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Local polynomials are polynomials
by

C. K. FONG (Ottawa, Ont.), G. LUMER (Mons),
E. NORDGREN (Durbam, NH.), H RADJAVTI (Halifax, N. Scotia)
and P. ROSENTHAL (Toronto, Ont.)

Abstract. We prove that a function f is a polynomial if G'o f is a polynomial for
every bounded linear functicnal G. We also show that an operator-valued function is a
polynomial if it is locally a polynomial.

We begin with the following general result.

THEOREM. Let % be g Banach space and # o normed vector space (over
R or C). Let ¥ be a Banach subspace of the space B(¥ , #') of bounded linear
operators from % into #'. Let & be any non-empty set and ¢ any function
taking & into ¥. Suppose f is a function from a non-empty connecled open
set of real or complex numbers into 2 with the property that ¢(f(2))y is a
polynomial in 2z (with coefficients in #') for each fized y € % . Then o(f(z))
is o polynomial in z (with coeffictents in ¥).

Proof. For each fixed y,

e(F(2)y = To(y) + i)z + ... + Te(y)e",
where each 7} is a mapping from % into # and the degree k depends upon
y. Since

w{f{2))(eryr + capa) = 1 f(2)) (1) + cap(f(2))(y2)

for each fixed z and since two polynomials which agree on an cpen set are
identical, it follows that each T is linear. We must show that each T} is
bounded.

We can assume, by replacing z by z — zo i necessary, that 0 is in the
domain of f (a polynomial in z — zg is also a polynomial in z). Then Tj is
clearly bounded, since Toy = @(f(0))y, and @(f(0)) € 7.

Choose § > 0 such that .% = {#; 0 < |2| < §} is contained in the domain
of f. Then the set of maps 272(p(f(2)) — To), parameterized by z € &, is
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pointwise bounded on #. (For each fixed y,
2" e(f(2)) — To)yll € Ky + Kab + ...+ K58,

where k is the degree associated with y and K; = ||T;(y)||.) Hence, by the
Principle of Uniform Boundedness, there is a K such that

2~ (e(f(2)) = Tolyll < Kyl
forall z € &, y € %. For any fixed y,

lim 27} (p(()) = Toly = Tuw,

so [|Th|| £ K.

Considering 21 [z7*(¢(f(z)) — To) — T1] shows that T is bounded, and
similar considerations yield T; bounded for all j. This also implies that each
Tj Ev.

To finish the proof of the Theorem we must show that there is an N
such that Ty == 0 for § = N. To see this, for each positive integer n let

@ ={yc¥ Tpy=0foral k>n}

Clearly, the @, are all closed subsets of %. Moreover, the assumption that
each ©(f(2))y is a polynomial implies that { )5, #, = #. Then the Baire
Category Theorem implies that there is an N such that #y has non-empty
interior. A bounded linear operator which vanishes on a set with non-empty
interior is identically 0, so it follows that T, = 0 for k£ > N and o(f(z)) is
a polynomial in z with coeflicients in 7.

COROLLARY 1. If f is a function mapping ¢ domain in the complez
plane into a normed vector space & such that Go f is a polynomial for
every bounded linear functional G on &, then f is o polynomaal.

Proof. In the Theorem, take 2 = &, % = & and # = C. Then
B W) = Z**. Let p be the canonical imbedding of £ into £, and let
¥ be the closure of (&) in & **. Then, for G € X, o(f(2))G = G{f (7)),
and the Theorem implies that @ o f is a polynomial with coefficients in ¥,

but since that polynomial is @( % )-valued, its coefficients must actually be
in (&).

COROLLARY 2. If # is a Banach space and f is o function mapping a
domain in C into B(H) such that the mapping z — f(2)y is a polynomial
for every v in ¥, then [ is a polynomial.

Proof In the Theorem, let ¥ = & = B(%), ¢ be the identity map,
and # = & . Then p(f(z)}y = f(z)y, and the Theorem applies.
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similar to Corollary 1 above in the case where 2 is complete {in the course
of his lectures in the 1960°s).
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