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Chaotic behavior of infinitely divisible processes

by

[S. CAMBANIS*| (Chapel Hill, N.C.), K. PODGORSKI (Indianapolis, Tnd.)
and A. WERON (Wroctaw)

Abstract. The hierarchy of chaotic properties of symmetric infinitely divisible sta-
tionary processes is studied in the language of their stochastic representation. The struc-
ture of the Musielak—-Orlicz space in this representation is exploited here.

1. Introduction. In this paper we study the chaotic behavior of in-
finitely divisible (ID) stationary processes with continuous time. A large
number of papers on ergodic properties of stochastic processes have been
devoted to Gaussian processes starting from Maruyama (1949), Grenan-
der (1950) and Fomin (1950). For stable processes we refer to Cambanis,
Hardin and Weron (1987), Weron (1985), Podgérski and Weron (1991),
Podgdrski {1992), Gross (1994), Herndndez and Houdré (1993). For infinitely
divisible processes the study of mixing and ergodicity was started by the
pioneering work of Maruyama (1970), where he introduced an analytical
approach to ID processes, based on the Lévy-Khinchin representation. For
harmonizable ID processes he proved that they are never ergodic, gave nec-
essary and sufficient conditions for mixing, and pointed out that mixing
and mixing of all orders are equivalent. For stationary Gaussian processes
this was already known by the result of Leonov (1960). Recently Gross
and Robertson (1993) have examined chaotic properties of ID stationary
sequences which can be represented as random measures on stationary se-
quences of sets,

1991 Mathematics Subject Classification: Primary 60E07; Secondary 28D10, 46130,
60G10.

Key words and phreses: infinitely divisible process, ergodicity and mixing, stationary
process, stochastic representation, Musielak-Orlicz space, hierarchy of chaos.

Research of the first author was partially supported by the Air Force Office of Scientific
Research Contract APQSR-51-0030.

Research of the second and the third authors was partially supported by KBN grant
No. 2 1153 91 01. :

* 8. Cambanis passed away on April 12, 1995.

[169]



110 8. Cambanis et al

In general, the hierarchy of chaotic properties, which exhibits gradu-
ally stronger chaotic behavior, is well known (see Cornfeld, Fomin and Sinai
(1982), Lasota and Mackey (1994)). Namely, the following properties exhibit
gradually stronger chaotic behavior: ergedicity, weak mixing, p-mixing and,
finally, Kolmogorov property or exactness for invertible and non-invertible
systems, respectively. The open problem in the general theory is the ques-
tion of proper inclusions between p-mixing systems for different p (usu-
ally referred to as strong mixing systems; see Walters (1982)). For Gaus-
sian systems the relations simplify: ergodic systems coincide with systems
possesging the weak mixing property and all strong mixing properties are
equivalent; between all other classes there are proper inclugions (¢f. Newton
(1968)).

The results obtained here for symmetric 1D processes reveal exactly the
same hierarchy as in the Gaussian cage. In contrast to Maruyama (1970) here
we employ, as a simple tool, the concept of the dynamical functional and we
combine it with the stochastic representation of ID processes developed by
Rajput and Rosifiski (1989). As a result we are able to present, in a fairly
simple way, a systematic study of the chaotic behavior of non-Gaussian ID
stationary processes. In Section 5 we give a characterization of ergodic ID
processes (Th. 1) and prove that ergodicity and weak mixing are equivalent
(Th. 2). Section € contains a new characterization of mixing for ID processes
and a new proof of the Maruyama result that mixing and mixzing of all erders
are equivalent (Th. 3). We also discuss some examples in Section 7. It turns
out that each ID moving average process is mixing (Ex. 1) and there exists a
non-Gaussian moving average process which has the Kolmogorov property or
is exact (Ex. 3). Examples of Gross and Robertson (1993) of weakly mixing
but not mixing ID sequences complete the picture of the hierarchy of chaotic
properties in this case. A version of Lemma 1 as well as characterizations
of ergodicity and mixing similar to (iii) of Theorem 1 and (ii) of Theorem 3
were also obtained in Cambanis and Fawniczak (1989),

2. Preliminaries. Throughout this paper we use the following notation.
(£2, 7, P) is a probability space and X : 2 — RR® is a stochastic process,
which can be identified with a family of real random variables {X;}scn. Here
we consider only real, stationary and measurable stochastic processes. We
denote by Lp(X) the space of real random variables which are meagurable
with. respect to Fx = o{X, : £ € R). It is a complete metric space with
the topology of convergence in probability. The closure of the linear span
In{X, : ¢ € R} with respect to this topology is denoted by Lgy(X). The
group of transformations (T3 )ier of £o(X) is generated by the group of shifts
(Si)ter on RR via T,Y = £(5:X), where f is a measurable function from R®
toR and ¥ = f(X). For p € N we let £,(X) = {Y € £Lo(X): E[Y|? < 00}
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For a stationary and measurable process X we consider the following
chaotic properties. The process X is ergodic if for each ¥V & Ly(X) with
T,Y =Y as for all £ € R we have ¥ = const a.s. The process X is weakly
mizing if for all Y, Z € L£y(X),

