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Trivial bundles of spaces of probability measures
" and countable-dimensionality

by

VALENTIN G. GUTEV (Sofia)

Abstract. The probability measure functor P carries open continuous mappings f -
X Py of compact metric spaces into Q-bundles provided ¥ is countable-dimensional

and all fibers f~1(y) are infinite, This answers a question raised by V. Fedorchuk.

1. Introduction. The probability measure functor P is a covariant func-
tor acting from the category of compact Hausdorff spaces and continuous
mappings into itself. For a compact Hausdorff space X, the space P (X) can
be defined as follows: Let C'(X) denote the space of continuous functions on
X and let M(X) denote the linear space dual to C'(X). The space P(X) is
the subspace of M(X) consisting of all nonnegative functionals p (u{e) =0
for every nonnegative function ¢ € C(X)) with norm 1. As a topological
space, we consider P{X) in the weak*-topology. Then P(X) is compact with
w(P(X)) = w(X) - Ro. It should be noted that P(X) is, in fact, the space
of probability measures on X because, by the Riesz theorem (F. Riesz for
a closed interval, Banach and Saks for a compact metric space, and, finally,
Kakutani for a compact Hausdorff space), the linear space M (X) is isomor-
phic to the space of countably additive finite regular Borel measures on X.
In view of that, we sometimes use [y @ du to denote the value ulp) of a
functional i € M(X) on a function ¢ € C(X).

Recall finally that, for a continuous f : X -+ Y, the correspending
mapping P(f) : P(X) — P(Y") is defined by

(P(we= [ @ofdu, peP(X)andgeCY)
’ X
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2 V. G. Gutev

Let us now especially mention the well-known fact that, for a metrizable
X, there are only two possibilities for the space P{X). If X consists of n
points, then P(X} is naturally homeomorphic to an (n — 1)-dimensional
simplex. In case X is infinite, P(X) is affinely homeomorphic to an infinite-
dimensional compact convex set in the separable Hilbert space £5. So, by a
result of Keller [10], P{X} is homeomorphic to the Hilbert cube Q.

Suppose f : X — Y is a continuous mapping between compact metric
spaces. Concerning the mapping P(f), there is a series of papers ([3]- 8]
where the following question is treated: When does the corresponding map-
ping P(f) become a trivial bundle with fibers homeomorphic to the Hilbert
cube Q (i.e., a Q-bundle)?

Below we quickly quote all we know concerning this question. First of
all, if P(f) is o Q-bundle, then f is certainly an open surjection with all
fibers f=*(y) infinite [5, Theorem 2.1 and Remark 2.3]. Unfortunately, these
conditions are only necessary. As shown in [3] (see also [4]), the mapping
P(n) is not a Q-bundle, where

n:H{uk:k:2nandn=0,1,...}

and the mapping vy, : §% — RP* is a 2-fold covering mapping of the
k-dimensional sphere onto the real projective k-space. But, under some
dimension-type restrictions on the spaces X and Y, these conditions
are already sufficient. For finite-dimensional X and ¥ this result is due
to V. Fedorchuk [5, Theorem 2.1). In [7], Fedorchuk has also shown that the
finite-dimensionality of X can be omitted.

The purpose of the present paper is to give a further generalization of
the above results by proving the following theorem.

THEOREM 1.1. Let f be an open continuous mapping from o compact
metric space X onto a countable-dimensional metric space Y with all fibers
F~Hy) infinite. Then P(f): P(X) — P(Y) is a Q-bundle.

Here, a space Y is said to be of countable dimension provided that it is
a countable union of finite-dimensional subsats.

Remark. Theorem 1.1 answers in the affrmative a question of V. Fe-
dorchulk {8, Question 6.18']. On the other hand, the question of the necessity
of the countable-dimensionality of ¥ in Theorem 1.1 remains open.

The paper is arranged as follows. A general scheme of the proof of
Theorem 1.1 is presented in the next section. Two auxiliary lemmas

(Lemmas 2.1 and 2.2) needed for that proof are established in Sections 3
and 4, respectively.
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2. General scheme of the proof of Theorem 1.1. The purpose of
this section is to show how the general scheme of the proof of [5, Theorem 2.1]
can be slightly modified to work in our present situation.

