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Abel means of operator-valued processes
by

G. BLOWER (Lancaster)

Abstract. Let (X;) be a sequence of independent identically distributed random
operators on a Banach space. We obtain necessary and sufficient conditions for the Abel
means of Xn ... X2X1 to belong to Hardy and Lipschitz spaces a.s. We also obtain nec-
essary and sufficient conditions on the Fourier coeficients of random Taylor series with
bounded martingale coefficients to belong to Lipschitz and Bergman spaces.

Introduction. In percolation theory it is of interest to analyse the
asymptotic hehaviour of products ¥, = X, X,_1... X, of random linear
operators. It is known as a consequence of the subadditive ergodic theorem
(11, p. 893] that if X; are a sequence of independent identically distributed
random operators on a Banach space £ whose norms satisfy the integrabil-
ity condition Ellog || X[ 5(sy| < C, then the random variables

ntog | XnXno1. .. X1llpm)

converge almost surely to a constant v < Elog || X;[iz(gy. When v < 0 the
operator-valued functions

oC
(1) H(z)=(1-2)) #"XnXn_1...X1

n=0
are well defined on the disc D = {|z| < 1} almost surely and define the Abel
means of the stochastic process X, X, ;... X1 . In this paper we congider
necessary and sufficient conditions involving the mean operator T' = EX;
and the random operators Ay = Xy — T for H(2)f (f € E) to belong to
various Hardy and Lipschitz spaces almost surely. The geometrical structure
of the underlying Banach space E plays an important role in the results.

In Section 1 we consider the case in which X are independent copies of a

random matrix X with entries [X;;. The matrices are regarded as operators
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262 G, Blower

between Lebesgue spaces L?(7) of functions f(i) defined on the integers. We
obtain a sufficient condition under which E||H(r)f||zs — 0 as r — 1—.

In the following section we show that if T is a contraction on a B-
convex Banach space E, then H(z)f belongs to the Hardy space H'E with
E||H{z) fllarg < o0 only if (I™ — T™*1)f — 0 in norm. In Section 3 we
obtain an upper estimate on r — E||H('re"9)_fl|LgE wheré E is a (-convex
space.

In Section 4 we obtain a sufficient condition for the matrix coefficients
(H{re®) f, ') to belong to the Lipschitz space A, almost surely. The hy-
potheses involve stringent compactness assumptions on 7. In Section 5 we
show that when T is a self-adjoint Hilbert—-Schmidt operator on Hilbert
space a special argument leads to an analogous result involving a modified
Lipschitz space.

The proofs of Theorems 4 and 5 use Propogition 4, which concerns the
Lipschitz norm of a random Taylor series with martingale coefficients. A
converse result is given in Section 6. The main results use a factorization
lernma which we state after introducing a little notation.

NoTATION. Let (£2, P) be a probability space, E a complex Banach space.
We take X to be a random operator on a Banach space F go that 23 w —
X(w) € B{E) is strongly measurable and E[|X || gz < oo, We let X, be
. a sequence of independent copies of X, We put ¥, = XpXn—1...X; for
n 2 1, and Yy = I = Y_;. We also introduce EX; = T', the mean operator,
and write X; = T'+ A; where Ay = I. The o-algebra generated by A; with
J = n will be denoted by F,,. We denote by T* the transpose of T.

C, ¢ are positive constants taking possibly different values in successive
equations.

We denote by LYE the Bochner-Lebesgue space of strongly measurable
functions h(@) taking values in E for which [[A(8)||% is integrable. Mixed
norms will be denoted by

1 \ P/ 1/p
i i d@
IF(re® )| 2oz = ( f (%f ||F(T€6)HQE§;;) dT)

0

The Hardy space formed by taking the closure in LY E of the analytic trigono-
metric polynomials with coefficients in E will be denoted by HPE.

DEFINITION. A complex Banach space E is said to be B-conves if there
isa ¢ > 1 and a constant C for which

® aveg | =] < o(S1£ln) ™
ok k

for any finite sequence (f) of elements of . Such a q is called a type of E.
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A Banach space F is said to be a UMD space or be (-conveg if there is
a congtant Cg such that

® | Senf, <] n

for any choice of signs £, = T1 whenever (zx) is a finite sequence of mar-
tingale differences taking values in E.

Examples of UMD spaces include the Lebesgue spaces L9 for 1 < g < 0o
and many of the reflexive spaces which arise in classical analysis. See [6,

pp. 271-273] and [5] for a discussion of their properties. Any UMD space is
B-convex.

