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VA*V~! for every A € B(H), where V is a bounded invertible conjugate-
linear operator on H. On the other hand, 8{A) is always similar to A. In
particular, it would follow that an operator A is one-to-one if and only if A*
is. But this is certainly not true {consider, for instance, the shift operator).
Thus, # is an automorphism. The proof of the theorem is complete.
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The upper bound of the number of eigenvalues
for a class of perturbed Dirichlet forms

by

WIESLAW CUPALA (Wroclaw)

Abstract. The theory of Markov processes and the analysis on Lie groups are used
to study the eigenvalue asymptotics of Dirichlet forms perturbed by scalar potentials.

Introduction. Let A(z, D) = 37, < 0 (7)(i7'9/82)* be a selfadjoint
differential operator with the symbol A(z,£) = Zl al<m Ga (). The Bohr—

Sommerfeld quantization principle, according to which the volume ~ A< in
the phase space should count for one eigenvalue of A(z, D), leads us to the
hypothesis that the number of eigenvalues of A(z, D) which are less than A
should be approximately the volume of the set A = {{z,£) | A(z, &) < A}
If A(z, D) is elliptic and A — oo, this hypothesis is asymptotically correct
(cf. {10]). For the Schrédinger operator —A--V, this “volume-counting” has
been fully expressed in the form of the Cwikel-Lieb—Rosenblum inequality
{cf. [13]). However, this inequality can also produce grossly inaccurate esti-
mates for systems as simple as two uncoupled harmonic oscillators. Following
Fefferman (cf. [b]), it is better to count the number of distorted unit cubes
which can be packed disjointly inside the subset A instead of measuring
the importance of A. This idea, called the SAK-principle, led to sharp esti-
mates of eigenvalue asymptotics (cf. [5], [6]). Because counting the number
of distorted unit cubes which fit inside 4 is not easy, this kind of estimate
gives us only a qualitative description for the number of eigenvalues. (In [3],
it is shown how we can count the number of proper boxes in the case of
Schrédinger operators with polynomial potentials.)

The aim of this paper is to redefine the place of “volume-counting type”
estimates and to give a quantitative description of the number of eigenvalues
for operators defined as T + V, where D is the infinitesimal generator of
a (sub)markovian semigréup and V is a function. For D being a sum of
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110 W. Cupala

squares of vector fields this description is given as a sharper version of the
Cwikel-Lieb-Rosenblum inequality.

Preliminaries. Let M be a connected ¢'°° manifold. Consider a prob-
ability space (£2,F, P) and let £(¢) : 2 — M be a Markov process on M.
Assume that the trajectories ¢ — £(t) are right continuous with probabil-
ity one. Let £ be homogeneous in time and have the Feller property. If we
denote by E* the expected value with the initial condition £{0) = z € A,
then Ty f(x) = E*f(£(t)) defines a strongly continuous semigroup on the
space of bounded continuous functions on M. Let D denote the infinitesi-
mal generator of the semigroup 7% and ¥ be a bounded continuous function.
Consider the strongly continuous semigroup of operators §; defined by the
infinitesimal generator D + V.

LEMMA 0 (The Feynman-Kac formula). For any bounded continuous
Junetion f defined on M and every z € M,

t
Sif(@) = E*fe@)exp (= [ Vig(s)) ds).
0
Proof. By the Trotter formula, we have

e—t('D+V)f -atD/ne—tV/n)nf_

= lim (e

n—3»0o

By using the Markov property the right-hand side of the above equality is

the limit of o
RGO G > V(es (a%)))

Because the paths of £ are right continuous, the function ¢ — V{(£{t)) is
integrable in the Riemann sense. So this expected value tends to

Bef(e) exp (- [ V(E(s)) ds)
0

as n tends to infinity.