Suppose X, Y and f are as in Theorem 1.1. We check that P(f) is a
@-bundle using the West~Toruficzyk criterion [16]. Let £ > 0. Follow%ng
closely the proof of [5, Theorem 2.1] (see [5, Remark 0.13 and Proposition
0.14]), to do that it suffices to construct two continuous mappings

gt P(X) — P(X), i=1,2
satisfying the conditions:

(1) P(f) o gi = P(f),
(2) olgiidpix)) <,
(3) ;u(PX)) Nga(P(X)) =1,
where g is a fixed metric on P(X). ‘
Using a lemma of Milyutin [14], [15], we first fix a zero-dimensional
compact metric space Z and a Milyutin epimorphism g : Z - Y. Re.ca'll
that a continuous mapping g : £ — Y is a Milyutin epimorphism [15] 11‘” it
admits a regular averaging operator u : C(Z) — C(Y'), i.e., a linear mapping
2 such that
() ful =1, | |
(ii) u(sp) is nonnegative provided ¢ € C{Z) is nonnegative,
(iil) u{p o g) = i for every p € C(Y).
Next, let T = {(z,z) € Z x X : g(2) = f(z)} be the fiber product of the
spaces Z and X with respect to the ma,ppingg gand f,andlet go: T — X
iy T' — X be the projections.
andF{;;mlﬁ, let);{S' be a zefo—jlimensiona.l compact metric space and h: § - T
: i i imorphism.
o é}l??ﬁ"ﬂﬁ;;l:uipmost 1<))f this paper, we will find .ourselves in the situation of
the following commutative diagram.

§ 4= T 2 X

ful lf

7 e Y
g

Keeping in mind this diagram, we now state two lfemmas vghlch give 11: Z
basic component of the construction of the mappings g;. ;ppo;? q 2
metric on T agreeing with the topology of T For £ >0 and F CT weu
Be(F) to denote the £-neighbourhood of Fin (T,4q).
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LeMMa 2.1. For every £ > 0 there exist two continuous selections oy, oy
Z — T for fo"l such that

(a) ¢lon(2),02(2)) < & for every z € Z, and
(b) 90o1(Z) N gooa(Z) = 0.

LeMMA 2.2, Let £ > 0, and let 01,00 : & — T be as in Lemma 2.1, Then
there exists a retraction r : § — 8 such that

(8) hr(S) N g5 go01(2) = 0,
(b} fooher=fyoh, and
(c) hrh™1(t) C Be(t) for everyt e T.

It should be remarked that Lemma 2.1 is a countable-dimensional ver-
sion of [5, Lemma 2.2]. The proof of Lemma 2.1 is contained in the next
Section 3. This proof illustrates the power of the technique of set-valued
semicontinuous selections and is quite different from that of [5, Lemma 2.2].
As for Lemma 2.2, it refines a part of the proof of [5, Theorem 2.1]. The
principal improvement is condition (c) (compare with [5, {2.17)]), which
will be essentially used at the end of this section. The proof of Lemma 2.2
is postponed until Section 4.

We now turn to the definition of the mappings g;. Let u : C(Z) — C{Y)
be a regular averaging operator for the Milyutin epimorphism g. This gives
rise to an embedding u* : P(Y') — P(Z) that is a selection for (P{g))~* and
is defined by

w*(p) (@) = plu(p))  for every p € P(Y) and p € C(Z).
Repeating [5, (2.3)], we define g1 : P(X) — P(X) by setting

g1{p) = (1~ E)p+EP(go 0 o1} u* P(£)().

This definition is correct and it guarantees that g; is continuous and has the
following properties:

(101) P(f) o g1 = P(f),
(2:91) o(g1,1dp(x)) < € for small &,
(3; 1) fgwl(Z) dgi(p) > 0 for any p € P(X).

For details concerning the verification of these properties see [5].

We now proceed to the definition of gp. Let v : C(S) — C(T) be a regular
averaging operator corresponding to the Milyutin epimorphism A.

By [5, Lemma 0.11], the mapping go parallel to the Milyutin epimorphism
g is also a Milyutin epimorphism. Let then w : C(r — C(X) be the
corresponding regular averaging operator.