We shall repeatedly use the following contraction principle [8, p. 691].

THEOREM. Let (vn) be a martingale difference sequence with lvn| < K
almost surely and let (r,) be the Rademacher functions. If & : R™ — Ry is
any conver function then

(4) E@(Ul,vz,...,’l}m) SE@(KTl,K?‘z,...,KTm).

The starting point for the analysis is the following algebraic lemma
(cf. [13]).

FACTORIZATION LEMMA, Let T be a contraction on a Banach space E.
The Abel mean operator H(z) = (1 — 2) 320 | 2"Y;, admits a factorization
H(z) = F(2)G(z) where

(5} Flz)=(1=2)(I~2T)"" and G(2)= iz”AnY —1.

The non-random operator function F(2) is determined by the mean opere-
tor T, whereas G(z) is a random operator function whose coefficients form
o martingale difference sequence with respect to (Fp).

Proof. An induction argument on n establishes that
kil
(6) Yo=Y T AV

k=0
where we put Ap = I and Y_; = I. Changing the index of summation gives

o0 =] 1 o0 oo
(M 3 =30 AT kA = Y (Y ) A
k

=0 rml k) . k=0 n=

= (I = 2T)™ Y 2 A Yioy = (1 - 21)71G(2).
k=0 .

1. Processes with reversible mean matrix, Let us consider function
spaces on the integers, and random operators defined on them. Suppose that
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Xy are independent copies of a matrix X whose entries will be denoted by
[X]i;. We further suppose that the mean matrix T is stochastic so that
22;[T)e; = 1 for each ¢ and that its entries are positive. We suppose that
there is a sequence of positive numbers ; for which m;[T7;; = 7;[T]4i. Such
a T' is said to be reversible and the choice of (7;) is unique up to a scalar
multiple. We let LP(r) denote the space of sequences pth power summable
with respect to the measure 7 defined by 7({;}) = ;. Then the matrix T
defines an operator on LP{m) by Tf(j} = 3_,[T];4f(i) which is a contraction
for 1 < p < co. We shall prove that if the size of the entries of T™ decays as
n — oo then the components of the vector H(r)f decay in size as r increases
to unity. The arguments are based upon those of [14, p. 220],

THEOREM 1. Suppose that the mean matriz salisfies
(@) [ [T rere < On™” for some v > 2,
If some f € L*(7) satisfies
(b) EllAxYe-1fl|Z2 = o(1) as k — oo,
then B H(r)fllze = o((1 — r)*/?) as r — 1— where /s =1/2 ~1/v.

LeMMAa 1. Suppose that the mean matriz satisfies (a). Then the operator
I = 32 0 T™ is bounded as an operator from L? into L° where 1/5 =
1/2—1/v.

Proof. We prove this by considering a decomposition of the Creen’s
function I'. Set

N-—-1 =%
(8) Iy=)_ 1% V= T
n=0 n=N

Take f € L” where p < v. Letting m denote m-measure we have the
Marcinkiewicz decomposition

) m|Tf] 2 2t] < mi| T f| = 1] + m{| TV f] > 4,

We begin by considering the second summand in {9). An easy application
of Hélder’s inequality gives

(10) I fllzee < My [Tl oo s | £ 2o

where ¢ is the exponent conjugate to p. Since ||7rj".1 [T™)i]l zge r= = 0(n™")
and T is stochastic, an interpolation argument shows that

(11) i T g ez = O(nv/m).

It follows that

(12) WV lne <C( 3 7)1 flar < Cply = p)INE-0) |,
ne=N
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Consequently, the second summand in (9) is zero when t > p(v — p)~?
x ON®=2)?| f| 1». Since p < v we can take N to be the first integer greater
than (p(v — p) ™2 £l|»)?/*~P} in order to satisfy this condition.

We now consider the first summand in (9). The elementary estimate
[T fllze < N|if|ze leads at once to tPm[|I'nf| > ¢] < N?|/f|%,. For our
choice of N we arrive at the desired estimate :

(13)  mlIf] 2 26) < ml|Dn f| 2 1] < Ot/ =2 f|v2/ D) o =) £ 11w,

where 1/w = 1/p— 1/v. Hence I' is weak (p, w) bounded for p < v and our
v has v > 2. By the Marcinkiewicz interpolation theorem the operator I is
bounded L? — L° where 1/s = 1/2 — 1/v.