The Feynman-Kac formula allows us to present the kernel of the semi-
group S in the forrm which is useful when exploring the eigenvalue asymp-
totics of the operator D 4 V. For this purpose we will construct a “Markov
bridge” between any two points 2,y € M. The following assumption gives
us the possibility of building this Markov bridge: There exists a positive
Radon measure m on M such that the Markov transition function of the
process ¢ is the collection of absolutely continuous (relative to m) probabil-
ity measures with densities p(z,y,t). If £(t) is a Hunt process, i.e. it is right
continuous, has the strong Markov property, and is quasi left continuous,
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then the transition function of £(%) is absolutely continuous relative to any
everywhere dense positive Radon measure on M for which 7} is a semigroup
of selfadjoint operators on Ly(M, dm} (cf. [8]). Our first assumption is the
following: :

{A) there exists an everywhere dense positive Radon measure m on M
such that £{t) is an m-symmetric Hunt process.

Let 2 be the set of all right continuous trajectories on M. We construct
the process £ on {2 by putting

P’n{g . f(tl) < Al: .. :E(tn) = Aﬂ}

= f dm(ml)---dm(?«'n)HP(mi—lami:ti —ti—1)x A (i),
=1
where o = 2, 0 < ?; < ... <i,. For any ¢t > 0 the probability Py ; can be
decomposed into a family of conditional measures { P,y : ¥ € M} given by

Pm,y,t{f . E(tl) € Aq, vé(tn) € An}
= f dmiz1)... dm(wn)(HP(Iﬂwhwi, tioq — ti)XAi(mi))p(mna Yyt b)),
1==]

where 2p =, y € M and 0 < #; < ... < %, < &. The measure F, 4, is
supported by the set of all right continuous trajectories which start from z
and finish in y. _ .

Now we can describe the kernel of the semigroup §; = e *P*V) in the
following form:

Su(z,y) = [ dPuysexp (- i V(E(s))ds ).
G

The first natural question is whether or not for any fixed ¢ > 0 the function
S¢{z,y) is continuous in the M x M-topology. The positive answer can be
easily proved if we restrict the considered classes of manifolds and Markov
processes to the class for which the following conditions hold:

{B) there exists a Lie group & which acts transitively on Af,
(C) m is a G-invariant positive Radon measure on M,

(D) T: commutes with the G-action,

(E) for every t > 0, there exists ¢ € M such that p(o,0,%) < co.

The conditions (A)—(D) are sufficient to prove that, for fixed ¢ > 0 and
fixed 0 € M, the family {p(-,0¢,%) : g € G} is uniformly integrable. The
conditions {A)}~(E) and the semigroup property prove thai for-any ¢ > 0
and o € M the function p(o,-,1) is square integrable, and thus, p(-,+, %) is
M x M-continuous. Hence, S;(-, -) is continuous in the M x M-topology. We
concentrate our research on the cases in which the conditions (A)-(E) hold.



112 W. Cupata

DEFINITION 1. Any strongly continuous semigroup of operators satisfy-
ing the conditions (A)-(E) is called an unezplosive G-invariant symmetric
Semigroup.

Any strongly continuous semigroup is an approximation of the identity
operator. For the considered semigroups we can measure the “velocity of
approximation” by the following parameters:

ranko(D, 2’:) = mf{6 : chc(é)vt>0 p(:[:}z;,t) < C’ﬁka/z},
rankeo (D, z) = Sup{T : 3a::=c(1")\9(15>0 p(w,m,t) < Ct_T'Iz}-

The condition (D} proves that both ranks are independent of the choice of
T € M. So, they are parameters of the global behaviour of the semigroup,
and we can write rankg(D), rank., (D).

Let (7 act transitively on M. Let m be a G-invariant measure on M. We
say that the action of G is unimodular if the following condition holds:

(F) there exist o € M and s : M — (¥ such that for every z € M, os(x) =
z (we say that s is a selector), and for every y € M and ¢ € C (M),

[ dm(z) $lys(@)) = [ dmiz) $(=).

For the reasons which will be seen below (in the proof of Lemma 1) we
explore only the class of unimodular actions.

The main lemma. We now estimate the number of negative eigenvalues
of the operator D+ V, V < 0. Denote this number by N(D + V,0). In the
case of D = —~A and M = R this result is due to Cwikel [4], Lieb [11],
and Rosenblum [14]. Our proof is an adaptation of Lieb’s method published
in [13].