Next, let w* : P(X) — P(T) and v* : P(T) — P(S) be the mappings
adjoint to w and v (see the definition of u*). Note that w* and v* are
selections for (P(go))™" and (P(h))™1, respectively.
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Repeating [5, (2.9)], we define g2 : P(X) — P(X) by
g2 = P(go) o P(h) o P(r) o v* o w™.
The continuous mapping ga so defined has the following properties:
(15 92) P(f) o g2 = P(f),
(25 92) o(g2,1dp(xy) < € for small £,
(3592) [0 (2y 992(p8) = 0 for any 4 € P(X).
Indeed, (1; g2} follows from Lemma 2.2(b) (see [5, (2.10)]). To verify (3;g2),

we note that, by Lemma 2.2(a), gohr(8) Ngoo1(Z) = 0. Therefore, for every
measure v &€ P(5),

f dP(goohor)(v) =0,
goer(Z)
which is (3; ga)-

Following [5], to check finally (2;ga), it suffices to show that P(hor)ov*
is close to the identity because P(gq) ¢ w* = idp(x). Towards this end, we
first note that the space P(T) is embedded (in a natural way) in RS, Se,
P(T) admits a base consisting of all sets of the form

Ot p1, -0k, 8) = {v € P(T) « |pleps) — v{wi)| <6, i =1,...,k},

where § > 0, ¥1,...,¢x € C(T) and p € P(T). Next, by virtue of [5,
Proposition 0.2], every finite open cover of P(T’) has a refinement

{O(/J-,(,Dl,---,@k,é) pE P(T)}

for some § > 0 and p1,...,¢x € C(T). Therefore, for a given § > 0 a.,nd
functions 1, . . ., px € C(T), it suffices to find a § > 0 such that the mapping
x = P(hor)ov* constructed for this particular £, satisfies the condition

(2;92) x(p) € O o1, Pk, 0), 1 € P(T).

Pick a & > 0 for which d{t,t') < £ implies |p:(t) — ()] < 8. ¢ = 1,...,ky
and let us check that this £ works. Notice that x(p) () = Plhor)v*(p)(p) =
w(v(p o hor)). Hence, to show (2;g2)', it is now sufficient to show that

(202" ips(t) = vlpi o Bor) () <6, i =10, k.

Remernbering that v is an averaging operator for h and using [5, Proposi-
tion 0.6], we get -

(s 0 hor)(t) € convi(hrh™ (1)), i=1,... .k

This, together with Lemma 2.2(c), implies (2; g2)". ‘
The g; and go constructed for a small £ satisfy all our requirements.
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3. Proof of Lemma 2.1. Throughout this section X, ¥ and f are as
in Theorem 1.1. Set

FX)={SCX:5+#0 and 5is closed}.
A set-valued mapping v : ¥V — F(X) is lower semicontinuous (upper semi-
continuous), or Ls.c. (u.s.c.), if
pTHU) ={yeY s p(y)nU # 0}

is open (resp., closed) in V for every open (resp., closed) U/ € X. For a
family W of subsets of X and A C X, we use St(A4; W) to denote the star
of A with respect to W.

The most difficult part of the proof of Lemma 2.1 consists in proving the
following selection theorem.

THEOREM 3.1. For every § > 0 there exist two Ls.c. selections 1, py
Y — F(X) for =1 such that, for everyy € ¥,

1) Na(y) =0 and  H{d)(p1(y), w2(y)) < 6.
Here, d is a compatible metric on X and H(d) denotes the Hausdorff
metric on F(X). Recall that, for F,G € F(X),
H(d)(F,G) =inf{e > 0: F C B.(G) and G < B{(F)}.

In preparation for the proof of Theorem 3.1, we need some more termi-
nology. Let T(X) be the topology of X, U = {U, : o € A} be an open
cover of ¥, and let ¢ : A — T(X). We shall say that the triple (¢,.4;4) is
a t(A)-approzimate section for f 9] if A is finite and cl(U,) C f(t(e)) for
every a € A.

Consider the set

2(f) = {(¢t, A U) « (t, A;U) is a t{A)-approximate section for f}.
For every (¢,.A;U) € 2(f), we let
mesh(z, A 1) = max{diam(¢(e)) : @ € A}.
Suppose f : ¥ — F(X) is a set-valued selection for f~* and (£, 4; 1) € £2(f).

(3.2)  We shall say that # is subject to (£, A;U) (8 ~ (¢, A; i) for short) if
0(y) N i) # O for every y € U, and 8(y) ¢ [J{t(a) : y € U, ).

