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Volume approximation of convex bodies
by polytopes—a constructive method

by

YEHORAM GORDON (Haifa), MATHIEU MEYER (Paris),
and SHLOMO REISNER (Haifa)

A_bstr‘act. Algorithms are given for constructing a polytope P with n vertices {facets),
contained in {or containing) a given convex body X in R?, so that the ratio of the volumes
[K\ P|/|K| (or [P\ K|/|KT) is smaller than f(d)/n2/(4-1),

1. Introduction. This paper deals with constructive approximation of
general convex bodies by polytopes, in the volume-difference sense. Specif-
ically, given a convex body (compact, convex set with non-empty interior)
K in R¢, we intend to construct a polytope P contained in K (or containing
K) so that the quotient of volumes

K\P| [ IP\K]
(L w ()

wili be small. (The notation |A| for a measurable subset A of R% is used
here to denote the k-dimensional volume of A, where k is the dimension of
the minimal flat containing A.}

There exists a large body of results concerning approximation of convex
bodies by polytopes. We refer the reader to the surveys [5] and [6] by Gruber
for information on this subject.

It was proved by Bronshteln and Ivanov [2] (cf. also results by Dudley
(3] and Betke and Wills [1]} that for any convex body K contained in the
Euclidean unit ball B§ of R and every sufficiently large positive integer n,
there exists a polytope @, containing K, with at most n vertices, whose
distance from K in the Hausdorff metric is less than ¢/n?/{4=1) where ¢ is
an absolute constant. It is easy to check that the proof in [2] provides also
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Key words and phrases: convex bodies, polytopes, approximation.
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in the Technion and by the VPR fund.
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a polytope P contained in K with the same properties. This easily implies
the existence of polytopes P, @ with P ¢ Bf C Q, each of them with at
most n vertices, such that

Bf\ P| d
(1.2) B < Cn2/(d—1)’

@\ le d
(1.3) i Gn2/(d—-l)

where C is an absolute constant.

A theorem of Macheath [9] asserts that for a convex body K and for
given d and n, inf(|K \ Pp|/|K]|) is largest for K = Bf, where P, ranges
over all polytopes with at most n vertices contained in K. From thig it
follows that in {1.2), B can be replaced by any convex body K. On the
other hand, an application of the well-known fact that for some ellipsoid
E we have E C K C dE, together with the result of [2], enables one to
replace BS in (1.3) by any convex body K, with the bigger upper bound
cd? n¥/(@D),

The method employed by [2] is to find an -net on the unit sphere in R%.
Other, probabilistic, methods give the same estimate (cf. [10]).

In this paper we bring a constructive method which enables one to con-
struct polytopes contained in and containing a convex body X in R¢, using
a well-defined algorithm in some of the cases, and “almost” well-defined
in others. These polytopes give the degree of approximation of K, in the
sense of the quotient (1.1), of the same order as (1.2) and (1.3) for the
Euclidean ball and for other particular convex bodies. For general convex
bodies the method works only for inscribed polytopes and gives the upper
bound ed? /n?/(d-1)

It is worth mentioning that the estimate of the form f(d)/n?/(4~1) is
best possible (for the power of n involved) in general. Moreover, recently
Gruber [8] proved, for X smooth enough, the asymptotic behaviour in n
of [K'\ P| and |Q \ K|, where P C K C @ are the best volume-difference
approximating polytopes, P with at most n vertices and ¢ with at most n
facets. The power of n in these estimates is, of course, ~2/(d~ 1). The exact
order of growth of f(d) seems to be unknown yet.

In [7] and [8] Gruber gave another algorithm to construct a volume-
difference approximating polytope, contained in a convex body of class C*
with positive curvature; Gruber’s algorithm gives the right order of approxi-
mation in terms of the number of vertices. It depends on knowing the surface
structure of the body.

The notations used in this paper are quite standard. We mention some
of them in particular. We have introduced above the notation || for volume.
The kth standard unit vector in R¢ is denoted by ey. The Euclidean unit
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ball in R? is B§ and more generally, for 1 < ¢ < oo, BY is the unit ball of
the normed space £3:

d d : 1a
(14) By ={oe Rz, = (3 lealt) <1},

i=1
We set ya = |B§|. If K is a convex body in R? and ¢ € R then
(1.5) K(t)={e=(21,...,25) € K 124 =1}

is a (d — 1)-dimensional (if with non-empty relative interior) section of X,
perpendicular to the mg-axis. By a “polytope” we always mean a convex
polytope.