Proof of Theorem 1. Suppose that the hypotheses of the theorem
are satisfied. By the Factorization Lemma and Lemma 1 we have

(14)  HE)llze < [F)llze—re G f] 2 < C(L =) IG(r)F ] o

Squaring and taking expectations gives
e 2
(15) EJH ()3 < ¢ -r)E|| 3 rfaniaf]] .
k=0 L

The last factor in (15) may be evaluated by using the parallelogram law and
orthogonality of martingale differences in L?. We have

(16) E|G(r)fl}2 =D r**E(ArYeo1f, AnYe1f)
k=0
o0
<O E| A Ye-1 fi2s.
k=0

By the assumption (b) on the martingale differences this is o({1 — r)™!) as

r — 1—. Hence

A7) E[HC)fE = o(@-r21—r) ) =o((l~1) asr—1-.
2. Lower estimates. To obtain converse inequalities one considers the

norm of the Abel mean H(re®)f in the vector valued Hardy space H1E.

The following inequalities are counterparts of Hardy’s Inequality. A detailed

discussion of such inequalities is contained in [3].

PROPOSITION 2. Let E be a B-convex Banach space or let E = LY. Then
there is o constant Cg > 0 for which

R i -1
18 B ln IHCE) e 2 Co )k B AYeeu s



icm

266 G. Blower
Also the following ineguality holds:

(19 E lim [|H(re”)fllz3m 2 Cr ;k-lu(f ~T)T* " f|g.

Proof. From the definition of F(z) one sees that || F(z)~!|| < C|1-2|~?
when |z| < 1. Consequently, we have | H(z)f||lz 2 C~|(1-2)G(2) f|| 5. We
set 2z = re'® and integrate with respect to 8 to get

20) [ H(re")lp o
T

> f “ADY_lf - irkeike(flkyk—lf b AkH;Lchu_gf)HE g%
T k=1 :

It follows from Bourgain’s extension of the Hausdorff-~Young inequality
3, Theorem 2.5 that if F is B-convex then this latest integral may be
bounded helow by

o0
Ce kK 'r*ApYio1 f — Ap_1Viof 5.
k=1
It is observed in [3, Cor. 2.2] that a similar inequality holds for analytic
functions taking values in L' (which is the predual of a C*-algebra). Taking
expectations we obtain

(1) E Ym |H(re®)flle 2 Cs )k E|ApYio1f — Ag—1Yi-2fl|.
k=1

The existence of the limit as r — 1— follows from standard facts about
Hardy spaces since the norm on any Banach space defines a subharmonic
function. We can bound each summand in (21) by taking conditional expec-
tations to get
(22)  E[AxYi-1f — Ap—1Ys—2flle

= EE(| AxYp—1f — Ap—1 Yoo fI| | Fr-1)

2 E|E(AkYyo1 f|Fae1) ~ AprVe-aflin = Bl Adp—1 V-2 ||

since E(Ag|Fi-1) = 0. The inequality (18) follows from this.
A similar, but easier, argument shows that

. [& ]
(23) E lim [|H(re®)fllzim = ¢y kTE(Ve - Yies) fll 2
k=1
Taking expectations through the norm and using independence gives that
(24 El(¥e —Ye-)f 2 |(EYe — EYe-1)fllz = (TF ~ T*)f 5,
from which (19) follows. '
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Remark. The inequality (19) shows that if T is power bounded so that
|T*| 5(z) < C and if the Abel means H(re') f have JE||H('r‘ew)fHLgoL;E <

oo then ||T7f — T™ 1 f|| g converges to zero as n — oo. This may be com-
pared with the conclusion of [12, Theorem 1.1]. Tt is shown there that if T is
a positive linear contraction operator on L! for which T f and T7*1f inter-
sect slightly but uniformly in f in the unit sphere of L, then 7™ f—Intiy
converges t0 zero in norm. See also [1, Theorem 5] and [10, Theorems 1, 6).

3. Upper estimates on LY E. In this section E will be a UMD Banach
space.

"THEOREM 3. Let f € E and suppose that

(a) Bl|AeYirf|I% < C for all k, and

(b) “F(Z)”B(E) <C forze D.
Then if 1 < p < oo thereis a g > 1 for which
(25) E|H(re®) flleze = 0((1-r)"Y9) asr—1-.