Let ¢ Y — F(X) and 4 : ¥ — F(X) be two set-valued mappings. We
shall say that (i,1) is a Michael pair for £~ provided ¢ is ls.c., ¥ is w.s.c.
and ¢(y) C ¥(y) C f1(y) for every y € Y. Set

Mp(f) = {{.¥) : (p,%) is a Michael pair for i

Fina‘lly, for (, %) € Mp(f) and (¢, 4;U) € 2(F) we write (o, ) = (t, 4;U)
provided ¢ and ¢ are subject to (¢,.4; 1) simultaneonsly. -
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PROPOSITION 3.3. Let (£, A;U) € 2(f), and let vy 1 Y — F(X) and
ws Y — F(X) be selections for =1 such that p; ~ (¢, 4U), i = 1,2.
Then

H{d){w1(y), pa(y)) < mesh{t, A; L) for everyy €Y.

Proof. This follows immediately from the fact that, for every y € ¥
and every ¢,7 € {1,2}, (3.2) implies

i (y) - U{t(a) Yy e U&} C St((p,?(y)at(-A)) < Bmesh(t,A;Ll) (QDJ(y)) n

PROPOSITION 3.4. Let (¢, A;U), {¢t, AU) € 02(f) be such that t'(a) C
t(a) for every a € A, and let Y — F(X) be o selection for f~" with
v (U, A U). Then ¢ =~ (t, A;U).

Proof. Simply note that (y) Nt'(a) # 0 implies p(y) Ni(e) # 0. =

LEMMA 3.5. For every (t, A;U) € Q(f) there exists a (¢,v¥) € Mp(f)
such that (v, ) =~ (¢, A;U).

Proof. Let @ € A be such that U, is non-empty. Define a set-valued
mapping @, ; cl(l/,) — F{t(a)) by

B, (y) = f Hy)Nt(a) for every y € cl(Ug).

Note that @, is L.s.c. because f is open. Since now t(a) is completely metriz-
able, by a result of E. Michael [13, Theorem 1.1], there exist two compact-
valued selections @q, e @ c{Uy) — F(t()) for $, such that ¢, is Ls.c.y o
is ws.c. and q(y) C ¥a(y) for every y € cl(Uy,). Define @, % : ¥ — F(X)

by w(y) = Healy) : v € Us} and ¢(y) = UH{a(y) : y € cl(Ua)}. These »
and 7 satisfy all our requirements. =

LEMMA 3.6. For every (, A4;U) € 2(f) there exists a u.s.c. finite-valued
selection 8 1Y — F(X) for £~ such that 8 = (¢, A;U).

Proof Asin the previous proof, whenever o € A with U, # 0, we define
an Ls.c. mapping &, : cl(U,) — F(t(a)) by $.(y) = f (y) Nt{a) for every
y € cl(U4). Since cl(U,) is countable-dimensional, by [9, Theorem 2.1], each
@, admits a finite-valued w.s.c. selection . Define, finally, the required ¢
by 8(y) = H{ba(v) : y €cl(Us)}. =

Proof of Theorem 3.1. Let V be an open cover of X such that
diam(V) < 6 for every V € V. Since X is compact, there exists a finite open
cover A of X which is a closure-refinement of V. Define, in a natural fashion,
a mapping ¢ : A — 1V C 7(X) such that cl{a) C t(a) for every o € A. Set
W. = f(a), and let W = {W,, : @ € A}. Since f is open, W is an open
cover of Y. The following holds.

1) (¢, A W) € R(f). Indeed, & € A implies cl(Wm) = cl{f(a)) C
Flel{a)) € F(H(e))-
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(ii) mesh{t, 4, W) < 6 because diam(é(a)} < & for every a € A.

(iii) Whenever y € Y, there is an o € A such that f~1(y) N« is infinite.
By assumption, f~!(y) is infinite. Then (iii) follows immediately from the
fact that A is finite and f~*(y) C |J A

Let now 8 : ¥ — F(X) be a u.s.c. finite-valued selection for f~1 such
that @ ~ (¢, A;W). By virtue of Lema 3.6, such a & certainly exists.
Since 8 is u.s.c., Fy = [JH{O(y) : y € Y} € X is closed. Let us check that
{f{a\Fp): @ € A} covers Y. Take a point y € Y. By (iii), there exists an
o € A such that f~(y) N« is infinite. Then F~(y) N (a\Fy) # § because
7 Hy) N Fp = 8(y) is finite. Hence, ¥ € f(a\Fp).

