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Pointwise ergodic theorems in Lorentz spaces L{p, q)
for null preserving transformations

by

RYOTARO SATO (Okayama)

Abstract. Let (X, F, 1) be a finite measure space and 7 a null preserving transforma-
tion on {X,F, u). Functions in Lorentz spaces L{p, ¢) associated with the measure p are
considered for pointwise ergodic theorems. Necessary and sufficient conditions are given
in order that for any £ in L(p,q) the ergodic average n™> -t fori(x) converges almost
everywhere to a funetion f* in L{p1,q1), where (p,q) and {(p1,q1) are assumed to be in
the set {(r,s):r=s=1, orl<r < ooandl<s oo, or r =s = oo} Results due to
C. Ryll-Nardzewski, §. Gladysz, and I Assani and J. Wo§ are generalized and unified.

1. Introduction and results. Let (X, F, i) be a finite measure space
and 7 a null preserving transformation on (X, F,p) (ie., 77'F C F and
u{7*A) = 0 whenever u(A) = 0). We define an operator T' by putting

Tf=for.
T is said to satisfy the pointwise ergodic theorem from L(p, q) to Lipy, ) if
for any f in L(p, g} the ergodic average

1 n—1
= T
Ma(T)f =~ g f
converges a.e. to a function f* in L{p1,q1), where L(p,g) and L{pi,q1) are
the Larentz spaces associated with the measure p. Throughout this paper
we shall assume that (p,¢) and (p1,q1) are in the set

{(r,s)ir=s=1 orl<r<ooandl s oo or T =§ =00}

The basic properties of Lorentz spaces L(p, g) are explained in Hunt [5]. In
particular, the following are used in the argument below.

(I) f € L(p, q) if and only if || f|| 54 < 0o, where

g = { SIS0 > a0 a7
P8 supymo t({IF] > 81)HF (g = o).

1001 Mathematics Subject Classification: Primary 47A35, 28D05.
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A0 | fllwp = (fx |f|P du)*? = || fllp and hence L{p, p) = Ly.

(1) L(p, ¢) is a Banach space with norm equivalent to || f||q; and further
if ¢ # oo, then the conjugate space of L{p, q) is L(p’, ¢"), where 1/p+1/p' = 1
and 1/g+1/q¢ =1,

(IV) There exists a constant ¢ = C(p, ¢), depending only on (p, ¢), such
that

C U g <500 {| [ Fodu]: lglye <1} < Clflpg:
X

(V) Loo € L{p,q) C Ly (because u is a finite measure).

Since 17" maps Lo into Lo, and satisfies Tf, | 0 a.e. on X whenever
fn 1 0 ae. on X, the adjoint operator T acting on Ly can be defined by
the relation

J @fudp= [ f(T*uydu (€ Lo and u € Ly).

T* is often referred to as the Frobenjus—Perron operator associaled with 7.
The hasic properties of 7% and 7 are given in Krengel’s book [7]. Using
this T*, we characterize T' (and hence 7) which satisfies the pointwise ergodic
theorem from L(p, ¢) to L(p1, ¢1). The main result is as follows.

TeEOREM 1. Let (X, 7, 1) be o finite measure space ond v a null pre-
serving transformation on (X,F,u). Let (p,q) and (p1,q) be in the set
{rs)ir=s=1Lorl<r<ocandl <s<oo, orr=s=co}. Then the
following conditions are equivalent.