T
1
dim = 5]" \E{(T,Y)Z)} ~ EYEZ|dt =0,

and mizing of order p € N if for all Y5, Y1,..., ¥, in Ly (X) we have

E{(T}¥o) (Tu¥1)...(T1,Y;)} — EY, EY: ... EY,

as miny<j<p(ty — tj—1) — 00, Mixing of order 1 is called plain mizing.

Further, the process X has the Kolmogorov property (K-property) if there
exists a o-field Fy € Fx such that Fy C T3 Fp for all ¢ € R, the o-field
generated by | J;cp 720 is equal to Fx, and [),cp TeFo is the trivial o-field;
here the action of T on a measurable set is defined by the action of T} on
its indicator function. The exactness property is defined for a positive time
process X. : {2 — R} X is ezact if the o-field ntE(O,oa) Tio(Xy 1u > 0)
is trivial (see Rokhlin (1964)). It is clear that if a positive time stationary
process {X;}:>0 has a stationary extension to {X:}ser, then its exactness
implies the K-property of {X;}¢er (taking Fo = o{X; :t = 0}).

Let us recall that a random vector 'V in B¢ with characteristic function
v is infinitely divisible (ID) if for each n € N there exists a characteristic
function ¢, such that ¢y = (¢n)". A stochastic process {X;}ier is ID if
for each n € N and (t1,...,tn) € R"™ the random vector (X, .., Xz,)
is TD. In this paper we will only deal with symmetric and stochastically
continuous ID processes, i.e. additionally the random vector (X, .. LX)
is symmetric and X, converges in probability to X, whenever u, — up.
Since stochastically continuous processes have measurable modifications, we
assume, without further mention, that all processes under consideration are
measurable and stochastically continuous.

The Lévy representation of the characteristic function of a symmetric D
random vector Z € R? has the form

ba(t) = EeiZt) = exp (———;—(Rt,t) + f (1 — cos(x, t)) Q(dx)),

Rg

where R is a positive definite d X d matrix and @ is a symmetric o-finite
measure on RE = R?\ {0} such that [ [x|*(1+ [x[?)~! Q(dx) < co. We refer
to (@, R) as the characteristics of the ID vector Z. Sometimes, especially
when weak convergence is considered, it is convenient. to use the equivalent
characteristics (S, R), where § is a finite measure on the Borel subsets of
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(0,00) X S4-y defined by
Say= [

(J=lx/|x) €A

(1 4 Jx|*) 7 Q(dx).

Here Sy_1 denotes the unit sphere in RY.

The full description of weak convergence of ID random vectors in terms
of their characteristics is given in Maruyama (1970), Proposition 5.1. It
states that a sequence of ID random vectors Z,, with characteristics (5,, Ry)
converges weakly if and only if R, is convergent as an element of a finite-
dimensional vector space and S, converges weakly, i.e. there exists a mea-
gure Sy on (0, 00) % S4-; such that for any continuous bounded function g
we have lim, . [ gdS, = [ gdS. The limit distribution is also ID with
characteristics (Sy, Rg) and

Ry = lim R, +R,
nN—roQ
where ﬁ.i,j = de_l %4 So (dX).

The stochastic representation of symmetric ID processes described below
is the basic tool used in this paper. For further details see Rajput and
Rosifski (1989).

Let (9, 8) be a measurable space and let A be a symmetric ID indepen-
dently scattered stochastic measure on a §-ring which generates §. There
is a one-to-one correspondence (written explicitly at the end of the section)
between A and a triple (A, o2, o), where X is a o—finite measure on S, called
the control measure of A, o s a non-negative function in L(S,8,2) and
g8 x Br — [0,00] is such that for each fixed s € 5, o(s, ) is a symmetric
Lévy measure and for each fixed B in the o-field By of Borel sets of the
real line the function p(-, B) is measurable and finite, whenever 0 does not
belong to the closure of B. The function

D(t,s) =t20?(s) + [ (1A (t2)?) o(s, dz)

generates the Musielak-Orlicz space Lg (5, A) consisting of all measurable
functions f : § — R such that [ #(|f(s)],s)A(ds) < oo with a Fréchet
norm defined by

£y =int{e>0: [ W(£(s)l/e,8) Ads) < e}
g

Detailed information on Musielak—Orlicz spaces, also called generalized Or-
licz spaces, can be found in Musielak (1983). A measurable function f on
S is integrable with respect to A if and only if f € Ly (S5,A) and then
Y = [ f(s) A(ds) has characteristic function

¢r(t) = exp{—Nu(tf)},
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where

No(a) = [ [36)0%(6) + [ (1 cosla(ate)) o, )] 2(as),
5 R

g€ Ly(8, ).

