

4 i
(2.5) (0,.R,S,T,0) invertible « (‘g %) and (?;Y 13’) invertible;

if, in particular, (R, $*,T") is a normalized generalized inverse chain then
also, since the matrices are mutually generalized inverse,

T sy | . T o0y, .
(2.6) (0 R) invertible < (S R’) invertible,

strengthening (2.5).

Theorem 1 and its relatives have immediate Fredholm analogues, ob-
tained by repeating verbatim the arguments in the Calkin category, or al-
ternatively the “finite Calkin category”, in which the finite rank operators
KLo(X,Y) are quotiented out of each BL(X,Y). We recall ([9], Theorem
10.6.2; [10], Theorem 7) that a chain (S,T) is Fredholm if and only if it is
regular and satisfies

(2.7) dim S7H(0)/cl T(X) < o0;

by itself the condition (2.6) is the analogue of condition (0.5) (“weakly Fred-
holm”). As before, a longer chain (T, ..., T, Tp) will be called (weakly)
Fredholm iff each pair (T}, T;_1) is. The Buler number of a weakly Fredholm
chain will be defined ([9], (10.6.3.2); [10], (7.5)) as

(2.8) Euler(8,T") = dim §~*(0)/cl T'(X),
and is extended to longer chains by setting

i)
(2.9) Euler(Ty, ..., T1,To) = > _(—1)""* Euler(T}, Ty, ).
k=1
Thus for example the indez of a Fredholm operator is given by the Euler
number of the induced chain:

(2.10) index(T') == Euler(0, T, 0).
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( ’3.,)THhEOREM. If (8,1 is a regular chain, with generalized inverse
7.8, then

(3.1) 'S+ TT Fredholm = (8,T) Fredholm,
= 8'S+TT' Fredholm of index zero.

Proof If &S+TT" is Fredholm, so that there is J for which, analogously
to (1.3), I — J(S8"8 + TT') and I - (§'5 + TT').J are in KLy, then also,
analogously to (1.4), (I = TT'J)(I — J§'S) is finite rank and hence (5,T)
is Fredholm. Conversely, if (8, T) is weakly Fredholm then, analogously to
(1.2), 'S +TT" € (I = TT'§'8)"* + KLy is a finite rank perturbation of
an invertible operator, therefore ([9], Theorem 6.5.2; [5], Exercise 1.2.5; [4])
Fredholm of index zerc, m

When (77,5") is a normalized generalized inverse chain for (S,7)
then, by (0.10),
(3.2) Euler(8,T) = dim{(5'8 + TT')~*(0).

Theorem 3 has extensions to chains (R, S,T) and (0,R,S,T, 0), and
longer; however, recall [7] that an arbitrary chain of the form (0, T, - ..
..., T1,0) can be represented by a single operator: for example the invert-

ibility of a chain (0, R, S,T,0) is equivalent to the invertibility of the chain
0 0 0 O 0 0 0 0
T 0 0 0 T 0 00

(3.3) 6 5 0 0'l0 8§ 0 0
0 0 R O 0 0 R O

Naturally, the same construction also tests for Fredholmness, but is ({71,
(5.6)) unable to assist in the proof of the spectral mapping theorem, and
also gets the Euler number wrong: for example the Euler number of the
chain (3.3) ig

(34)  dimn(T'T)~0) + dim(S'8 + TT")~1(0)

+dim(R'R + §5)71(0) + dim(RR)~1(0),

losing the alternating sign. For that we need ([2], [3]) a “symmetrical chain”,
that is, a chain of the form {8, T, §). Thus the chain (0, S, T,0) is represented

by the chain
((5) = o (5))

4. TuroreM. If (R, 9,T) is a chain then
(41) (0,R,S$,T,0) non-singular

@((g g)(g ?%)(2* 8))-”°ﬂ-sin9ulan
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where “non-singular” means “regular”, “invertible” or “Fredholm”. When
the chains are both Fredholm then

(4.2) Euler(o,R,S,T,O):Euler((g, g)(fg %)(g 8))

Proof. If (0,77,5, R',0) is either a generalized inverse, or an inverse,
or an essential inverse for (0, R, S, T, 0), then so is