(i) The operator T'f = for satisfies the pointwise ergodic theorem from
L{p.q) to L(p1, q1)-
(ii) T satisfies the mean ergodic theorem in L1, and further for any
0 < u e L(p,q1) the limit function uf = lim, M. (T*)u s in L(p,q"),
where My (T*)u = n™ 32075 T*u and the limit can be taken in the sense
of almost everywhere convergence.
(iif) p(A) > 0 and 714 = A imply

f (lim inf Mo (T*)1) du > 0,
A
and further for any 0 < w & L{p},q(), liminf,, M, (T")u is o funciion in
Ly, q).
(iv) To each 0 < w € L(pi,q)) there corresponds o functional F, de-
fined on XT(F), where X T(F) denotes the space of all nonnegative simple
measurable functions on X, such that

Fu(f) € Kullfllpg, Ku being a constant depending only on u

(1) Gf (p,q) # (00, 00)),
Fu(fa) =0 whenever f, | 0 ae on X (if (p, q) = (00, 00))

]
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2) { F () =tF,(f) for constants t > 0,
Fu(f +9) € Fu(f) + Fu(g),
(3) 0 < Fu(f) < Fulf +g),
(4) Fu(Tf) < Fu(f),
(5) F.(fy= f fudy  whenever f =TF.
X

Remarks. (a) In condition (i), the validity of the Li-mean ergodic
theorem for T* is essential. To see this, the following example may be inter-
esting.

ExAMPLE 1. Let X be the set of all integers and u any finite measure on
the subsets of X such that u({z}) > 0 for each z € X. Define 7 : X — X
by 7() = 2 + 1. Then the operator T* on L; is dissipative, i.e., for any
0 €ue Ly we have

o0

ZT*“u(m) <oo (zeX).

i=0
It follows that lim, M, (T*)u(z) = 0 for all z € X, and thus T satisfies the
pointwise ergodic theorem from L(p!,q)) to L{p1,q1). On the other hand,
as is eagily seen, T* does not satisfy the mean ergodic theorem in L.

This example shows that the validity of the L;-mean ergodic theorem
for T* cannot be removed in condition (ii). {Cf. the Lemma below.) We also
note that the validity of the L;-mean ergodic theorem for T implies the
validity of the pointwise ergodic theorem for T* from L; to Ly (cf. Tto [6]).

(b} The special cases of Theorem 1 where p = g and either p1 = q1 = 1
or p1 = g1 = p were studied by C. Ryll-Nardzewski [10], S. Gladysz {4], and
I. Assani and J. Wos [2]. The present theorem generalizes and unifies their
results.

As a corollary to the proof of Theorem 1 we have

THEOREM 2. Let (X, F,u) be a finite measure space and T a null pre-
serving transformation on (X, F,u). Let (p,g) € {(r,8) 17 =8 =1, or
1 <1 < oo and 1l < s < oo} If the operator Tf = for satisfies
L inf,, || My, (1) < co then T satisfies the pointwise ergodic theorem from
L(p, q) to itself.

Py

Theorem 2 generalizes and improves results due to I. Assani [1} and
P. Ortega Salvador [8]. A simple example given at the end of this paper
shows that we may have sup,, [|Ma(T)||p; = oo, even though 7' satisfies
Hminf, | M (T)||lpg < oc.
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2. Proofs of Theorems 1 and 2

LemMMa. Let (X, F,u) be a finite measure space and T a null preserving
transformation on (X, F,p). Then the aperator Tf = f o T satisfies lhe
pointwise ergodic theorem from Lo 10 Lo if and only if one of the following
conditions holds.

(a) For any f € Lee, M, (T\f converges in measure.

(b) For any A € F, limy, n™" S u(rThA) eaists.

(c} T* satisfies the mean ergodic theorem in Ly.

Sketch of proof. Clearly, if T satisfies the pointwise ergodic theorem
from Lo t0 Lec, then (a) holds. Since (a} implies the Ly-norm convergence
of M,(T')14, where 14 is the indicator function of A, {b) follows from (a).

(b)={c). The Vitali-Hahn-Saks theorem implies that

. 1 n—1 .
A(A) = lim — Zg ulrtA) (AelF)
defines a countably additive measure absolutely continuous with respect
to p. Let vf = d\/dp € Ly. Since M, (1)1 converges weakly to uf, we can
apply a mean ergodic theorem (cf., for example, Theorem VIIL5.1 of 3],
p. 661) to infer that M, (T*)1 converges in Li-norm. By an approximation
argument, (c) follows.