Next, let i = {U, : @ € A} be an open cover of ¥ such that

(iv) l(Us) < flo\Fo) (C f{t(a)\Fp)) for every a € A.
This immediately implies that (see also (ii))
(v) (t, A;U) € 2(f) and mesh(t, A;14) = mesh(¢, A; W) < 6.

Define first £1 : A — T(X) by t1{a) = t{a)\ F, for every o € A. By (iv),
(t1, AsU) € 2(f). Then, by Lemma 3.5, there exists a pair (1,41) € Mp(f)
with (p1,41) = (t1, 4;U). Since 4y is usc, Fy = M (v} -y e ¥} € X iy
closed. Define then t3 : A — T(X) by t2(e) = t(a)\F; for every o € A. We
claim that (tz, A;U) € 2(f). Indeed, let o € A and let y € cl(U,). By (iv),
y € cl(Uy) € fla) = W,. Therefore,

FH) Ntala) = FHE) N (He)\FL) D F7My) N Fy nt(a) = 0(y) Ni(a) # 0

because § ~ (t, A; W) (see (3.2)) and because Fy N Fy = @. So, cl(U,) C
f(ta(a)). Let finally (2,%) € Mp(f) be such that (g, vs) & (b2, A;L0),
which exists by virtue of Lemma 3.5. It only remains to verify that ¢, and
o satisfy all our requirements. Tndeed, by Proposition 3.4, p; ~ (¢, 4;U)
(¢ =1,2) because #;{a) C () for every o € A. Then, by (v) and Proposi-
tion 3.3, '

H(d)(e1(y), p2(¥)) < mesh(t, L) < 6.

That ©1(y) N @aly) = O is now obvious because 1 (y) < ¥y (y) € Fy and
wa(y) C U{te(e) s a € Ay = J{ta\F) :a € Ab=U{t(a) : a € A\F|. »

Having established Theorem 3.1, we now proceed to the proof of
Lemma 2.1. By Theorem 3.1 (with § = £/2 > 0), there exist two Ls.c. selec-
tions 1,03 : ¥ — F(X) for £~ such that, for every y € Y, w1(y)Npa(y) =
B and wa(y) C Bgsolw1(y)). Since dim{Z) = 0, by a result of Michael [11,
Theorem 1], the l.s.c. mapping woog : Z — F (X) admits a continuous
selection kg : Z — X. Note that ka(#) € wa(g(z)) C Bea{w1(g(z))). Hence,

Beja(k2(2))Np1(g(2)) # 0. Define then a set-valued mapping & : Z — F(X)
by letting .
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P(z) = cl(p1(g(z)) N Beja(kalz))) for every z € Z.
By (12, Propositions 2.3 and 2.5], € is L.s.c. Then, by the same arguments
as before, ® admits a continuous selection x5y : Z — X. We have

(A) d(k1(2),82(2)) < £ for every z € Z
because #(z) € cl(Bg/2(ka(2))) C Belka(2)). Moreover,

(B) ﬁ’,l(Z) QHQ(Z) = @

Indeed, let = € k1(Z) N k2(Z). Then there are points z; € Z for which
Ki(2;) = 2. Since z = K(z;) € wi(g{z:)) C F~1{g(2:)), it follows that g(z1) =
g(z9) = y. But then & = x2(z2) € wo(y) and z = k1(21) € va(y), which is
impossible because ¢;(y) Mpa(y) = 0.

Define finally o; : Z — T by 0i(z) = (2, #3(z)). This definition is correct
because ;(z) € f~*{g(z)) and therefore

Flri() = [f 7 {g(=)) = 9(2).
Now 2.1(a) and 2.1(b) follow immediately from (A) and (B), respectively
(notice that we may assume g((z,z1), (z,22)) = d(®1,24) for every z € Z).

4. Proof of Lemma 2.2. Suppose £ > 0 and oy and oy are as in
Lemma 2.1. Define :

2 =gylgon(2) and S;=hTHZ).
In preparation for the proof of Lemma 2.2, we show

PROPOSITION 4.1. There is o continuous mapping [+ S1 — T\Xy such
thot, for every s € Sy,

(a) I(s) € fg* foh(s), and
(b} a(h(s), (=) < €.

