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On sequential convergence in weakly compact subsets
of Banach spaces

by

WITOLD MARCTISZEWSK (Warszawa)

Abstract, We condbruct an example of a Banach space E such that every weakly
compacl subset of 1714 bisequential and B containg a weakly compact subset which, cannot
he embuodded in o ilbort space equipped with the weak topology. This answers a question
of Nyikos.

1. Introduction. Let us recall that a (uniform) Eberlein compactum is
a space homeomorphic to a weakly compact subset of a (Hilbert) Banach
gpace. Bquivalently, a compact space KX s an Eberlein compactum if X can
be embedded in the following subspace of the product R

ep(I) = {a € R for every e > 0 the set {~: |z(v)| > £} is finite}

(see [No])., Every BEberlein compactum K is a Frdchet space, i.e. given a
subset X € K and a poiut 2 in the closure of X there exists a sequence
of points of X convergiug to & We will consider the following stronger
sequontial property:

We say that the space X s bisequential if for every point x and every
ultrafilter 24 converging to o there is a sequence (A,,) contained in I{ and
converging to @ (see [Mi, Definition 3.12.1], [Ny1, p. 137]). This property
is preserved by arbitrary subsets (see [Mi, Proposition 3.1.3]). Every uni-
forme Eberlein compaetum of cardinality smaller than the first uncountable
meastrablo cardinal is bisequential. There are also examples of bisequential
Eberlein compacta which are net uniform. Nyikos gave an example of an
Eherlein compaetinn X of sige w) which is not bisequential (see [Ny2]; the
siine consbruckion was nded for different purposes by Leiderman and Sokolov
[L.S, Example 5,8]). He asked if there exists a Banach space such that every
weakly compact siubset of it is bisequential, but not every weakly compact
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subset is uniform Eberlein compact. In this note we give an affirmative an-
swer to this question.

1.1. EXAMPLE. There exists a Banach space E such that cvery weakly
compact subset of E is bisequential and E contains o weakly compact subset
which cannot be embedded in o Hilbert space equipped with the weak topol-
ogy.

Our construction uses another clags of compact spaces which is also re-
lated to Banach space theory—the class of Rosenthal compacta, i.e. compact
spaces which can be embedded in the space By (X) of the first DBaire class
functions on a separable completely metrizable space X endowed with the
pointwise topology (see [Ne, Section 1] and [Go}}. Let us recall that a func-
tion f : X — R on a separable metrizable space X is of the first Baire
elass if f=1(U) is an F,-subset of X for every open U C R. All Rosenthal
compacta are Fréchet spaces [BFT, Theorem 3F] and Pol refined this result
by proving the following:

1.2. THrROREM (Pol). Fvery separable Rosenthal compactum is bisequen-
tral.

The proof of this theorem is unpublished, but it is based on ideas similar
to the proof of a special case given in [Po, §3, Remark B].

In the next section we will give an example of a nonuniform Eberlein
compactum K which can be embedded in a separable Rosenthal compactum
and in Sec. 3 we will use this example to construct the Banach space F
from 1.1.

2. Nonuniform Eberlein compact space K. Let us set up the nota-
tion which we will use in this section.

By 2" we denote the set of functions from {0,1,...,n — 1} into {0,1},
n € w, and let V; = {z € 2¥ : z|n = s} where z|n is the restriction of
a function = : w — {0,1} to the set {0,1,...,n —~ 1} and s € 2™ The
open-and-closed sets V;, for s € 2™, n € w, form the canonical base of the
Cantor set 2¢,

Given a set X we denote the family of all subsets of X of cardinality < n
by [X]S™. For a subset A of X let x4 : X — {0,1} be the characteristic
function of A.

We will construct an Eberlein compact space K with the following prop-
erties:

2.1. ExXAMPLE. There exists a nonuniform Eberlein compact space K
whach can be embedded in o separable Rosenthal compact space L.