Lastly, suppose (¢) holds. Put v§ = strong-lim, M, (T*)1. Since T"uj =
v%, the finite measure A = v dp is invariant under u. Therefore, putting
C = {v} > 0}, we have u(C'\ 771C) = 0. Hence by a standard argument we
may suppose without loss of generality that C' C 7. Then the set

A=X\limr™"C

satisfes 714 = A, and thus we see that u{A) = lim, [ Mu(T)lady =
limy [, M, (T*)1dp = [, g du = 0. This together with the Birkhoff ergodic
theorem proves that T' satisfies the pointwise ergodic theorem from Leo
t0 Lo, completing the proof.

The following proposition is an immediate corollary to the proof above,
and may be regarded as a refinement of the Lemma.

PROPOSITION. Let (X, F, u} be a finite measure space. Assume that 7 is
an ergodic null preserving transformation on (X, F, u). Let (p,q) € {(r, ) :
r=s=1 orl<r<ooandl <s< oo} Then the operator Tf = for
satisfies the pointwise ergedic theorem in L(p,q) (i.e, limy My (T)f exvists
and is finite a.e. on X for any f in L(p,q)) if ond only if T™ satisfies
the mean ergodic theorem in Ly ond the pointwise and Li-norm limit v =
limy, M, {T™)1 is a function in L(p',q'), where 1/p+1/p' =1 and 1/q+1/¢
= 1.
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s lfetch of .proof. Bince Lo C L(p, q), if T satisfies the pointwise
ergodic theorem in L(p, ¢}, then T* satisfies the mean ergodic theorem in
L1 by the Lemma. In order to show that vg = lim,, AL, (7)1 is a function in

L(#',q'), suppose the contrary: v & L{p’,¢'). Then we can choose a function
0 < feLpqg)sothat

f fuj du = oo,

since 7 i ergodic, the Birkhoff ergodic theorem implies lim,, M, (T)f(x)
= 00 a0 ol X, a contradiction.

The converse implication is immediate from the last part of the proof of
the Lemma,

Remarlks. (a) Without assuming the ergodicity of r, the Proposition
does not hold. To see this, we construct the following example.

EXAMPLE 2. Let X = [0, 1) and JF = the Lebesgue measurable subsets of
0,1). For k > 1, let X = [27%,27%+1) and 7, : X, — X}, be any invertible
ergodic measure preserving transformation with respect to the Lebesgue
measure 7 on Xp. Take a probability measure y defined on F, equivalent
to the Lebesgue measure m, so that (here, L(p', ¢') is defined for 1)

(1) u(Xs) = m{Xp) = 2% for each k > 1,
(ii) the function w = dm/dp is not in L{p’,q'},
{iii) the function wp = wly, is in L{p',¢') for each k > 1.
Finally, define 7 : X — X by 7(z) = 7(z) for z € X}. Clearly, 7 is a null

preserving transformation on (X, F, ) for which the operator Tf = for
satisfies the pointwise ergodic theorem in L(p, ¢). Nevertheless, the function

vf = lim M, (T*)1 € Ly (X, F, 1)
a8

is not in L(p',q'), because the ergodicity of 7, on Xj, together with (i),
implies that

vy = wy  a.e on X,

(L) When (p, ¢} # {o0,00), another characterization of the operator T
which satisfies the pointwise ergodic theorem in L{p, ¢} is that sup,, | M, (T) |
< oo ac, on X for all f € L(p, g} This is true even if T is not ergodic. For
this and related results we refer the reader to [11].