((5 5)-(5 0)-(5 5))

for the matrix chain in (4.1); conversely, any (generalized/essential) inverse
for the matrix chain induces one for the chain (0, R, 5,T,0). To identify the
Euler numbers use (3.2): if (1,5, B’} is a normalized generalized inverse
chain for (R, S,T) then

s (T'T 0 0N g (SSETT 0 N0
ML 0 RR+5§ 0 0 RR' 0

is the Euler number of the matrix chain. w

Analogously to (2.4), if a symmetric chain (S,T, §) has a (generalized)
inverse then it has one which is a symmetric chain:

(4.3) S'8+TT =1I=85" +T'T
= (8785)8 + T(T'TT") = I = 8(5"88") + (I"TT")T.

The case of a symmetric chain (§,T,.5) is at once a specialization. of (2.3)
and a generalization of (4.1):

5. THEOREM, If (8,1 S) is a regular chain, with normalized generalized
inverse chain (8',T',5'), then

(5.1) (8,T, 8} invertible «» T + 5" invertible = S+ 1" invertible,
and

(5.2) (S,T,8) Fredholm < T -+ S’ Fredholm < S+ T' Fredholm.
If (§,T1",5') is an essentiol inverse chain for (S,T, S) then

(5.3) Euler(S, T, §) = index(T -+ §') = ~index (5 + 7).

Proof. Whether or not 7" and & are normalized, (2.3) gives, with
(8,7, 5} in place of (R, S, T,

(5.4) (8,T,5) invertible & T'T + 85" and §'8 + TT' invertible;
but since all the necessary products are zero,

(5.5) TT+85=(8+T)T+8) and &8+ TT'=(T+5)S+T),
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so that T'T+85" and TT'+5'T can be replaced in (5.4) by T+’ and S+T".
Finally, these two operators are mutnally generalized inverse: if T/ = T'TT"
and 5’ = §'55 then

T+8=(T+8)S+T)T+8),
S+T'=(S+T)(T +8)(S+T),

so that T"+ 5" is invertible iff S+ T” is. This establishes (5.1), and hence,
translating into the finite Calkin category, (5.2). To compute the Euler num-
ber observe, by (0.10), that

T-10)/8(Y) = (T'T + S5y {0},
§7H0)/T(X) = (§'S+TT') (o),
which with (5.5) and (5.6) gives (5.3). »
Theorem 4 ([10], Theorem 8) is a special case of Theorem 5: if (S, 7, 5)

is replaced by
00 T 0 0 0
S 0/°\0 R/'\S 0
then I+ 5" and 5 -+ 7" are replaced, respectively, by
T & and T 0
0 R S R )

In the space of chains, invertible and symmetric chains form open sets,
and the Euler number is continuous, that is, locally constant:

(5.6)

(5.7)

6. TugOREM. If (8,T,8) is an (essentially) invertible chain, with (es-
sential) inverse chain (S',T',5"), end if (S+ H,T+K,S+ H) is a chain
so close to (5,1, S) that

(61) I+SH=H)", I+KT =(K')" and

I+ (K + (I~ H)SVT' + S) are invertible
then (S + H,T + K, S + H) is (essentially) invertible, with
(6.2) Euler(S + H, T+ K, 5 + H) = Euler(5,T, 5).

Proof To see that invertible chains (9,7} form an open set ([10], The-
orem 6) suppose (6.1) and remember the identity ([9], Theorem 10.3.4)
(6.3) S'(S+H)(I+KT')+(I+8H)T+ K)T'

~(I+SHY I+ KI")=88+TT -1,
valid whenever ST = 0 = (8§ + H)(T + K); now if the right hand side
vanishes and we pre- and post-multiply by H’ and K’ we get

(6.4) C(H'S) S+ HY+{T+KYT'K')=1.
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The inverse pair (T'K’, H'S") is also a chain: (6.1) implies also ([9], Theo-
rem 3.1.3)

(6.5) I+T'KE=(K")y"! and I+HS =(H")
with K" =T +T'K'K and H" =T+ HS'H’, so that
(6.6) K'T"=T'K' and §H"=H'S,

giving (T"K'Y(H'S") = K"(T'S")H" = 0. This argument now extends [10]
to invertible chains (R, S, T, and then in particular to symmetric chains
(5,T,8); then taking cosets converts to the argument for Fredholm chaing
(8,7, 8). Finally, the local constancy of the Euler number reduces to that
of the index:

(6.7) Euler(S, 7, 5) = index(T + 8') = index(T + K + H'S")
= Tuler(S + . T+ K, 5 + H).