Proof. Qur basic estimation is carried out in the vector-valued Lebesgue
space LyE where 1 < p < co. Since F is a UMD space, LLE is also UMD
by [5] and [6, Theorem 1]. One can easily prove that LYE has type g, the

minimum of p and the type of E itself. By the factorization lemma and
hypothesis (b) we have

(26) 15 (re®) Fllzze < sup |7 (e (s |G(re®) fll 2w

_ < C|G(re?) fll g -
Using the UMD property we obtain

27) qu%mhyﬂﬂzywwﬁan
k=0

q
23

< C’]E‘.‘ ; qirkeikaAkYkﬂlf’ igE

by [6, Theorem 1] for any choice of signs . Taking the average over all
choices of signs, we get

(28) Avex H i Froel A Vi 1 f
k=0

o0
q .
< O3 rh)ant 4)
13 S O T 1S
since LYF has type q. We now take expectations and use Minkowski’s in-
equality to get ' ‘

’ 3 0 i . 1/q .
(29)  E|GEre*)flige < O(3 MBI A 1£1%) " < OO —r)He.

’ S k=0 o . . )
This estimate, when combined with (26), leads to the stated result.
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Remark. The hypothesis (b) of Theorem 3 holds if there is an s < 1
for which the (spatial) numerical range of T' is contained in the convex hul)
of {1} and the closed disc {|z| < s}. It is immediate from the definitions
that the numerical range of T = EX is contained in the closed convex
hull of |J,, ¢ ran(X (w)). By a theorem of Crabb [4, p. 22], the convex hull
of the spectrum ¢(T) is contained in the closure of ran(T). It is easy to
construct examples of random operators {2 3 w = X (w) for which o(T) is
not contained in {J,,., o(X (w)).

4. The coefficients of G(z). Following [2] we introduce the Bergman
space Jp (—1 < f < 2) as the space of analytic functions k(2) on the unit
disc D for which the norm

1
(30)  Jo(k) = kO)|+ [ (L= PR (re?)pydr (1< B<2),
0
or respectively

1
(8L)  Ja(k) = [ (L= )P ik(re’®)|| s, dr (0<B<2)
0
is finite. The norms are equivalent where they are both defined. The Lip-
schitz space Ag is defined to be the space of analytic functions 9(z) on the
disc for which the norm

(32) Ap(9) = 19(0)] + 1¢'(0)] + sup(l - )2 Plg" (re?)|
'P!
is finite. The dual space J ,g is equivalent to .Ag under the natural pairing

[2,2] 1 -
8 ok = Y gk = [ (1 o) gL (re® K (rem0)e™ 22 gy

where g1(z) = 2%(g(z) — g(0)). For this range of 4 the analytic polynomials
form a dense linear subspace of J, 80 the pairing may be defined initially
for polynomials and extended to the complete function spaces using the
integra] formula (33). The infinite sum is convergent in the sense of Abel
summation. If g(z) is an analytic function taking values in a Banach space B
we can. define Aa(9) = |}9(0) [ 5+ 9'(0)1 +5upy cx (1 — o) *~2]lg" (=)
One can then form the Banach space Ay (E) of functions g(z) for which
Aal(g) < oo.

A fact which will be used repeatedly in the following proofs is contained
in [7, Theorem 39]. If 4 < 0, a function g(2) has Ag(g) < oc if and only if
supj,i<1(1 — [2])7#|¢(z)| < co. This fails to hold in general for 8 > 0.

In this section we obtain a sufficient condition for a Taylor series with
martingale coefficients to belong to A,,. '

icm

Abel means of operator-vatued processes 269

LEMMA 4. Let d,, be a bounded martingale difference sequence and let .

N
(34) WN('I", 9) = (1 — 7‘2)1/2 Z dmrmeimb'"

m=0

Then B Wy (r, 0)|3 0 oo = O((log NY2).