Proof of Theorem 1. (i)=(il). Since La < Lip,q), T* satisfies
the mean ergodic theorem in Ly by the Lemma. For § < u € L{p, q}) we
denote by u} the pointwise and Li-norm limit of M (T*)u. We then have, for
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any 0 < f € Ly,
J fujdu= lim [ M (T udp = lim [ (Mo (T)f)udps
= [ (i Mo(T) fudp = [ Frudu

< Cim, fh)”f*umth ||“”p’1q‘1=

where the third equality is due to the fact that ||Mn(T) fllec < | filee < c0.
Therefore, if 0 < f € L(p, q) then, by putting fv = f A N (hence fx T f
a.e. on X)), we obtain

f fusdl-ﬂml'lﬁl f fNUEdPJS1%}\-”1?10(?1:Qﬂ)“fftf”plfjl”u‘Hp’lqi

< Clprs g1) [ lpras | wlipg g < 00,

which proves that u} € L{(p’,q¢").

(if}=-(iii). Immediate.

(iii)=>(ii). Let us define Ty = liminf, M, (7)1 a.e. on X. By Fatou’s
lemma, we get 0 < Ty € Ly; and since T*%y < Ty and ||[T*Tglly = [|%llx
it follows that T*Ty = ©y. Thus the measure A = Uy dp Is invariant with
respect to 7. And as in the proof of the Lemma we may suppose without
loss of generality that the set C = {Tp > 0} satisfies ¢ C 77*C. Then the
set A = X \ lim, 7~ "C is invariant under 7, and clearly [, Uodp = 0. By
(iii) we get w(A) = 0. This and the Birkhoff ergodic theorem imply that
T satisfies the pointwise ergodic theorem from g, to Ly. Hence by the
Lemama, T* satisfies the mean ergodic theorem in L.

(ii)=(iv). For 0 < w € L(p}, ¢{}, denote the pointwise and Lj-norm limit
of M,(T*)u by uf. Since T™ug = uf and u§ € L(p',¢') by (ii), it is easy to
see that the functional F,(f) = [ fu} du defined for f € X*(F) satisfies all
the requirements (1)—(5).

(iv)=(i}). Let u.€ L(p},q}) and u > 0 a.e. on X. Using the functional F,
defined on X T (F), we define for f € X(F), where X (F) denotes the space
of all simple measurable functions on X,

B.(f) = F,(fY), with f¥(z) = max{f(z),0}.
From ({2} and (3) it follows that
Pu(f +g) S F.(f) + Pu(g) M_ld Py (tf)= tPy (f)
for f,g € X{F) and a constant ¢ = 0. Since (Tf)* = T(f"), (4) gives
Py(Tf) = Fu((Tf)*) = Fu(T(f")) £ Fu(f*) = Pu(f)
for any f € X(F). We now consider the linear functional F(f) = [ fudp

defined on the linear subspace {f € X (F): Tf = f} of X(F). Since T'f = f
implies T'(fT) = f7, it follows from (5) that for any f € X (F) with T'f = £,

Fi(fy= [ fudp< [ Frudp=F.(f") = Pu(f).
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Thus, as in Gtadysz [4], we may apply a variant of the Hahn-Banach theorem
(ef.,, for example, 10.5 in [9]) to infer that the linear functional F¥ can be
linearly extended from the subspace {f € X(F) : Tf = f} to the whole
space X (F) so that for all f € X(F),

Fi(fy s Pu(f) = Fu(f7) and F}(Tf)=Fi(f).

In particular, if f € X+ ({F), then, since P,(—f) = F,((—F)F) = 0, we get
Ey(f)y = —=FX(~F) 2 —P,(~f) = 0. Consequently,

(6) 0< Fy(f) = Fy(Tf) SF,(f) for fe XT(F);
and further by {(5),
(1) Fi(f)= [ fudp=Fu(f) for f € X*(F) with Tf = f.