Let us point out that all Eberlein compact spaces of weight less than
or equal to continuum are Rosenthal compacta but not all of them can
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be embedded in separable Rosenthal compacta. Namely, let X be Nyikos’
example of an Eberlein compactum of weight w; which is not bisequential
{see Sec. 1). From Pol’s result 1.2 it follows that X cannot be embedded in
a separable Rosenthal compactum. The situation is different for the class of
uniform compacta:

2.2. PROPOSITION, EBvery uniform FEberlein compactum of weight less
than or equal to continuum cen be embedded in o separable Rosenthal com-
pactum.,

Proof. Since every uniform Eberlein compactum of weight less than or
equal to continuum can be regarded as a subset of the closed unit ball B of
the Hilbert space 1o(2¥) it is enough to prove our assertion for B. The weak
and pointwise topologies coincide on B, therefore we may consider B as a
subset of R?”. For every n € w we define the following subsets of R?":

On:{ ZtsxVS:t;,ERand thﬁl},

Elpad gE2AN
D'n:{ZQ'sXVa:Q'EE@aHd Zﬁgl}a
ag2n SE27

where Q is the set of rational numbers. One can easily verify that X =
B U U,y Cn is & compact subspace of B1(2¥) and I = [J,e, Dn is a
countable dense subset of X. m

Now, we proceed with the construction of the compactum K of Example
2.1. Let

A= UV and K={xa:4eA}<{0,1}*.

nEw sE2A™

Then K is a compact subset of cg{(2*). We will prove that K is not a uniform
Eberlein compactum. By a result of Argyros and Farmaki [AF, Theorem 1.7,
Corollary 1.9] (see also (LS, Theorem 4.9]) it is enough to show that for every
partition 2% = U,l-_ew T. there exists an 4 € w such that T} contains elements
of A of arbitrarily large finite cardinality. From the Baire Category Theorem
it follows that there is an 1 € w such that 7T} is dense in V; for some s € 2%,
k € w. For every n € w, n > k and ¢ € 2" such that #k = s the set V, NT;
is infinite. Obviously, every A C V, N7T; of cardinality » belongs to A.

Now, we will define the required separable Rosenthal compactum L con-
taining K. Let

B=J U Umu.. .uv, ¥ <n)lt: €2 and tifn =5[]} and
nEw IET b>n

D= {xp:BeB}C{0,1}*.



192 W. Marciszewski

One can easily check that the space L = KU D & {0, 132 N By (2¢) is
compact and D is a countable dense subset of L consisting of continuous

functions on 2¢.

3. Construction of the Banach space E. In this section we will
use the Rosenthal compactum L from Example 2.1 and the well-known
factorization technique of Davis, Figiel, Johnson and Pelezyiiski [DINJP] to
construct a Banach space F with the properties required in Fxample 1.1.
Part of our reasoning follows closely an argument given in [Ma, Remark 6.2]
but for the reader’s convenience we will include it here.

For a Banach space X we denote by By the closed unit ball of X.
The weak and weak* topologies in X and X* are denoted by w and w*,
respectively.

Let K, D and L be the spaces constructed in Section 2. Let —I) = {~f:
f €D} CO(2°) and let W be the convex hull of the union D U ~12 in the
space (G(2¢)} equipped with the standard supremum norm. Let || - ||, be the
Minkowski gauge of 2"W + 27" Bg(guy in C(2¥), for n = 1,2,... For every
function f € C(2¥) we define

st = (1)

The space F' = {f ¢ C(2¥) : [|| fll| < oc} endowed with the norm ||| ||| is
a separable Banach space (see [DFJP, Lemma 1}). We define E = F**,

First, we will show that the ball By equipped with the weak* topology is
a separable Rosenthal compactum. Therefore every weakly compact subset
X of B ig bisequential. Indeed, without loss of generality we may assurne that
X € Bp. By the weak compactness of X, the weak and weak* topologies
coincide on it. By Pol’s result 1.2, { B, w*) is bisequential; hence so is X.

Let BT (2¥) be the subspace of By (2*) consisting of bounded functions
and let ¢ : BY(2¥) — C(2“)** be the linear embedding defined by

iy = [ fdu for f e BY2Y), we )"

Obviously, i|C(2*} is the canonical embedding of C'(2¢) in C'(2¥)**. We will
show that ¢(W) is relatively sequentially compact in (C(2¢Y**, w*). Let M
be the closure of W in R?". We have W C conv(—L U L); therefore [BFT),
Theorem 5E| yields that M is a compact subset of B3 (2%}, From the fact
that M is a Fréchet space (see Sec. 1) and from the Lebesgue Dominated
Convergence Theorem it follows that the map ¢ embeds M homeomorphi-
cally in (C'(2¥)**,w*). Since every sequence of points of W has a subsequence
convergent in M, it follows that ¢(WW} is relatively sequentially compact in
(M) C C(2¥)**. Now, by [DFJP, Lemma 1(xii)] the canonical embedding
F — F* = F maps the ball Bp onto a relatively sequentially compact
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subset of (&, w*). From [Ne, Theorem 1.19] it follows that F does not con-
tain an isomorphic copy of I, and a theorem of Odell and Rosenthal [Ne,
Theorem 1.17] yields that (Bg,w") is a separable Rosenthal compactum.