LeMMa 1 (The Cwikel-Lieb-Rosenblum inequality). Let the action of G
on M be unimodular. Let D be the infinitesimal generator of an unezplo-
siwe G-invarient symmetric semigroup. Let ranko(D) < § < rankeo (D) and
& > 2. There erists a constant C > Q such that

N(D+V,00<C [ dm(z)|V(z)|5?
for every nonpositive potential V.

Proof We can assume that V is continuous and compactly supported.
By using the strong resolvent convergence the result can then be easily
extended to the wider class of potentials.

We set —V = F and, for A <0, ~A = x2. Fix a natural number n > 8§/2.
As the first step we show that
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(1) N(D+V,))
172" if 7 . 241 g1 /2
§(n+1)’I‘r(F ijl( I)J(j)(D+jF+!{.) F )

For a selfadjoint operator H we define the kth characteristic number as

mH) = S enoo o =TT
Il = IRl =

1, then the functions defined by ¢ — ((D — tF)fi, fi),
t >0, i = 1,2, are equicontinuous. Hence £ — up(D — tF) defines a con-
tinuous function py(t). Since F' > 0, we have ux(t + h) < px(t). Using the
mini-max principle, we see that

ND-FA) =|{k: ue(1) <A} = [{&: pr{t) = X for some 0 <t < 1}.
Let 7 be a function which satisfies the equation
(D —tF\np = \np = —k2n.
Then (j+1)Fn = (D+jF +&%)nfor j=0,1,... So,
(D+jF+ &%) = (+1)""n.
Thus, ¢ = F1/2y satisfies
FY3D 4 iF 4+ &)Y 2 = (54 1) 4.

Therefore, if we set

K = P1/2Z 1)‘7()D+_7F+h.2) 1F1/2

K= (j:o( o (%) -0,

‘We can write this as

then

K =t H({t™ Yy,

where
H( )“i (14 jz) ! = nie’
=AY ) = AT I+ 22) .. (1 Fnz)
By noticing that
H(x) = f e 1 — e~ ™) dt,

0
we see that H is a monotonic function. Hence, if £ runs from 0 to 1, then
= H (1) runs from oo to n!/(n + 1)! = (n 4+ 1)~*. Therefore, the number
of t € (0, 1] for which the equation (D 4 tF)n == An has a sclution (counted
with multiplicities} is bounded by the number of eigenvalues of K larger
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than (n+1)~!. Because K is a positive operator, the last number does not
exceed (n+ 1) Tr(K).
The next step is to show the inequality

(2) N(D-F,0)

<(n+1) f Tr (Flfﬂ i(—m (?) exp(—t{D +jF))F1/2) dt.

0 i=1
Formally, (2) is a consequence of (1) and the Laplace transform

(K2 +H)™! = —T exp(—t(k? + H)) dt.

To complete such a formal proof we must show that we can change the order
of the trace and the integral. For this purpose, we notice that #1/2 exp(tD)
and exp(tD)F/? have square integrable kernels (this is an easy consequence
of (A)—(F)). The assumption F > 0 implies that F'*/2 exp(—#(D + jF)) and
exp(—t(D + jF))F'/? are also Hilbert-Schmidt operators, for j = 1, ...,n.
Therefore, the operator

Aj = exp(=s(D + jF))F exp(~(t - s)(D + jF))

is of trace class for any t > s > 0, j = 0,1,... Lemma 0 and the Markov
property lead to

A f(z) = BF(E(s)) exp ( — [ GF(e(r) dr) FE().
0

By using the “Markov bridge” (described in the preliminaries), we can ex-
press the kernel of A; as

As(o,y) = [ APy () FEs) exp (=5 [ Fletr)ar).
0

As we have shown above, Tr(4;) < 0o. The conditions (A)~(F) imply that
this kernel is a continuous function. Hence

Te(4;) = [ dz Aj(z,2).
Now we notice that
Te(F2 exp(—t{D + jF)F'/%))