We next set A(A) = Ff(14) for A € F. By (1) and (6), X is a linite
measure absolutely continuous with respect to g and invariant under 7.
Thus the function 0 < uf = dA/dp € Ly is invariant under T*, and the
set C = {uj > 0} satisfies C ¢ 7~'C. Since the set A = X \ lim, 77"C is
invariant under 7, we have, by (7),

fud,u:Fu(lA):F;(lA):qudn:O.
A A

Since « > 0 a.e. on X, we must have y(A) = 0. This together with the
Birkhofl ergodic theorem proves that for any measurable f > 0 on X the
pointwise limit

F*(2) = lim Mo (T) £ (2)

exists a.e. on X (but may be equal to oc). Here we note that if 0 < a1 f
a.e. on X then we have f* 7 f* a.e. on X.

Now, let 0 < f € L(p, q) be fixed arbitrarily, and put fy = f A N. Since
0< f 1 f* ae on X, it follows that

[ Frudp=tip [ Frudp=lm [ fiuidp,

where the last equality is due to (7), by a standard approximation argument.
Since || M, (1) /||~ S N for all n = 1, it follows that

[ st dp=tim [ (T far)e dus =Y [ fv Mo (T dp
"-—-f Faubdp  (because ug = Tug)-
Hence we obtain, for 0 £ f € L{p, ¢},
8) [ frudp=lim [ fyugdp= [ fugan.
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Next, choose gn € X1 (F) so that g, T f ae. on X. By (6) and (1), we
have (when (p,q) = (00, 00), we put K, = Fy(1) here)
J fubdu=lim [ gwut du = lim Fi{gn) < lim Fu(g)
< Ky 121;‘1 lgnllpe < Kl fllpg < 00

Bence we get for 0 < f € L(p, ¢) and 0 < u € L(pi, ¢t ),
f f*’u.d,u:f Jug du < oo

This proves that f* € L(p1,q,) and also that uf € L(p.¢').
The proof is complete,

Remark. Tt follows from the proof of (i)=-(ii) of Theorem 1 that if T
satisfies the pointwise ergodic theorem from Lo, to Lo and if there exists
a constant K such that [|f*||pq < Ki|fl|lpg for all 0 < f € Lo, then T
already satisfies the pointwise ergodic theorem from L(p, g) to L(ps, q1)-

Proof of Theorem 2. Since liminfy, || M,{T)||p, < o0 by hypothesis,
we can choose a subsequence {n'} of {n} so that sup, ||Mu (T)lpy < K
< 00. Then define a functional F on X T(F) by putting

F(f) =limsup [ Mu(T)fdu for f € X¥(F).

Clearly we have

F(Tf) =F(f), 0<F(f) <O, KX ]|Flpg

and
Fify= f fdpe  whenever f =174,
It is also immediate that
F(HLF(f+g) S F(f)+ Flg) and F(tf) =tF(f)

for f,g € X (F) and a constant ¢ > 0. Thus, as in the proof of (iv)=-(i) of
Theorem 1, we see that for any 0 < f € L(p, ¢) the pointwise limit

F(2) = im M, (T) f(=z)
T
exists a.e. on X. Then, by Fatou’s lemma, we obtain
[/ llpg < lim inf {| M (T) fllpg < K| fllpg < 00
The proof is comp]éte.
3. A counterexample. We shall prove by a counterexample that

if (p,q) # (00, 00), then the condition liminf, | My (T)|py < oo does not
imply supy, || Mn(T)|lpy < oo
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For this purpose we shall define, as in Ryll-Nardzewski [10], a finite mea-
sure 1 on the subsets F of a countable set X and a one-to-one transformation
7 from X onto itself ag follows.