Second, we will verify that the space (E, w) contains a copy of the nonuni-
form Eberlein compactum K.

Let j : F — C(2¥) be the inclusion. By [DFJP, Lemma 1(iii)] the map
e FPo= B — C(2¥)** is injective. Using the same argument one can
prove that j**** ; B — C(2%)**** i3 also one-to-one. We will use the
following simple fact (cf. [DFJP, Lemma 1(vii)]):

3.1. LeEMMaA, Let X and Y be Banach spaces and T : X — Y be o
continuous linear map such that the second conjugate map T** : X*™ — Y**
ig injective. Then T'|By is a homeomorphic embedding of (Bx,w) in (Y, w).

Proof. The unit ball Bx«« is compact in the weak* topology; therefore
T™* embeds homeomorphically {Bx»+,w*) in {Y**,w*). One can easily ob-
tain the desired conclusion using the canonical embeddings of X and ¥ in
X** and Y™, respectively. m

By the above lemma it is enough to check that (7**(Bg),w) contains a
copy of K. The set j**(Bg) is the weak* closure of i(Bg) in C(2“)** (cf.
[DFJP, Lemma 1(iv)]. One can easily compute that ||| f||| < 1 for f € W,
hence W C Bp. It follows that j**(Bg) contains ¢(M), a copy of M, and
therefore also the corresponding copies of K, L C M.Tt remains to show that
i|K is a homeomorphic embedding in (C(2*)**,w). We have K C ¢o(2¥).
Observe that i[co(2*) is an isometry of g (2%) equipped with the supremum
norm into C(2*)**. Hence (i(K),w) can be identified with K considered as
a subset of {¢g(2%), w). It is standard that the weak and pointwise topologies
coincide on norm hounded sets in ¢q ().
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On vector spaces and algebras
with maximal locally pseudoconvex topologies

by

A KOKK (Tartu) and W. ZELAZKO (Warszawa)

Abstract. Let X be a real or complex vector space. We show that the maximal
p-convex topology makes X a complete Hausdorff topological vector space. If X has an
uncountable dimension, then different p give different topologies. However, if the dimension
of X is ab most countable, then all these topologies coincide, This leads to an example
of a complete locally pseudoconvex space X that is not locally convex, but all of whose
separable subspaces are locally convex. We apply these results to topological algebras,
considering the problem of uniqueness of a complete topology for semitopological algebras
and giving an example of a complete locally convex comimutative semitopological algebra
without multiplicative linear functionals, but with every separable subalgebra having a
total family of such functionals.

Let X be a real or complex vector space. A p-homogeneous seminorm on
X (0 < p < 1) is a non-negative function z — [jz||, z & X, such that

(i) [Jof] = O,
(i) Jiz + il <zl + |y|| for all z,y € X, and
(iii) |Az|| = |A[P||z]| for all z in X and all scalars A.

The inequality (u+ ) < w? +v?, 0 <p <1, uv = 0, implies that
if ||%]| is a p-homogeneous seminorm on X, and 0 < r < 1, then lz]|” is &
pr-homogeneous seminorm on X. ‘

A topological vector space X is sald to be locally pseudoconver if its
topology is given by means of a family (|| - [} of p(a)-homogeneous semi-
norms, 0 < p(e) £ 1. For more details on locally pseudoconvex spaces the
reader is referred to [2] and [4]. :

Let X be a vector space and 0 < p < 1. The mazimal locally p-conver
topology T2,, on X is the topology given by means of all p-homogenecus
seminorms. It is a Hausdorff vector space topology. For p = 1 it is the

maximal locally convex topology on X. In this case we denote it by Tfl;gx
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