The middle equality is the third part of (6.1) together with Theorem 6.5.5
of [9]. m

For Banach spaces X, Y and Z, all three parts of {6.1) can be arranged
by making || /| and [|K|| sufficiently small. _

Theorem 5 applies in particular to the symmetric chain derived from the
Koszul complez ([13], [7], {9]) associated with a commuting systein of Banach
space operators: if o = (aq,...,0,) is a commuting n-tuple of operators
acting on a Banach space E then its Koszul complez is the chain

(6.8) (0,4.(a),..., A1(a),0)
induced by the operator

n 7
(69) A(a) o+ Z Z $jdz]' b Z (ai:z:gdzi -+ Z: Z a,;:L'jdzi A dzj),

n
fee=1 |j‘=k i=1 k=l|}|=k

acting on the space of exterior differential forms in n complex variables with
coeflicients in the space E. In effect, A{a) is the tensor product of exterior
differentiation with the action of the operators a;; each A;(a) : Aj((E) —
4;(E) is the restriction of A(a) to forms homogeneous of degree j ~ 1, and
takes them to forms homogeneous of degree j. The chain (A(a), A(a)) is
derived from the chain (6.8) as in (3.3); the symmetric chain of (4.1) can be
written

(610) . (Aeven(a),/ludd(a),Aeven(a))’

where the operators A°*"(a) and A°4(a) are the restrictions of A(a) to
forms of even and of odd degree:

o1 @ (g, ) (A - (£EY
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We define the commuting n-tuple a = (a,, . .. 1 8n) to be Taylor invertible
(or “splitting Taylor exact”) iff the chain (6.8) is invertible in the sense of
(0.4), or equivalently if the symmetric pair (6.10) is invertible in the sense
of (0.4), and Fredholm if the chain (6.8), equivalently the chain (6.10), is
Fredholm. When the commuting system a is Taylor Fredholm we define

(6.12) index{a} = Buler(A™* (qg), A°% (), A%R(g))

or equivalently the Euler number of the chain (6.8).
It is instruclive to look at the case n = 2: the Koszul complex of a
commuting pair (a, ) of operators on 5 Banach space E is given by

(6.13) (0, 8,7,0) = (0, (b a), (g) ,o).

The regularity of .5 and T" neither implies nor is implied by the regularity
of g and b. For example if b = 1 then for arbitrary a the chain (6.13) is
invertible and hence both S and 7' are regular. In the other direction, we
have

H

7. EXAMPLE. If w: F — F is onc-one and dense but not onto, and

A _fw ~1
(7.1) 0= (0 w), b.~(0 0),

then

(7.2) a and b are both regular,

while

(7.3) neither S nor T is regular.
Proof If

i b (00N o,
(7.4) nm(l 0)_ b

then

(7.5)  a=uad'a and b=bb'd withba=0=oabanda'V =0="¥a',
while

(7.0)  TX)#S5HO) =cT(X) and S(Y)#Z =clS(Y) u

Whether or not the operators ¢ and b are regular, it is rather easy to
see that the behaviour of the complex (0,9,T,0) is unchanged when we
interchange ¢ and b. _

If both the operators o and b and the Koszul operators S and T are
regular then we can hope for an expression for the generalized inverses of S
and T in terms of those of a and b: ' ' '
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8. LEMMA. If (a,b) is a commuting pair of bounded regular operators
on a Banach space E which is Taylor Fredholm then we can find generalized
inverse pairs (a',b') and (a”,b") for which
(8.1) B'bYa'a) = (2'a)(B'b) and (Bb")(aa") = (aa”)(bb").

Proof. Note that if an element ¢ = aa™a is regular and if projections
p=p? and ¢ = ¢? satisfy
(8.2) a”}0) = p*(0) and cla(E)=q(E)
then we can find a generalized inverse a’ for ¢ with p = a’a and ¢ = ea”:
simply take
(8.3) o = pa’q.