=1 f ds Tr(exp(—s(D + jF)F exp(—(t — 8)(D + jF))).
0

We can interchange the trace and integration if we have the control oifer

trace-norm. We get such a control in the same way- as the following final
estimate.
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Let R{u) = u{l — exp(—u))"™. From the above remarks, we come to
3y N{D+V,0)

<(n+1) }odt f dm(z) f de,w,t(g)t"lR( fF(g(s)) ds).
0 0

There exists ¢ € R, such that R > 0 for u € (0,2), and R < 0 for
u € {a,00). We define

| R{u) for0<u<a,
olu) = Rla)+ (u—a)R'(a) foru>a.
Then ¢ ~ u"*! as v — 0, g ~ v as ¥ — 00, ¢ 18 a convex function, and
R(u) < o(u). So, by the Jensen inequality,

B( [ Fietanas) < of | Fisyas) <07 [ atrieon s

We fix 0 € M and a selector s such that os(z) = z for every x € M. We
have

[ dPeza(€) F(E(8)) = [ dPooa(€) F(E(s)s())-

The action of G on M is unimodular. So, from (3) we obtain

ND+V,0)<(n+1) Tdt f drn{x) fds f AP, ot (E)t720(tF (£(8)s(2)))
0 0

= {n+1) j?dt f dP,04(£) f dm(z)t  o(tF(z)).

We notice that
[ dPos(&) = plo,0,8) < ct=5/2.
This ends the proof.

The Sobolev inequality. Now we consider the status of the Cwikel-
Lieb—Rosenblum inequality in the theory of Dirichlet forms.

COROLLARY 1 (The Sobolev inequality). Let § > 2 and ranko(D) < § <
rank.. (D). There exists C > 0 such that

“@”Hza/(a_g) < C(Dg, ¢)1/2
fCJ?" every qs = L?(M’ dm)

Proof. By Lemma 1, there exists ¢; > 0 such that (D + V)¢, ¢) > 0
for every nonpositive V' & LS/2(M,dm) with ||V]s;2 < ¢ and all ¢ €
L?*(M,dm). Thus, there exists co > 0 such that

6136/ (5--2) < e2(D, 9).
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The Sobolev inequality plays a key role in the Hardy-Littlewood theory
for semigroups (ef. [16]). Let, as above, T} be the semigroup generated by D.
By using the “pivot” of Varopoulos's paper ([16], Theorem 1) and Corollary 1
we can easily prove the following equivalence.

THEOREM 1. Let § > 2. The following conditions are equivalent:
(1) there exists ¢; > 0 such that
I ¢ll25/(5-2) < c1(Dep, )"/

for ¢ € L*(M, dm),

(2) there exists ¢y > 0 such that

ITe8] 0 < cat™®?|l¢]l1

fort >0 and ¢ € LM, dm),

(3) there exists ¢5 > 0 such that

ND+V,0)<es [ dmiz) V()"

for every nonpositive potential V.

Proof. The equivalence of (1) and (2) is the substance of the Varopou-
los paper. For the implication (2)=-(3), we notice that (2) implies that
ranky (D) < § < rank, (D) and we can use Lemma 1.

Theorem 1 shows that the C-L-R inequality leads us to the Varapoules
theory. Hence, as corollaries, we get the Hardy-Littlewood estimates for
subharmonic functions, existence of Riesz potentials and sharp estimates
for time derivatives. For details see [16].

Localization and upper Weyl estimates. Let £(¢) be the Hunt pro-
cess considered in the preliminaries. Since any trajectory of £ is right con-
tinuous and has left limits (cf. [1]), we can define the first exit time from a
subdomain U C M in the following two ways:

The right-first exit time:

ry = inf{t : £(¢) € U}
The left-first exit time:

Iy = inf{¢t: Sl_iﬂ’l_ L) U}

DermniTiON 2. Let T: be an unexplosive G-invariant symmetric semi-
group on L2(M,dm). Let U be a subdomain of M. The right-localization
(vesp. left-localization) of Ty to L*(U,dm) is the semigroup defined by

T p(w) = E°3(E(t))1iiaryy  (vesp. Ty ¢(e) = EZ¢(6(t)) 1 fraty))

for ¢ € L*(U, dm). The Markov property proves that T;" (resp. 777) is a
semigroup.
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Let Dt (resp. D) be the infinitesimal generator of the semigroup T+
(resp. T3 ). We call it the right-localization (resp. left-localization) of the
infinitesimal generator D of T%.