Finally, symbols like C, ¢, ¢1, ¢2 ete. always denote absolute constants.
The same symbol may denote different constants in different paragraphs or
even in different parts of the same paragraph. No effort to find the best
possible constants or even “good” constants was made here, although the
constants obtained by the method are relatively small.

2. Volume approximation of the Euclidean ball. In this section we
give a constructive algorithm to produce a convex polytope P C B which
has at most n vertices and satisfies

|B§\ P| d

(2.1) B < G

where (' is a constant independent of d. A special property of the polytope
thus constructed is its high degree of regularity. The proof of Theorem 2.2
contains the construction algorithm, We shall need the following proposition
which may be of some interest for its own sake.

ProrosiTiON 2.1. For every p 2> 1 there exists an integer ng = ng(p)
such that for every integer n > ny there exists a piecewise linear function g
on {0, 1], with m nedes, m < 2n, located on the circular are y = /1 — 22,
50 that
1 e 1

(2.2 J A =22 ~ glay}as < =5 [ (1 o*P/Pda
0 0

where ¢ is @ constant independent of p.

Proof. The case p = 1 is trivially done by the regular division of the
circle. If g is a decreasing function on [0, I} with g(0) =1, (1) = 0, then

1
f{lwm YP/2 g P}dm—-pftp ML= t2 - g7 ()} dt.
0
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Moreover, g~ is piecewise linear with m nodes on the circular arc if and
only if so is g. As fol (1—z2)?/2 dw: ~ ¢1//B, proving the proposition amounts
to showing the existence of a piecewise linear h with m nodes on the circular
arc such that

1
(2.3) PR [ {Vi-2—ht)}dt < n—pz
0

Let & be an integer whose feasible values will be determined later. Let
0=g <q <q < ..<qgy < s = P be an increasing sequence
with members to be determined. Fix the points Q; = (¢;,v1 — t'_,?.), j=
0,...,k+ 1, on the circular arc by £; = 1 — ¢;/p.

We divide each circular arc between ¢; and @, into I; equal circular
arcs, with I; = [n/e’] + 1. This gives a partition of the positive quadrant of
the circle into m = Iy + ... + I circular arcs, the end-points of these arcs
will be the nodes of the function h.

Let ¢, = arccost;. By estimating the area of I; equal circular sectors we
get

f FHVLI—12 - h(t)} de < £87 jf {V1~t2~h(t)}dt

i1 tid1
~1 w ]
B e = 95) el
= P - 2
1217 120
We have
e o N 3/2
tﬁ_l = (1 - _l) <e'% and tpf,"’ = arccos® (1 - i) < e (‘_19_)
P P k

so, taking into account the values of I;, we get

(2.4) p*/? fl V1 -2 - h(t)) dt
0

i , 0o -
<SR 4 P g g2 /2 2y,

We now define ¢; by

(2.5) @ = 3k + 3 log p,

thus p3/2e3%~% = |, we assume that g, < p and to define q_q1 we require
that gy/*e3(+=1)=0k-1 = 1, which together with (2.5) gives

(26) - k-1 =3(k — 1) + £ log (3k + £ log p).
The assumption g < p implies that Qo1 < Gk
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This procedure produces a decreasing sequence (g;) which satisfies
@2.7) P00t 21 fora<j<k
and
(28) @1=3+3log(3-2+8log(3-3+...4+ (3(k-1)
+~g— log (3k + -g- logp))}...).

It is standard to see that there exists a constant L (< 7), independent
of p, such that ¢, which is obtained by (2.8) satisfies ¢; < L provided that
k > ko. The value of kg is of the order of $(logp) where

$(z) = min{j € N:logW(z) < 1}
(log(j ) is the jth iterated logarithm). We may assume that p is such that
(2.9) ko < §p~ logp
(
(

see the next Remark). Taking k = kg in the construction of h, we get, by
2.7), (2.8) and the remark following it,

1 —_—
P4 Jtp*l{m_h(t)}dts cg(L%/2 +nge~1) 3}

The number of nodes of A is

k
m=1+Y Li<nl+e—1)"+k+1
j=0

soif n > ng(p)={(1+ky)/(1—{e—1)"') weget m < 2n. m

Remarks. a) If p is small, (2.9) may not hold, But by applying the
method used above, with an appropriate division of [0,1] into two parts
only, and then subdividing sach part into n subintervals associated with
equal angles, we get