Now if the pair (a,b) is middle Taylor exact then ([11], Theorem 4) there
are equalities
(84) a(E)NH(E) = (eb)(E) and a~'(0)+571(0) = (ba)~(0),

and also ([11], Theorem 3) the product be is regular. This holds to within
finite dimensions in the Fredholm situation; thus a(E) Nb(E) and a~1(0) +
b~1(0) are also complemented, and we may write

(8.5) E=EaoF oEeF =E&FE &FE,®FE;,

with

(8.6) a(E) = Eg & Ey, WE) = Ey & By,
aH0)=Ey@ By, b7Y0)=FEy @ B

This means we can write

(87) eoterteates=1=ey+e]+ey-+eh

with e;e; = §ije; and eje] = §ye;.
Thus by (8.3) we can find a = ea’a and b = bV'b with a’a = e} + e} and
b'b = ¢} -} ey, and obtain the first part of (8.1); also, we can find a = aa’a
and b = bb"b with aa” = ep + e; and bb” = eg + ey, and obtain the second
part. m»

With such a choice of generalized inverses for a and b, we get formulae
for the index of the Taylor Fredholm pair (a, b):

9. THEOREM. If (a,b) is a commuting pair of reqular operators on a
Banach space E, and if the pair (a,b) is Taylor Fredholm, then we can
arrange that

. T
9.1) a=aa"a, b=0bb"h, index(a,b)=index(? b ,
- b a”(

1 — bb')
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and also thai

(9.2) a=oada, b=0bbD, index(a, b} = index ( a,b (1- a’a)b’) )
- a

(a",b") as in (8.1) gives

-G )
(=0 @)=t a) () (= a)
Now (6.12) and (5.3) give (9.1) and (9.2). m

We can sometimes deduce that the index is zero:

Proof Choosing (a’,#) and

10. THEOREM, If (a,b) is a commuting Taylor Fredholm pair for which

either (a(E) +b(E))/a{E) or (a(E)+b(E ))/b(E) is finite-dimensional then
index(a, b) = 0.

Proof If (o”,4") is a generalized inverse pair for (a, b) such that aa”

and bb" commute, and if (a{E) + b(E))/b(E) is finite- dimensional, then the
operator aa”(1 — bb”) is finite rank; thus

, a ! . —b"
index (b (1= bb”)) = index (Z’ 0 )
and hence

index(a, b) = index (3 2) (‘; é) ((1) _%H) = index(b)+index(¥'") = 0.

If (a(E)+b(E))/a(E) is finite-dimensional then work instead with &’ and
b'. Alternatively, the same argument shows that (b, e) has index zero, and
hence again (a,b). w
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A remark on non-existence of an algebra norm
for the algebra of continuous functions
on a topological space admitting
an unbounded continuous function

by

ALEXANDER R. PRUSS {Vancouver)

Abstract. Let X be any topological space, and let C(X) be the algebra of all contin-
uous complex-valued functions on X. We prove a conjecture of Yood {1994) to the effect
that if there exists an unbounded element of C{X ) then C(X) canuot be made into a
norwmed algebra.

Throughout, C(X) denotes the algebra of all continuous complex-valued
functions on a topological space X,

THEOREM. Let X be o topological space such that C(X) has an un-
bounded element. Then there is no normed algebra norm on C(X).

As Yood [4] notes, it is easy to see that there is no Banach algebra norm
on C(X), so that the main content of the Theorem is the non-existence of
a norm under which C(X) would be an incomplete normed algebra. Qur
Theorem. was conjectured by Yood [4] who showed that it does hold under
the additional assumption that X is a locally compact Hausdorff space such
that every character of C'(X) is a point-evaluation. Yood also showed that
this condition on the characters is implied by the existence of a function
h € C(X) such that {x: h(z) = a} is compact for every e € C.

To prove owr Theorem, we recall a result due to Kaplansky [2, Thm. 6.2]
and also used by Yood [4] in his work. By Cy(X) we mean the algebra of
continuous complex-valued functions on X vanishing at infinity, where X
15 a topological space and Cy(X) is always equipped with the supremum
norm. For more information on interesting issues related to the following
Proposition, see [3, pp. 244 and 576-579).
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