Remark. If £(t) is a diffusion, then its trajectories are continaous and
there exists only one localization of T;. This localization has a kernel which
ig the solution of the Fokker-Planck equation in the domain U with the
absorbed boundary. Thus, the localized infinitesimal generator is the same as
D with the Dirichlet boundary condition. The proof of this fact is especially
easy for 1t processes.

Just as in the preliminaries we can prove the Feynman-Kac formula for
the operator Dt 4V, and repeating the proof of Lemma 1 gives the following
local version of the C-L-R inequality.

LEMMA 2 (The local C-I-R. inequality). Let § > 2 and ranky(D) < 6 <
ranko, (D). There exists a constant C > 0 such that

N@T+V,00<C [ dm(x)|V(2)*?
U
for every nonpositive potential V.
PROPOSITION 1. Let § > 2. If ranke(D) < & < rankeo (D), then also
rankg(DT) < § < ranke (D).
Proof From Lemma 2, we get the Sobolev inequality. Then we use the
quoted Varapoulos theorem.

Let Ny()\) denote the number of eigenvalues of DT less than A > 0.
The following upper bound on Ny (A) is an easy corollary of Lemma 2 and
Proposition 1.

COROLLARY 2 (The upper Weyl estimate). Let § = rankq(D) > 2. Then
there exists a constant C > 0 such thal
Nyg(A) < CAP|U |,
where U\, denctes the m-measure of U.

As we shall see below, for a large class of Dirichlet forms Corollary 2
gives the asymptotic growth of Ny (A).

Remark. Of course, all the above holds with D~ in place of DY.

The Cwikel-Lieb—Rosenblum inequality for optional potentials.
We can use the mini-max principle to estimate N (D +V, X) for any potential
V and real A. Accordingly, for any § > 2 with ranke(D) < § < rank.. (D),
there exists C' > 0 such that '

ND+V,N) <C [ dm(z) Ly (A — V()2
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In the case of M = G and the G-action heing right translation, we can
rewrite the above inequality in a form which associates the upper bound of
the C-L-R inequality with the growth of the Haar measure. Let us recall the
most important facts concerning the growth of Haar measures.

Let G be a locally compact compactly generated group, Let U be a
conditionally compact symmetric neighbourhood of the identity in . Let
Ur=U....-U. We define the growth function of I/ in G as

yu(n) = U™,

where |-| denotes the Haar measure. (By our preliminary assumption (F) we
do not need to distinguish between the left and right Haar measures.) Con-
sider a G-invariant metric d(-,-) on G. Let B, = {z : d(z, the identity of &)
< r} and y(r) = |B,|. The function y(r) so defined has some well-known
properties {cf. [91):

{a) for any U there exists a constant € > 0 such that

1
E'YU(”) <v(n) < Cyu(n),
forn=1,2,...,

(b) for any connected Lie group there exists a constant € > 0 such that
either

Lo < <o
C-___"}”r“_ €

(we then say that G has ezponential growth), or there exists a = 1,2, ...
such that

—é,—r“ <A(r) < Cr®
(and then G has polynomial growth of rank ),
(¢} any group of polynomial growth is unimodular.
THEOREM 2. If G has polynomial growth of rank e, then
NP +V, %) < CH{{p:9) : d(p,0)**"* + V(g) < Mfanxm,

where |+ |mywm denotes the Hoar measure on Gx G, o is the identity of G,
and § is as before.

If G is a unimodular group of exponentiol growth then

2
{0 (Faa) ) +vip <)
Proof. This is only a calligraphy. We notice that

(A= V(@) < (A~ V(2))¥/ ),

and then we use the Fubini theorem.