Proof. By estimating real and imaginary parts separately it suffices to
consider

N
(35) Ulr,8) = (1 - r%)1/2 Z dr™ cosmf

m=1

and the corresponding sum involving sines where d,, is a real martingale
difference sequence. By the contraction principle (4) stated above, we can
replace each d, by the Rademacher function Tm. We introduce the Cheby-
shev polynomial T, of degree m by the relation T, (cos ¢) = cos m¢p. We set
r = cos ¢ and use the standard identity r™ = >0 CimTj(r) where Cim =0
and 370, ¢jm = 1 to substitute for r in the formula for I/ (r,0). We obtain
an expression U(r, #) = V (¢, §) where V (g, 0} is a trigonometric polynomial
of degree 2N + 1 in 8, . We observe that

[U(r,8) < sup sup
—FLPST ~wLhLT

(36) sup  sup
05r<l —r56<r

[V(¢,6) = M.
Using Bernstein’s inequality as in the proof of the classical Littlewood-
Salem Theorem [9, 6.2] one can show that
Eexp AM/2 < ON? exp C)? (A>0).
From this, Chebyshev’s inequality gives the distributional estimate
(37) P[MA/2 — CX* —1logN* > u] < Ce™  (Au> 0).
'The required estimate on EM? follows by a straightforward calculation.

PROPOSITION 4. Let d,, be a bounded martingale difference sequence and
let < ~1/2. Then the function

(39) oD = 3 dne”

fras]

belongs to Ap almost surely.

Proof. To reduce to the situation of the lemma we set

(39) K(r,6) = (1—¢r2)~7F i dnrme'™, .

n=1
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We split this series into dyadic blocks A; = {n : 2/ < n < 2841} by

introducing

(40) Vi('r’ 6) = (l _ ,,.2)1/2 Z dnrw—Z’ gind
nEA,'

and writing

oo

(41) K(r,0)=) (1—r")~F"1% e 2(' (] — p2)1/2 Z Y ma)

§=1 ned;

By the Cauchy—Schwarz inequality

W) K< (a0 (S g er)
i=1

=1
Taking expectations and using the Cauchy-Schwarz inequality for integrals
gives

(43)  E[K(r,0)|rere

< [ - ey (imuvjcr, Miers)
-\

By the lemma, E[[V;(r, 8)|[3 L = O(4?), so the series in the second factor

in (43) converges. Using some elementary estimation one shows that the first
factor is finite.

THEOREM 4. Let E be any Banach space and let f € B, f' € E'. Suppose
that

(a) T is a nuclear operator from E to itself,
(®) (T = (TH" ) F|lee < On=2"" for some a < 0 and oll n > 1,
and

(c) | AxYs1flle < C for oll k.
Then E||(H(re®)f, ')||a, < oo for each v < a — 1/2.

Proof. It is readily verified that F(z) = (1 ~ 2)I + 2I'F(2), so we can
use the factorization lemma to write
(44) (H(2)f, ) = (1= 2{G()f, ) + 2{TG(=) f, F(2)Hf).
Since T is a nuclear operator there are f; € E and f; € E with T =
> fi @ f; and T £l filler < C. We write the second summand in
(44) as
(45) (H(2)F,f') = Y_ =G @), Fj)ifs F@)f).

j=1
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This is a decoupling formnula, for each summand has the form of the product
of a random coefficient involving f and a non-random coefficient involving f'.
We proceed to estimate each summand. If ¥ < @ — 1/2 where a is as in the

theorem we can write v = § + 8 with § < —1/2 and 8§ < «. Tt follows from
[7, Theorem 39] and an elementary calculation that

(46) [1G (), 1) (s F(2) ), < OGRS, Fidllas | {5, F(2) £ s

Using this estimate and the triangle inequality in the decoupling formula

(45) we get
(47) BIKHL(2)f, f Y4, £ CZEII
< CZ]EH

By (43) of the proof of Proposmlon 4 we have

(48) El{G(2)f, fi)las £ Cllfill2-
By the assumption (b) we have

” Zz ("

(2)f, £){F1, F(2) )| 4,

Filllas{fs, F(2)" £l 4

Tf)ﬂ-%-l (Tt n+1)f’HE"

<ZIZ’I Iy

< CZ |2|*n=o " = O((1 - |))°)
=1

since § < & and § < 0. On considering the power series expansion of F(z)
it is evident that the estimate

(49) 155, F(2) M as < CUEHENF ) f | as@y < Clifille
follows from this. Substituting (48) and (49) in (47) we get

(50) E|(H1(2)f, f)la, < C D Iilsl fills < oo.
i

Proposition 4 also deals with the first summand in (44).

5. Hilbert space estimates. The result of this section appears to be
special to Hilbert space ag it uses a spectral theorem and Parseval’s identity.

THEOREM 5. Let f, f' be elements of o Hilbert space E and suppose that
(a) T is a self-adjoint operator on E with 0 < T < I,
(b) T is o Hilbert-Schmidt operator, and
(c) |AxYe-rflle = C.
Then ;
G)  Ela-n)" (8 <=1/2).