When X is a symmetric stochastically continuous ID process, there exist
a measurable space (5, S), a symmetric ID independently scattered random
measure A on (5,8) with corresponding triple (), o, o), a closed subspace
Ly(X) of Ly(5,A) and a linear topological isomorphism of Lo(X) onto
Ly (X), such that the processes {X;};cg and {[f5 f: dA}ser have the same
finite-dimensional distributions, where for each t € R, f, corresponds to X
by the above isomorphism. We refer to { [ f; dA}scr as the stochastic rep-
resentation of {X}iep. We denote by (T;)ier the group of transformations
of Ly (X)) which corresponds to (T}):cr by the stochastic representation so
that fi = T:fo. If the process X is stationary, then for each ¥ € Ly(X)
and u € R we have ¢y = ¢r,v and consequently, for each f € Lg{X) and
u,t € R we have Ng(tf) = Ng(tT,f).

We end this section with the relationship between the characteristics of
the finite-dimensional distributions of X and their description in terms of
Ly (X). If (@, R) are the characteristics of (Xs,,...,X,, )}, then

Rij = [ focoyo?dh= [ femy, foo® dA

and the measure @ satisfies

Jow Q) = [ [ [ o(@f(s),....55s.(5)) ofs, dz)] Mds);
R™ g R
this will be used in the proof of equivalence of mixing and p-mixing in
Section 6.

3. Dynamical functional. It iz very convenient to express the ergodic
and mixing properties of a stationary process X through its dynamical func-
tional @ : Lo(X) x R — C defined by

&(Y,t) = Fexp{s(T,Y - Y)}

(see Podgérski and Weron (1991)). For each Y € £Lo(X) the function (Y, )
is symmetric and positive definite. If the process X is stochastically con-
tinuous, then the group (T})ser is continuous on Lg{X) with respect to the
topology of convergence in probability, and consequently & is continuous in
the product topology on Lg(X) x R. '

We have the following simple characterizations of ergodic and mixing
properties of a stationary process.
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Prorosition 1. Let X be a stetionary measurable stochastic process.

(1) X is ergodic if and only if for each Y € Lo(X) or, equivalently, for
each Y € lin{X; : t € R}, we have

T
.1 o pi¥ 2
Jim = J@(Y,t)dtm\Ee 2.

(i) X s weakly mizing if and only if for each ¥ € Lo(X), or, equiva-
lently, for each Y € lin{X; : t € R},

T
_— WY 2| g
qll—?gc-f Df \B(Y, 1) — | Be™ |*| dt = 0.
(i} X is mizing if and only if for each Y € Lo(X) or, equivalently, for
cach Y € lin{X; : t € R},
lim &(Y,T) = |Ee™ 2.
T—00

(iv) X is mizing of order p if and only if for all Yp,..., Yy in Lo(X) or,

equivalently, in lin.[‘X"t -te R}, we have
Bexp{i(T,, Yo + ...+ Ty, Yp)} — Eef?e .,

as ming<;<p (s — ti—1) — co.

.EetYr

Proof. Part (i) was proven in Podgdérski and Weron (1991). The proofs
of the first three parts are very similar and the proof of part (iv) follows at
once from the definition of mixing of order p by approximation arguments.
Thus we present here only the proof of part (ii).

It is obvious that weak mixing implies the condition given in (ii). Since
any element of £o(X) can be approximated by linear combinations of ran-
dom variables of the form exp(:Y), where ¥ € lin{X, : t € R}, it suffices to
prove that if for all V' from a linearly dense subset £ of £2(X) we have

Jim = f |E{(T\V )V} — (BV)?|dt =

then X is weakly mixing. Note that although the functions exp(iY) are
complex it is enough to consider real V in the above condition as it stands
in the definition of £3(X).
‘For V € £ we define
T
1
gV:{ZGCQ m f TtV)Z}—EV-EZMt:O}._
0

Now it is enough to prove that
{VelyX): &y = Lo(X)} = LafXD.
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£y 18 a closed subspace of L3(X) and by assumption both 1 € &, and
T,V € Ey foreach ¢ € R. Thus if Z is orthogonal to £y, then E{(T}V)Z} =0
and FZ = 0 implying that Z € £y and, as a consequence, that Z = 0. It
follows that &y = L£4{X) for each V € £. Consequently,