ND+V,\)<C

e X
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Remark. By defining
FJV(t) - !OBtlm:
we can rewrite Guivarc’h’s theory (of the growth of the Haar measure, cf.
[9]) on manifolds with a transitive unimodular G-action. A few technical

troubles are of minor importance. Thus, Theorem 2 can be formulated for
such manifolds.

The uncertainty principle. As we have seen in Theorem 1, the Cwi-
kel-Lieb-Rosenblum inequality describes the properties of the operator D
rather than theose of P + V. This upper bound does not take into con-
gideration growth properties of V more subtle than Lo/ 2 integrability of
max(V — A,0). For sharper estimates, we need to examine what properties
of the potential influence the eigenvalue asymptotics. In the case of M = i
and D = —A, we can use the Fefferman SAK-estimates (cf. [5]} to conclude
that only a subdomain of {z : V(z) < A} influences the number of eigen-
values less than A (cf. [2]). The next lemma gives us a description of this
subdomain.

Suppose that vector fields Xy,..., X, and their commutators of order
< k span the tangent space at every point z € M. Let D = — 25‘51 X7
(these are best known second order differential operators, cf. [5], [15], [17]).
Define

X=Xy ... Xy,
for an r-tuple of integers I = (i1,...,ip), 1 <i; <mforj=1,...,r. Let
iI| = r for such an r-tuple.
DEFINITION 3. We say that a smooth function V' on M is compatible

with the family of vector fields {Xy,...,X,} if there exists s € N such
that, for every = & M, there exists I = {i1,...,%,),0 € r < s, for which

Xﬂ/(l‘») 75 0.
LEMMA 3 (The uncertainty principle). Let V' be compatible with the fam-
iy {X1,..., X} Then, for every natural v and all e > 0, there exisis a

positive constant C = C{V,r,e) such that
(D+V)8,8) 2 [ dmia) (C 3 V@I - )jg(z)?
o< |<r
for every ¢ € CF(M).
Proof. Let ¥ be a compactly supported smooth function on the real line

with [ dt|¢{t)|? = 1 and [ _dt [(t)|282 = a2. On the manifold A x R,
we define a family of smooth vector fields {Y3,..., ¥,.41} by setting

v — X; for i =1,...,n,
T (1 a)Viz)d/dt for j =mn+ L
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According to our assumptions, there exists a natural s such that the vec-
tor flelds Y1, ..., Y 41 and their commutators of order < s span the tangent
space at every pomt (z,t) € M x R. Thus, we can use the Rothschild-Stein
lifting (cf. [15]} to get the estimate

(1) 1+ + &) FHD25)E > [,

where 1 = — Y741 V2 and f € C2°(M x R).
Notice that

[V, Yora] - JF113,

Y. .. [K,,YLH]---]:( XIV)( );:i

and denote by hats the Fourier transform on the added variable. Then (1)
implies that

[ dm(z) fdt (H + ) flz, £) Fla, t)

>ec f drn(z) }cdt (X1V (@))% flz, )%

=00

Hence, we obtain (cf. [12])

2) [ dm(z) fdt(ﬁ+e)f(x,t)f($,t)

—

ch dm(z) j?dt XV ()t D | £, 1))

—o0

Let ¢ € C2°(M) and f(2,%) = ¢(2)9(t). By substituting this in (2), we get

[ dm(z) [ dt(B0PDo()d() + a2V ()2 |p(@) 2 + elp(x)[2))

> e f dm(z fdiiXIV(SU)tIz/ W D16() )2 lzb(t)l

—00

which completes the proof.

Remarks. The label of Lemma, 3 is justified by the following easy corcl-
lary of the classical Heisenberg principle.

There exists a constant ¢ > 0 (depending only on the dimension) such
that
J 4o (=A@ f@) + VP @P) 2 ol [ dnf(a r>2, V(z)|.
For polynomial V, we can choose the constant in Lemma, 3 to depend
only on the degree of V and on & (cf. [3]).
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An upper bound for N(D - V2 ). Let D be the sum of the squares
of vector fields X1,..., Xn on a unimodular Lie group G. Assume the Hér-
mander condition (Lie{X; : = 1,...,n} equals the Lie algebra of G). Let
V be a compatible function on G.