Let X Dbe the union of a sequence Xy of finite disjoint sets such that
for each k = 1, X} possesses aj points, where the sequence {a} is chosen
according to the later conditions. Let Xy = {(k,1) : 1 <i < ax} and ap = L.
We shall assuine that o; and ag/ag_1 are integers so large that there exists
a positive function wy, on Xy which satisfies the following

PROPERTY. For cach k > 1 there exists by, 1 < by < ag, such that
(9) wilk, i) = C71 1 <0< by,

where Gy > 1 is o constant depending only on k, and wy is decreasing on
the set {(k,1) : by <1 < ap}; and further we have

1 &
10 (k1) = ) = — ki) <2,
( ) ’U.),q,( ’ ) wk(hc"'k) 17 ax ,a_ziﬂ)k( 11') =
by b —1
1 NP1 S\LP
(11) b (;wk(k,@)) = E( ;0 ci) " >,
(12) Cpt <2

Deline a transformation 7: X — X and a measure g in X by putting

N (k,a‘}c) 1f?v= 15
T(k,’b)—{(k’i_l) if2<1< ag,

and

(A) _ i [E(k,i)eﬁ ’Jﬂk(k,i) ]
M L [T welh 1)
Taking (9) and (12) into consideration we see that if f € L(p,g) and if
{f# 0} cU{Xx : & > n}, then
1 a1
= TiF
U Z !

(13)

< K(p, )l llpg
P

=)
with
2 ifp=g=1,
K(p,q) = {zlfﬁp/(p— 1) fl<p<coandl<qg<oo,
where the ingquality for the case 1 < p < o0 and 1 <¢ < oo‘is due to the
inequalities (2.2) in Hunt [5], with r = 1.
On the other hand, since an/ax, 1 & k < n, are integers, it foliowis that
if f € L(p,qg) and {f # 0} ¢ U{Xk:1 <k < n}, then at s Tifis a
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constant function on each X with 1 < k < n, and thus by (10) we have the
same inequality (13) for this f. It follows that liminfy, | M, s < co.
But (11) gives, for f = 1p with B = {(k,1)},

bp—1
1 3

1 i
ol 2 Y

and hence we have sup,, || M, (T)| pg = co.

= (k)51 < S WD) >

pg

Remark. A slight modification of the above example shows that if
(2, q) # (oo, 00), then we may have lim, | My (T)||pq = oo for T" which satis-
fies the pointwise ergodic theorem from L{p,¢) to itsell. It follows that the
converse of Theorem 2 does not hold.
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Automatic extensions of functional calculi

by

RALPH DELAUBENFELS (Athens, Ohio)

Abstract, Given a Banach algebra F of complex-valued functions and a closed, linear
{possibly unhounded) densely defined operator 4, on a Banach space, with an F functional
caleulug we present two ways of extending this functional caleulus to a much larger class of
functions with little or no growth conditions. We apply this to spectral operators of scalar
type, generators of hounded strongly continuous groups and operators whose resolvent set
contains a half-line. For f in this larger class, one construction measures how far f{A) is
from generating a strongly continuous semigroup, while the other construction measures
how far f{A) is from being bounded. We apply our constructions to eveolution equations.

I. Introduction and preliminaries. Suppose F is a Banach algebra
of complex-valued functions on a subset of the complex plane. If 4 is in
B(X), the space of bounded linear operators from the Banach space X into
itself, and F contains both fu(z) = 1 and f1(2) = 2, then an F functional
calculus for A is a continnous algebra homomorphism, f — f{4), from F
into B(X), such that fy(A) = I, the identity operator, and f1{4) = A.

When A is unbounded, then we cannot have f1 € F. Something more
indirect is required to involve A in its functional calculus. We will essentially
use the definition of a functional calculus given in [8], except that we will
also consider Banach algebras F that may not contain fo; thus in (3) of
Definition 1.2 we stipulate that functions z ++ (A — z)~™ are mapped where
one would expect,

It is convenient to introduce terminology and important concepts before
proceeding further.

TERMINOLOGY ANT HyPoTHESES 1.1. All operators considered are lin-
ear. Throughot, we will assume that A is a closed, densely defined operator
on a Banach space X. We will write D(A) for the domain of A, p{A) for the
rosolvent set of A4, B(X) for the Banach space of bounded operators from
X to itself. We will write Im(B) for the image of an operator B. The space
F will always be a Banach algebra of complex-valued functions on a subset
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[237]