£ C {V & Ez(X) &y = ﬁz(X)}

Since £ is a linearly dense subset of £3(X) and the set on the right hand
side of the above inclusion is a closed subspace of £5(X), it follows that £
has to be equal to the whole space £3(X). m

Note that the dynamical functional of an ID stochastic process X with
stochastic representation of the form (fg f; dA)er is given by

P(Y, ) = exp{~Ny (T.f - f)},

where f € Lyg(X) corresponds to ¥ € Lo(X). When X is a symmetric
a-stable process (0 < a < 2), then its dynamical functional for ¥ € Lo(X)
takes the form

(Y, t) = exp{—|T.f - flI2},
where in this case Ly (S, A) = L,(5, A). In the Gaussian case o = 2 we also
have for ¥ € Lp(X),

$(Y,t) = exp{Cov(T}Y,Y) — Var(¥)}.

4. Lemmas. To prove our main results we need the following technical
lemmas.

With the notation of Section 2 for each f € Ly (X)) we define the func-
tions R?,RJ‘? i R—Rby

RE(t) = [ (Tuf)fo® dA,
5

Rf (t) = 2Nu(f) — Ng(T:f - F) — RF (2).

LEMMA 1. For each f € Lyg(X) the functions RJ? and Rf are continuous
and pogitive definite.

Proof Since X is stochastically continuous, ie. lim; ;) Xy = X;, in
probability, it follows that limg.¢, fr = fi, in the Fréchet norm || - [v (see
Section 2). Thus

Jim f W(|f(s) = Fio(s)], 8) A(ds) = 0.

Consequently, Hmy .y, f (f - Jio)o 2 4\ = 0. This implies the continuity of
R§. Moreover, #(Y,t) = exp{—Ny(T:f — f)} is continuous and thus so is

RP Now since R is clearly positive definite, it is enough to show that RY
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is positive definite. From the staticnarity of X and the symmetry of g(s, )
we have for u,t € R, :

RPt-w=[[ (1
SR

Thus for n € N and a4,...

Z aiaij(t,;—tj ff ‘Zaz

i,j=1

We use the following standard notation. If v is a finite measure, then ¥
denotes its Fourier transform and e = 377 ; »**/k!, where v** denotes the
k-fold convolution of the measure ». With this notation e = e”

B eim(Tf-f)(s))(l," e—im(Tu,f)[s)) Q(S, dﬂ’,‘) )\(dS)

,an € R,

2
—zm (T, s )) Q(s,dm) A(ds) =0 =

LEMMA 2. If v is a symmetric finite measure on B, then the following
conditions are equivalent:

(i) e({o) = 1,

(i) v**({0}) = 0,

(iii) v has no atom.

Proof. Sincee” ({0}) = Y 7o o v**
clearly (i)=(ii).

Let A be the set of atoms of v. By the symmetry of v we have v**(0) =
Peeav{—a)via) = 3, 4[v(a)]* and condition (i) implies that the set A
18 empty.

If v has no atom, then for each k € N, the measure v** has no atom, so
(iil)=>(1). =

is a positive measure,

({0})/k! and w**

The next lemma expresses some analytical properties of real functions;
nevertheless it is proven with the use of probabilistic methods.

LEMMA 3. For each bounded measurable function { : B — R the following
conditions are eguivalent:

| T
(i) lim — f e dt =1 for each ¢ >0,
T ' b
L T
(ii) Jim 7 f e%®) —1]dt =0  for each ¢ > 0,
0
L
(iif) | o fm g Of @)dt =0,

v Jm ST 0> ) =0 for cache > 0,
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(v) there emist notural numbers k # j§, at least one of them odd, and
b eR such that

hm = f{C ) +b}"di ="  for n=k,j,
{vi) there exists b € R such that
T
lim = S+ dt=t" foraineN
Poies T : = or ait n <IN,

Proof. Since |((t)] < M for all ¢ € R, the normalized occupation
measure pr of { over [0,T], defined on a Borel subset B of [, M] by
pr(B) = [¢"'B N [0,7]|/T, is a probability measure corresponding to a
random variable Zr with |Zp| < M. By the transformation theorem

1 T
7 J ow)ydt=
0

for any measurable function G for which either integral exists. In this frame-
work the proof of Lemma 3 follows from standard properties of convergence
of random variables.

First, (i) says that the Laplace transform E exp{—c(M — Zr)} converges
to e~ . The continuity theorem for Laplace transforms implies weak con-
vergence of the distributions of Zr to &y, which implies convergence in prob-
ability of Zp to zero, i.e. (iv).