DeFINITION 4. For any € > 0 and any natural k, we define

=C Z XV ()2 D),
0<|T|<k

corrg (V. z)

where C = C{e, k, V') is the maximal constant from Lemma 3. We call it the
e-correction of rank .

As previously d(-,-) denotes an invariant metric on G, and we fix some
& > 2 with rankq (D) < § < rank, (D).

THEOREM 3. If G has polynomial growth of rank o, then for any X > 0,
N(D+V?2))

< Cmiwng>0 H(p,q) : d(p,0)%/% + V(2)? + corry o (Vo 2) € 20\ + &) Homscrm

where C is a constant which depends only on D and é.
If G is of emponential growth, then

N(D+V%A) < reit (P q) - exp((2/8)d(p, 0))

+ V{2)? 4 corry o (V, 2) < 200+ &) Homxm-
Proof For A > 0 we define

9 _ ] if corrp e (V,z) > 2(A+¢€),
Az} = 1corrg (V,2) — A — & otherwise.

Hence, by using L.emma 3 we obtain
(D+V")¢,8) = (GD+3V° —02)9,¢) + (3D + V" +02).9)
> Algl* + (3D + 3VF +92) ¢, )
for ¢ € C5°. By using the mini-max principle,
N(D+ V%) < N(GD+ V2 +94,0),
and Theorem 2 finishes the proof.
An easy consequence is

COROLLARY 3. Let V be a compatible function. If for every A > 0 there
exists an r-tuple I (r an arbitrary integer > 0) such that the domoin {z :
X1V (z)| < A} has a finite measure, then the operator D+V? has a compact
resolvent,

Remark. By using the Varopoulos “analysis on Lie groups” (cf. [17]),
we can explain what ranky(D) and rank., (D) are, in the case of D being
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the sum of squares of a Hormander family on a unimodular Lie group G.
According to that paper, rank..{D) equals the rank of growth of G, if G is of
polynomial growth. Moreover, rank..(P) = oc for G of exponential growth.
To compute ranka(D), denote by K; the subspace of the Lie algebra of
G spanned by the commutators of length < j. We have Ky C ... C Ky,
where K, is the Lie algebra of G\ Let n; = dim(Kj;), j = 1,...,5. Then
ranko(D) = n1 + 2(ne — n1) + 3ng — n2) + ... + s(ny — ns_1). Hence,
rankg (D) < 2 only in the cases G =R, G = R2.

The Weyl asymptotics for the nilpotent case. Consider vector
fields X4,..., X, on a euclidian space E with dim(E) = m. Let

T

Xj= Y Aj(),
k=1

where the A; are polynomials and 8;4;; = 0 for 4 > k. Let ® = Lie{X|, ...
...y X,}. Then & is a finite-dimensional nilpotent Lie algebra. Denote the
nilpotent Lie group exp(®) by § and define the curve 4(t) = z.exptX,
x € E, X € ®, as the unique curve with y(0) = z and ¥(d/dt) = X. The
equivalence between the Campbell-Hausdorff coordinates and the triangular
coordinates ensures that the solution of this ordinary differential equation
is global and defines an action of G on E. This action is transitive if and
only if the Hérmander condition holds. Since G is nilpotent, this action is
unimodular (relative to the Lebesgue measure on E). Consider the second-
order differential operator

13
D= X2
22

If we assume the Hormander condition, then 2 is a regular Dirichlet form.
Let {P(-,-,t) : t > 0} be the kernels of the semigroup generated by D.
We call D a gquotient sublaplocian (this term is justified by the proof of
Proposition 2).

ProroSITION 2. For any quotient sublaplacian D there exists ¢ € N such
that rankn (D) = ranko(P) = g.