ﬁ(-H(""ew)f, f’)”Lchg < 00
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Proof. The proof follows that of the previous Theorem 4. One checks
that

F(z)=I-2(I-T)—2*T(I~T)I - 2T)"*
so the factorization lemma gives
(52) H(z)f =T +2T-1)G(2)f - 221 ~T)I — 2T)"'TG(z) .

We denote the fina] summand in (52) by Ha(z)f. It suffices to estimate this
term since the proof will include an estimate on the first summand.

By hypotheses (a), (b) we can write T = 3, fi ® fr where (f) is
an orthonormal basis and 3., |[fil|% < C. The decouplmg formula for
(Hy(re'®) f, /) is obtained by taking adjoints and using the expansion of
T to give

(83) ((I-T)I- 7"ewT)_li’"(a?(?"ew)f: )
“‘Z f;.flc fn'ﬂ:( ""req_iBT)_

We apply the Cauchy—Schwarz inequality to get
[{Ha(re®) f, £}

< (3Kt

Using Bessel’s inequality for the orthonormal basis (f;) one deduces that
(54} [[(Ha(re®)f, )lI1s

1/2 .
< (Zu Glre")f, i3 ) NI = re™T) I — T) f 30

HI=T)f".

@5, P)" (Zlfk, r=rery(r -y )

We multiply (54) through by (1—r)~# and take the expectation of its square.
This gives

(55)  EI(L =)™ (Ha(re®) f, £)|3 o1
S OEY (1 —~r)~8(G(re) s, fé)”i_s%f”(f = re®T) NI - T)f’”i;mgﬁ-
P .

One evaluates the last factor in (55) by using Parseval’s identity in LIE to
obtain

I =re ™I = D)f NEgp = 3 r™ (T (1 = T)2F, £,

n=0

By the spectral theorem and hypothesis (a) the right-hand side is at most
(56) (I =r*T") T =TV F, ) (I +T) M=), £ < |IF 1%
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By Proposition 4 and (c} the first factor in each summand in (55) satisfies
(57) EI(1 - )G (re®)f, FiMld 1 < ClIA-

Using the Cauchy-Schwarz inequality for integrals, the stated estimate (51)
follows on substituting (56) and (57) in (55).

6. A converse to Proposition 4

LEMMA 6. If un is a bounded martingale difference sequence, then the
function

(58) Kz =
ne=]

belongs to Jg almost surely for 8 > —1/2.

Proof. Once again this is a consequence of the contraction principle
(4). After replacing the u, by Rademacher functions r,, we can use Fubini’s
Theorem to derive the estimate

(59) E[|&'(re®)||y < C(1—7)722,
from which the stated result follows.

The method of proof of the following result was suggested by [7, p. 418].
See also [7, p. 421]. Henceforth we let

(60) 9(z) = ()], f) =Y 2™ (An¥nrf, ).
n=0
THEOREM 6. Suppose that there is a constant C for which
(61) E([g(n)|1Fu—1) < CE(§(n)]| Fn-1))?
and that there is a 8 > —1/2 for which
(62) Ellg"(re®)|| g = O((1 - r)~>*#).
Then

) (Z 5] ) 1/2

Proof. We introduce a function k(z) = 2%, un2"/n where u, is a
bounded martingale difference sequence so chosen that R(g(n)u.) > |g(n)|.
To obtain u, we introduce the polar decomposition g(n) = vp|g(n)| and
set Up = Ty — E(Ty|Fn-1): This forms: a bounded martingale difference
sequence. Since g(n) is a martingale difference sequence, it follows on using
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the triangle inequality that
AE(un|Fr-1)| < E(|Avn - g(n)]|Fr-1)
< B =[G P} (A >0).
Optimizing this over A we obtain
(E(|§(n)] | Fn-1))? < (1 = [E(va| o) DE(G0)*| F ).