Now, the boundedness of the family (Z7)r>p and its convergence in
probability to zero imply that limp....o EG(Z¢) = G(0) for any continuous
function G on R. Thus (iv) implies all the other conditions.

Since the implications (iii)=(iv), (ii)=+(1) and (vi)=-(v) are obvious, it
is enough to prove {v)=-(iv). By the tightness of the family of distributions
of Zy, it is sufficient to show that if Zn converges weakly to, say, Z; then
Zy = 0 a.s. Indeed, if Zj is not degenerate, then for k > j we have the sharp
Jensen inequality

M
[ G@)dur(s) = BG(2r)
—~M

E(Zp +b)* > {E(Zy + B }*/7
and thus (v) cannot be satisfied since it implies that both sides must be

equal to b*. Consequently, we must have Z; = a a.s, for some real a and
(a-+b)% = b* (a+ b)) = b, Since either § or k is odd, this implies @ = 0. w

The final lemma, is used in Section 6 in the proof of equivalence of mixing
and p-mixing,

LEMMA 4. Let Y, be a sequence of ID random vectors in R*® with char-
acteristics (Qn, Ry ). If Y, converges weakly to an ID random vector with
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characteristics (Qp, Ro), then for each bounded function F : RF — R such
that F(x) = o(|x|?) as x — 0, we have

J F(x) Qo(dx).

Jim [ F(x) Qn{dx) =
RE RE

Proof. For r € (0,00) and w € Sp_; define a continuous function
h(r,w) = rw. If a function g on RE is continuous and bounded, then so
is g o h. As a consequence, weak convergence of S, to a measure S 1mpl1es
weak convergence of measures defined on Borel sets of RE by S, = S,0h~!
to Sp = Sg o h~1. Note that

Sn(4) = f

X

o @)

Thus in view of remarks on weak convergence of ID vectors in Section 2,
it is enough to note that F(x)(1 + |x|?)/|x|? is bounded and continuous
on RE. w

5. Exgodicity and weak mixing. For a symmetric ID process X we
have the following characterization of ergodicity.
THEOREM 1. Let X be a stationary symmetric ID stochastic process with

stochastic representation { g TyfodA}ier. Then the following are equiva-
lent:

(i) X is ergodic,
(ii) for each f € La(X) or, equivalently, for each f € lin{f: : t € R},

T
Jm 2 J omiane(r) - Dot - pyai=1,

(iii) for each natural number n or, equivalently, for n = 1,2, and for
each f € Ly(X) or, equivalently, for each f € lin{f, : ¢t € R},

hmwf

(iv) for each f € Lo (X) or, equivalently, for each f € lin{f, : t € R},

g (Tof = frdt =2"Ng(f),

T
Jm 2 5[ [Ny (T f — £) - 2Ng ()| dt =
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Proof. By Proposition 1 and the form of the dynamical functional for
ID processes, X is ergodic if and only if for each f € Lg(X),

1 T
Jim 5[ exp{—Ng(Tef — )} dt = exp{—2Nz ()},

which proves the equivalence (i)«s(ii).

By Lemma 1 and Bochner’s theorem, for each f € Lg(X) there exists
a finite symmetric measure vy such that Dp(t) = 2Ng(f) — Ng{T:f — f).
Condition (ii) and the fact that for any finite measure v defined on By,

1 F.
Jm 7 [ 9w =won,
imply that e/ ({0}) = 1. By Lemma 2 this is equivalent to v32({0}) = 0,
which implies v¢({0}) = 0. Applying the above relation to v¢ and to v}* we
obtain

f {No(Tef - f) = 2Nu(f)}dt =0,
. i
Jim = Of {Np(Tif = ) — 2Ny ()P dt =0
Thus
0= lim % f{NE,(Tff~f)—4Nw(th— F)No(f) + ANZ()} dt
0
= lim = ng(th—f)dt—W%(f)
T—soo T 5

and we have obtained condition (iii) for n = 1, 2. Consequently, by Lemma 3,
condition (iil) holds for each natural number n.
The remaining implications (iii)=>(iv) and (iv)
from Lemma 3. :
Tt is eagy to notice from the way we nused Proposition 1, that in the above
argument we can replace the space Ly (X) by lin{f; : £ € R}. =

=(il) follow immediately

While, in general, weak mixing is stronger than ergodicity, we now prove
that for ID processes they comcuie

THEOREM 2. Ergodicity of a stofionary symmetmc ID process implies
weak mizing. :
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Proof. According to Proposition 1, a symmetric ID process is weakly
mixing if and only if for each f € Ly (X),