Proof. If anilpotent Lie group acts on F, then so does the free nilpotent
Lie group with the same step and a suitable number of free generators.
Let F be such a free nilpotent Lie group. The action of F on E defines
(in the natural way) a unitary representation of ¥ in L?(E). We denote
this representation by 7. Choose F so large that there exists a system of
free generators, {A3,...,A,}, in its Lie algebra for which w(&;) = Xj,
j=1,...,n Let L=~ 37| A} be the sublaplacian on F. Then w(£) = D.
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Now, we can use Folland’s theory of second-order homogeneous differen-
tial operators on stratified nilpotent Lie groups (cf. [7]), according to which £
is the infinitesimal generator of a convolution semigroup Ty f () = py * f(z),
where pg, £ > 0, are Schwartz functions. We define a canonical family of di-
latations, {v, : 7 > 0}, by putting ~v.{A;) = rA;. Thus, £ is a homogeneous
differential operator of homogeneous degree 2. Hence,

(1) () = 79 py (v, (),
where @ denotes the homogeneous dimension of F.

Let 0 € E, and ‘H C G be its isotropy subgroup. We can identify E
with the space of right cosets F\H. Let ¥, % be the Lie algebras of 7, H
respectively. We can decompose § as a vector space sum § = &4 ) in such
a way that v,.(6) = &. We identify F with § by the exponential mapping.
Since & is a selector over the space of right cosets F\H, it can be identified
with E. Any z € F can be uniquely represented as z = h{z)s(z) with
h{z) € H and s(z) € exp(8). Let {P(-,-,t) : t > 0} be the kernels of the
semigroup generated by D. We have

f dsP(o,os,t)f(os):w(pt)f(o)zf dhf dsp: (hs)f{ohs).

Because h € H = the isotropy subgroup of o, we obtain

Po,0,t) = [ dhp(h).
H
By using (1), we conclude that

P(o,0,t) = Ct~9/?,
where g is the homogeneous dimension of &.

Since rankg(P) = rank., (D) for any quotient sublaplacian D, we can
denote this number by rank(D).

As we have seen above, we can construct on E a family of dilatations
which is in some connection with D, but D is a homogeneous operator if
and only if we can choose o € F in such a way that its isotropy subgroup H
is homogeneous.

In the homogenecous case we can easily prove that our upper bound
gives the asymptotics for the number of eigenvalues. Let | - |, denote a
homogeneous {with respect to 7.) norm on F. Because we can identify
F with a homogeneous submanifold of F this norm is defined on £, Let
B(r,08) = {oz € E : |2s7 !}, < r}. Then there exists a constant ¢ > 0 such
that the Lebesgue measure of B(r, 0s) equals crf.

Any quotient sublaplacian is the infinitesimal generator of a diffusion
semigroup. 8o, DT = P~ in any subdomain U C E. Denote the localized
operator- by Dp. It is the same as D with the Dirichlet condition on the



124 W. Cupala

boundary AU. As previously, let Ny () denote the number of eigenvalues of
Dy less than A > 0.

LEMMA 4. There exists a constant C' > 0 such that, if ny(r) denotes the
number of balls with radius v (in the sense of the above homogeneous norm
on E) which can be packed disjointly inside U, then

ng(CA™12) < Ny ().

Proof By recalling the mini-max principle, Ni/{A) > N if we can find
an N-dimensional subspace H C L?{(U) such that

Dy, ¥) < Njl3
for 1 € H. Let ¢ be a smooth function on & supported by the unit ball with
centre at o. Let r = ¢A™Y/2. We can translate ¢ o vy, to balls with radius r
which are contained inside U. Thus, we get a family {i1,...,¥n} of smooth
functions with N = ny(r). For any 1 < 4 < 7 € N, the supports of ¢; and
9; are disjoint, and since D is a homogeneous operator,

(Duy, ;) = CAls3.
‘We can choose ¢ such that ' = 1 and the preof is complete.

The following theorem is a consequence of the previous results.

THEOREM 4. Let D be a quotient homogencous sublaplacian on a eu-
clidian space E. Let rank(D) = ¢ > 2. If a subdomain U C E has finite
Lebesgue measure, and the measure of OU is zero, then

c|UIAS2 < Ny (X)) < CUIAY?,

where |U| denctes the Lebesgue measure of U, and ¢, C > 0 are some con-
stants.
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