Proof Define X; = gooi(Z), i = 1,2. Observe that X; C X is closed
and X1 N X3 = . Then there exists an 7 > 0 such that B,(X) N X1 = 0.
Since Z is compact, there is a § € (0,£) such that g{o1(2),02(2)) < § for
every z € Z. First, define a set-valued mapping ¢ : 1 — F(X) by

(s} = cl{Bs(goh(s)) N F Y fgoh(s)) for every s € Si.

Next, define another set-valued mapping & : S1 — F(By(X2)) by &(s) =
0(s) N By{Xa) for every s € S1. Note that & is correctly defined. Take a
point s € 8. Since goh(s) € X\ = goo1(Z), there is a z € Z for which
goh(s) = goo1(z). We claim that gyoa(z) € €(s). Indeed, on the one hand,

9002(2) € 7 fgoor(z) N Xz = F~ 1 faoh(s) N Xs.

On the other hand, g(og(z),01(2)) < & implies d{gooa(z), goo1(2)) < 8.
Therefore, goos(z) € Bs(goor(z)) = Bs(goh(s)).
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Note now that, by [12, Propositions 2.3 and 2.5], ¢ is Ls.c. Hence,
by [12, Proposition 2.4], so is & because B,(X2) is open. Then, by
(11, Theorem 1], # admits a continuous selection p : §; — B, (X5) be-
cause Bp(Xs) is completely metrizable and dim{S;) = 0. We are now
ready to define our I. Namely, for every s € 54, put I{s) = (foh(s), p(a)).
To show that I(s) € T\ X, note first that p(s) € o(s) C 7" faoh(s). Hence,

fo(s) = faoh(s) = gfoh(s).

So, {(s) € T. Next, note that gol(s) = p(s) € By(X.), and therefore
I(s) € 21 = g3 '(X1) because X3 N By(Xs) = 6. It follows from the def-
inition of I that {a) holds. Finally, (b) follows immediately from the fact
that d{goh(s),p(s)) <5< £ u

ProrosiTiON 4.2, There exist a clopen subset W C 8§, coﬁmim’ng 5,
and a continuous mapping w : W — S\W such that

(a) fohw(s) = foh(s) for every s € W, and
(b) hwh=1(2) C Be(t) for everyt € h(W),

Proof Let {: 55 — T\ X, be as in Proposition 4.1. Define a set-valued
mapping ¢ : § — F(T) by w(s) = {I(s)} if s € S1 and w(s) = fy* fuh(s)
otherwise. Note that the mapping fo is open ag a “paralle]” to the open
mapping f (second lemma on parallels of [1]). This implies that the map-
ping @ is Ls.c. because, by 4.1(a), | is a selection for f5'foh|S1 (see [12,
Example* 1.3]). Then, by [11, Theorem 1], ©» admits a continuous selec-
tion k : § — T. Note that k(s) = I(s) for every s € S;. Therefore,
kh™1(Zy) N Xy = {. Take then a neighbourhood V of Iy in T such that
kh~1(V)NV = B. This is possible because h is perfect. Since g(k(s), h(s)) < £
for every s € §1 and dim(S) = 0, there now exists a clopen subset W of §
such that §) ¢ W C A=YV and g(k(s), h(s)) < £ for every s € W. Re-
membering that h is a Milyutin epimorphism and using Ditor’s theorem [2],
we can find an ls.c. selection ¢ : T' — F(5) for h~!. Finally, again by [11,
Theorem 1], let w : W — S\W be a continuous selection for the mapping
Sok|W . W — F(S\W). It only remains to check that this w works. Take
a point s € W. Note that w(s) € $(k(s)) C h™1(k(s)). Hence,

Johw(s) = fohh Yk(s) = fok(s) = foh{s).

So, (a) holds. Let now ¢ € h(W) and s € A= *(t)NW. Since hw(s) = k(s) and

since g(k(s), h(s)) < &, it follows that hw(s) € Be(h(s)) = Bg(t). Therefore,
hwh™1(t) C Be(t). w

We are now ready for the proof of Lemma 2.2. Let W and w be as in
Proposition 4.2. Define 7 : § — § by #|W =w and r|S\W = idg\w. Since
W is clopen, r is continuous. Moreover, r o r = idg\pv, so r is a retraction.
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By 4.2(a), foohor = fyo h. Finally, hrh ™ (t) C Be(t) for every t € T by
4.2{b} and the definition of r.
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