17
Jim = J‘ lexp{2Ng () — Ng(Tof — £)} — 1 dt = 0.
If X is ergodic, condition (iv) of Theorem 1 shows that condition (iii) of
Lemtna. 3 is satisfied with {(¢) = 2Ny (f)—Ng (T, [ - ), hence so is condition
(ii) of Lemma 3 and putting ¢ = 1 implies that X is weakly mixing. w

6. Mixing. In this section we consider strong mixing properties of a
symmetric ID process. Mixing and p-mixing are equivalent for such a process
as shown by Maruyama (1970), where the result is proven in the case of
general, not necessarily symmetric, ID processes. One of the goals of this
paper is to present relations between chaotic behavior of ID processes and
properties of the related Mugielak—Orlicz space. For this reason we decided
to sketch the proof of the mentioned equivalence even though its main idea
is very similar to the one used by Maruyama. As a by-product, we provide
a characterization of mixing alternative to the one given in Theorem 6 of
Maruyama (1970).

TrEOREM 3. Let X be a stationary symmetric ID process with stochastic
representation {fS T, fodAYier. Then the following are equivalent:
(i) X is mizing,
(ii) for each f € Lg(X) or, equivalently, for each f € lin{f; :t e R},

lim N‘p(TTf - f) = 2N‘p(f),
T—o0

(iil) X is p-mizing.

Sketch of proof. (i)e(ii) follows from part (iil) of Proposition 1
and the form of the dynamical functional. Since (ili)=(i), it is enough to
prove that (i) and (ii) imply (iii).

Let Yp,...,Y, € lin{X, : t € R} and let go, ..., gp € lin{f; : ¢t € R} corre-
spond to them through the stochastic representation. For t = (tq,...,1p) €

RPTY let 6(t) = miny<icp(ti — tio1). Then the condition for p-mixing de-
scribed in (iv) of Proposition 1 can be written as

Jdm {G() + P} =0,

where G(t) and P(t) are the differences between the Gaussian parts and
Poisson parts respectively in the exponents of Eexp(} i_,7T:,Ys) and
Ee .. FeY». We will show that (i) and (ii) imply that both G{t) — 0
and P(t) — 0 as 6(t) — oo.
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The mixing condition (ii) implies that (X, X;) converges in distribution
to (Xp, Xo), where X} is an independent copy of X,. Thus the function
RG:J defined in Section 4 is convergent at infinity (see remarks on weak
convergence of ID random vectors in Section 2) and since it is positive
definite, the limit is non-negative. So by (ii) both R
to zero. Now for ¢; = 3.0 aufe,, 4 = 0,.
have

P P on
G(t) = f ZTg,.gin,J.gjog d\ = ZZaikaJ«;Rﬁ(ti ~t; + 8% — S41).

§ ixj >

. and R must converge
. by stationarity of X, we

Thus G(t) — 0 since for ¢ > 7, ti—t;-+six — 55 tends to infinity as 6(t) — oo.

To prove limg() 0 P(t) = 0 we use induction and assume that X is mix-
ing of order p—1. For u & RP* let Cy(u) = p— T2, cos(u;) +cos(TF_, ws),
Sp(u) = Ez_D sinfu;) — sin(3 ] g uz) Note the relation '

Cplw) = Cpa(Uo, - - - Upez, tp) + Cr (o + .. . + Ug—g + Up, Up_1).

By this relatlon, symmetry of the measures p(s,ds) and the equality
(1—e®)(1—e") = (1 —e®)(1 - €°) + e°(1 — e®)(1 — &) one can obtain

P(t)

= f Cp(Tyg90(s)x, ..
SR

= [f [Comt((Tugi()2)ps)

SR

Cy ( #pzhl Ty, g:(8)x, Ttp_Lgp_l(s)os)] o(s,dz} A(ds)

xSfRf [Co-1((Te,9:(8)2)} 1)

-y Ty, gp(8)z) o(s, d) A(ds)

+ C1(Te,y gp-1(8), T, 9p(8)2)] 0(s, dz) A(ds)

+ff cos(T, gp(8) ) Cl(ZTtlgz (s)z, Ty, . gp-1(s)z )Q(S: da) A(ds)

sR
+ff sin(Ty, gp(s) ﬂi‘)Sl(ZTtin 8)a, Ty, gp-1(8)x )g(s,dw)).(ds).
i=()

The first summand converges to zero by the inductive assumption. The
second summand is upper bounded in absolute value by :
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f T ]ol(zjtrt 9:(8)2, T, gp-a()2 )| (s, de) A(ds),
i==0
which converges, as 6(t) — oo, by the relation at the end of Section 2 and
by Lemma 4, to

f |C’I (§x¢,$p~1) ’ Qo{dz),
P i=0

where (Jy is the characteristic of a vector of independent ID random variables
in R?. Now Qq({x € RP : z;2; # 0}) = 0 for any i # j (if the characteristic
Qo is the sum of the characteristics of the coordinates restricted to the
coordinate axes in RP). This implies O7 (Y2027 24, @p-1) = 0 a.e. [Qg]. The
same arguments apply to the third summand.