By the assumption (61) on the expectation and variance of |§(n)| it follows
that

(64) R(und(n)) = [} — R(G(n)E(Tn | Frn—1))
> [3n)(1 = (1= CH2) > clg(n)]

where ¢ > 0.
By the duality formula (33) the pairing of g(2) and k(z) may be repre-
sented as

o0

) 7= 5wk = (611K = [ (1T i
n=1 o

where

(66) fg Tevﬂ)kt _zg)emiegg

27

We estimate this by introducing a dyadic decomposition. Let r; = 1 — 27
for j > 0. We observe that 1 —r;, 1 —r,4; and r;44 —r; lie between 27 and
9—i~1, - Hence the ratios of these quantities are bounded above and below by
absclute constants. Splitting up the integral in (65) gives

0o Tiq1
(67) <oy [ a-nwldr,
J=0 1y
80
(68) ISCY (=1 (rjpr—1;) sup U,
7 PPET T
By Minkowski’s inequality with exponent 1/2 < 1 we have
(69) TR <od (1 =r)(rp —r? sup UV
F r3Sr<rita

and on taking expectations and substituting for 7; we have

(70) B|7|/2 <022 SR sup (UM
. i S TFEr< i
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We use the formula (66) to estimate the integrands in this latest series by

(T1)  sup U /< sup  [lg"(re®) e swp & (re®)] 3

7 Sr<ritl TiET< G4 TiSTr<riqn
< Hg”(?"me“’)liwIIk'(Tj+18"9)HL1

using standard properties of the Poisson integral formula. We take expecta-
tions and use the Cauchy-Schwarz inequality for integrals to show that

(12) E_ sup |U(r)[? < (Bllg" (rj1e®) g BN K (rj41e”)|23) /2.

rySrdri,

It follows from estimate (59) in the proof of Lemma 6 that there is a constant
C with

(73) B (rjp1e?) 1y S O(L— ry10) 2 = 0(2377),

Combining this with the assumption (62) on g(z) we conclude from (72)
that

(74) E sup |U[Y2 = Q(2i—Ril2+iley,
T ET<r 41
Substituting this into (70) we get
(75) J|1/2 20(2-3-7/2+J“.6.7/2+J/4) = 0(1),

J

where the exponents in the series (75) are negative since —1/4 ~ 8/2 < 0.
Returning to (65) and recalling the choice of k(z) we conclude that (63)
holds.

PROPOSITION 6. Suppose that

(a) [§(n)| < C, and

(b) Ellg|lay < oo for some B > —1/2.
Then

(76) (Z d n)|2)1/2

m=al
Proof. One can prove this in the same way as Theorem 6, now taking
up, to satisfy R(ung{n)) = |§(n)|%. The hypothesis (b) on the norm of g is
gtronger than condition (62) of the theorem since

(77) (1~s)" ﬂ+2]E||g”(sem)”L°° <E Bup sup (1 —r)7P+2|g" (re'?)|.
Lr<l—w <0<

OPEN PROBLEM. Under what conditions on X does the circle of conver-
gence form the natural boundary of H(2)f? See [1, p. 539] and [9)].
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Nonatomic Lipschitz spaces
by

NIK WEAVER (Santa Barbara, Calif.)

Abstract. We abstractly characterize Lipschitz spaces in terms of having a lattice-
complete unit ball and a separating family of pure normal states. We then formulate a
notion of “measurable metric space” and characterize the corresponding Lipschitz spaces
in terms of having a lattice complete unit ball and a separating family of normal states.

Let (X, d) be a metric space. Then the Lipschitz space Lip(X, d) is the
Banach space consisting of all bounded scalar-valued Lipschitz functions
on X, with norm

Iz = max(]| fleo, L(£)).
Here || f||oo denotes the sup norm of f and L(f) denotes the Lipschitz number
of f,
L(f) = sup{|f(z) - f)l/d(z,v) : zy € X, = #y}.
Lipschitz spaces have been studied in [1], [3], [5], [8], [9], [10], [11], 112}, [13].

The real part of the unit ball of Lip(X, d) is a completely distributive
complete sublattice, and we showed in [11] that this fact characterizes Lip-
schitz spaces up to isomorphism. Qur first aim here is to give another ab-
stract characterization of Lipschitz spaces, this time in terms of order prop-
erties which may be more familiar. In the new characterization, complete
distributivity of the unit ball is replaced by the existence of a separating
family of pure normal states (Theorem 4),

This new result is somewhat unnatural, in that it juxtaposes pureness
and normality, two properties not usually seen together. This is actually an
advantage, because it suggests a direction for generalization. _

To see this, consider the space {* of bounded scalar-valued sequences.
It too has a separating family of pure normal states, namely the coordi-
nate evaluations. But [*° is merely a special example of the class of spaces
L*(X, u), which generally have a separating family of normal states (given
by integration against functions in L'(X,u)). Pure normal states exist in
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