Remark 1. The basic idea of this and Maruyama’s proofs was to estab-
lish the following fact. If the limiting distribution of some multidimensional
ID sequence has a multidimensional Lévy measure whose restriction to any
two coordinates is concentrated along the axes then also the whole measure
is concentrated along the axes (which corresponds to mutnal independence
of the coordinate variables). This, in particular, implies that in this case
pairwise independence of a family of random variables is equivalent to their
mutual independence.

Remark 2. For the underlying Musielak-Orlicz space Ly (X) mixing
means that for go, g1 € Ly (X) we have

Jim Ny (Ty, 91 + go) = Ne(91) + Ne(g0)-
But this also implies (for example by application of Lemma 4) that

Jlim f ¥ (Ts,g1(s) + go(s), 5) A(ds)

= f F(o1(s),8) A(ds) + f ¥{go(s), s} A(ds).
g g

In general, p-mixing translates to
E(gm Ne(go+ ...+ Te,gp)
which implies

= Ny{go) + ...+ Nu(gp),

-+ Tt,,gp(s)s 5)A(ds)

'-ff’go

The oppos1te mehca,tlons, in general, do not held.

li
J(tﬁm J Ulgo(s) -+ ..

S)A(ds) + ...+ [ W(gp(s), ) A(ds).
s
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Remark 3. The following additional characterization of mixing can be
easily obtained from the proof of Theorem 6 of Maruyama (1970):

(iv) for eackh a1, a0 € R,

tEHgGNW(alfU + a2 T fo) = Nglay fo) + Ny(agfo).

7. Examples. Here we give the explicit form of the conditions in The-
orems 1 and 3 for some examples of stationary ID processes. In all these
examples the symmetric ID random measure A on (S, §) with control mea-
sure A has p and ¢ of the form described below. Let r be a symmetric Lévy
measure on R and for each 5 € R, let o(s, A) == r(A4) for all A € Br and
o?(s) = of > 0. In this case f € Lp(X) if and only if

of [ [F()FA(ds) <00, [ [ {LAl2f(s)|2}r(dz) Mds) < o0
g SR
Notice that if o > 0 then Ly C Lo(S,A). For A € S we have

Ee4(4) = gxp { — A(4) B«t%g + [ (1 costz) r(d:c)] }

Recall that E|A(A)|? < oo if and only if

[ 1zl® o(s,dz) M(ds) = 2x(4) qur(dm) < oo
1

A jz|>1
(cf. Rajput and Rosifski (1989)).

EXAMPLE 1. Moving averages are mizing. Assume that 5 = R and A is
Lebesgué measure on Bg. Then A is stationarily scattered, and corresponds
to a process L, with stationary independent increments and Ly = 0 via
A{(s,t]} = Ly — Ly or Alds) = dL,. {Ls}secr is called a Lévy motion. By
the invariance of A under the action of the shift transformation, if fo(-) is
A-integrable then so is fo(- —¢) for all t € R. A symmetric ID process is
called a moving average if it has the representation

[ folt~s)dLs, teR

In this case we have

N (f) =—aoff2 yds + f fl—cos(f())]a?(dm)ds

-0 ~00

It is clear that for every f € Lg(R, ), Ne{f(- + &)} = Ne{f{:)} for all
1 € R, so that every moving average process is stationary.
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We now prove that every symmetric ID moving average process is mixing,
or, according to Theorem 3, that

Ne{f(-=T) = f()} — 2Ne{f()}

However, this follows immediately from the expression for Ny when f has
compact support, and for general f in Ly (R, A) from the fact that FO <o
— f{-) in Ly (R, A) as ¢ — oo. An alternative proof establishes likewise the
condition in (iii) of Proposition 1:

JJE%OEexp {z j‘o[f(s—mT) - f(a)]/l(ds)} = ‘Eexp {z Tf(s) A(ds)}’z.

as T s co.

EXAMPLE 2. Processes with Poisson, gamma and compound Poisson
stochastic representations, We say that a symmetric ID process X has a
Poisson (or gamma) stochastic representation | g J1dA if the random mea-
sure A has a Poisson (or gamma) distribution, respectively. In these cages
o?(s) = 0 and ofs, 4) = r(A) for all s € R and 4 € S with A(A) < cc.

The Poisson case corresponds to r = § ~1} T 613 Then f € Lg{S, ) if
and only if A{|f] > 1} < co and f{lf\<1} f*dX < co. Moreover, we have

No(f)=2 [ {1~ cos(f(s)]} A(ds).
8

Now let {T;}ier be any group of transformations of Ly (S, A) such that for
tyueR,

J 41— cosltf ()]} A(ds) = [ {1~ cosleT £(s)]} A(ds)
s S

(one can take, for example, {T;} ;g induced by pointwise and measure pre-
serving transformations of (8,8, A)). The conditions in Theorems 1 and 3
take a more concrete form upon using the expression for Ng(f). Thus the
condition in (iv) of Theorem 1 becomes

.17

lim ~ f \ [ {1 —2cos[f(s)] + cos[(Tef ~ £)(s)]} A(ds)| dt =0
¢ s

and similarly the condition in Theorem 3 becomes

lim [ {1 - cos|(T.f — f)(s)]} Ads) = 2 [ {1 = cos[f(s)]} A(ds).
) 5

t—roo

The gamma process corresponds to r(dz) = |z/~le~®l dz for some
6 > 0. In this case f € Lg(S, ) if and only if

J et S 1-0/ ) d <00, [ [ 5769 da A(ds) < co.
$ _ 1/i#(s)l
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Since 2 fy[1 — cos(tz)jz~ e~ dg = In[1 + (t/8)?], it follows that

No(f)= [ In[1 467277 dn,
s

The corresponding conditions for ergodicity and mixing can be expressed
respectively as follows:

T
2;1_120% Of u‘ In{{1+9“2(th-f)z}(1+9-2f2)~2]d,\|dt=0

and

Jim [ In[l+67%(T,f ~ /)% dr=2 J 1467252 an
5 5
Both examples considered so far have finite second moment: FA%(A) <
oo for all A with MA4) < oo (as [[”z%r(dz) < 00). An example with
infinite second moment is the symmetric o-stable case (0 < @ < 2) which
corresponds to 7(dzr) = |z["*~*de. Defining {;°[1 — cos(y)]y~ "2 dy = ca,
we have

No(f) =ca [ |f|*dA
g

and Ly (S, A) = L, (8, A). For more details in this case see Cambanis, Hardin
and Weron {1987) and Podgérski (1992).

The next process provides a non-stable example with infinite second
moment for A, Let r{dz}) = p.(z)dz, where p,, is the density of a standard
symmetric a-stable distribution. We have

EeitAA) = exp{ - A(4) j’o(l — ") pa(2) dw} = exp{-A(A)(1 — e 1™}

and A(A) has a compound Poisson distribution, i.e. the same distribution as
Yo+...-+Yn, where ¥y = 0, {¥;}52, arei.i.d. random variables with standard
symmetric o-stable distribution and N is a Poisson random variable with
mean A(A) and independent of {¥;}22,. Since for 0 < o < 2, the second
moment of an a-stable random variable does not exist, f1°° m?‘pa(m) dxr = oo,
the second moment of A(4) does not exist either; in fact, F|A{A)|? < oo if
and only if A(4) < o0 and 0 < ¢ < & We have [°[1 — cos(t2)|pa(z) dz =

1—e 1" and thus

N(fy= [ {1-e""}an,
s
and one can likewise simplify the formulas in Theorems 1 and 3.

EXAMPLE 3. The symmeiric a-stable Ornstein—Uhlenbeck process is ezact
on positive time (or has the K-property on real time). Let us recall that the
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Ornstein—Uhlenbeck procesa is the moving average process
o0 b
X = f e"(tms)l[gm)(t —8)dLs =e7! f e’dLy, —o0 <t < oo,

—00 -0

where {L;:}_oocicoo 18 a symmetric a-stable Lévy motion. It can also be
obtained from a Lévy motion on the positive line by time change, namely

Xt = etLe—at, —00 <t < oo

(cf. Adler, Cambanis and Samorodnitsky {1990)).
First we prove that the process {X¢}¢>0 is exact. Since

TFx=0Xs:828)=0(L,: 0<u<e™ )

and the Lévy motion is stochastically continuous with independent in-
crements, it follows {rom the zero-one law of Blwmenthal (1957) for such
a process that the o-field (1,5 0(Ly 1 u € v) is trivial and consequently
Mezo TeFx is also trivial. By the definition and remarks from Section 2 the
process {X:}iz0 is exact. For the proof of this property in the Gaussian case
see Lasota and Mackey (1994). It is clear that the process {X;} _co<t<oo has
the K-property.
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