3/2

1
p . ' c(lo
P2 [ 1= - h()} dt £ —(——%Lw—.
i
As thig is needed only for a finite number of values p, Proposition 2.1 remains
true.

b} The estimate ¢/n? in (2.2) is the best possible. There is a positive
constant ¢ such that if g is a piecewige linear function with n nodes on the
curve y = v1 =22, 0 < 2 < 1, then

1 1
J A a2 - glayh o 2 5 [ (1=2")"da.
0 0
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The argument is as follows: Let h = g™ and assume that h has n nodes
of the form (¢, v/1 ~ t2), of which m satisfy 1 — 1/p <t < 1. Since the best
approximation is given by the regular division of the circular arc, it follows
that
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1

1
f {V1-t2—h(t)}dt > }—21—2 arccos®(1 — 1/p)
1-1/p
for some positive constant ¢;. Hence

1 3/200(1 — 1 fg)P—ip—-8/2 ,
P [ VIZE —h()}dt 2 P ca mép) L > ;‘15
1-1/p

It is explained in the introduction how the estimate of the following
theorem on the degree of approximation of B by inscribed polytopes can
be deduced from the result of [2]. Our proof, however, defines a constructive
algorithm which produces the approximating polytope.

THEOREM 2.2. There exzists a constant C such thal for every positive
integer d and every integer n > ny(d) it 13 possible to construct o polytope
P, contained in the Buclidean unit ball B§ of RY, which has at most n
vertices and satisfies

Bi\ Py _
B = e

Moreover, if n is large enough with respect to d, then the polytope P, can
be consiructed to have at mostn facets (= (d - 1)-dimensional faces).

(2.10)

Proof. For ¢ > 0 and a positive integer m, let A, (g) be an integer, as
small as possible, such that we can construct an m-dimensional polytope
P C Bf* with at most An(e) vertices satisfying |BJ* \ P| < ¢|BJ|. By
Proposition 2.1, for a given positive integer k we can find points tg = -1 <
tr <... <ty = 150 that if g is the piecewise linear function on [~1, 1] with
nodes (t;, /1 —%7), then

1 1
(2.11) [ =3y"2 ~ gy} dt < -]?2- (1 - £2ym/2 gy,
-1 -1

For 1 <4 < k-1, B**(t,) is a Euclidean ball of radius g(ty) = /T— 2.
Given § > 0 assume that we have constructed polytopes P; C B§”+1('£i),
L <4<k —1, with at most Ay (8) vertices, which satisfy

(2.12) [P 2 (L= ) B+ ()] = (1 - 6)g(t:)™ Xom.-
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Let P be the (m + 1)-dimensional polytope defined by

P = conv ({—8m+1} U{emer} U blﬂ)

'l:wl

Clearly, P is a polytope contained in BY*™ and for ; < t < t;41 we have,
by (2.12) and the Brunn-Minkowski theorem,

(2.18) P2 (1~ xmo(t)™,

hence

1
(214) lB'm-H. \P| S Xom. f {(] - t2)m/2 — (1 - 6)g(t)m}dt
-1

1
1 m c1
< (?55”)"”_{ (1~ t3)y™/2 df == (}-6-5+5)|B;"+1|.

Given & > 0 let k = [\/ 1 /E] 4 1. The above polytope P, constructed
using this &, has at most A\, (8)k vertices. By (2.14) we have |[BF*1\ P|
< (g + 6)| By, hence

(2.15) Ama (e + 8) < 24 /%—Am(é") = %)\m(@.
Let 7 > 0 be given. By (2.15) we have

~1/2 ‘
s <ea(78) danalld—2m/a- )

; -1/2
<d(zlm)  Meal@-9m/E-1) <.

Using the fact that Ag(n/(d ~ 1)) < e1(n/{d — 1))~/2 we get

d=Y(d — 1)(@~1)/2
f\d(n) S 2 n('d__:l)/z

Set n = Xy(n). We have constructed a polytope P, with at most n
vertices such that |BE\ P,| £ n|BE| and -
2
5 (d — 1)
nS aE
This completes the main part of the proof.

For the “moreaver” part, agsume that n is large enough compared with
d, which means that 7 is small enough. At each step of the construction,
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taking
k=1

P = conv ( U Pz,;)
iw=1

and neglecting the points &em41 will not change the estimates of the volume
difference or the number of vertices. Now, at cach step we can have all the
sectional polytopes P; homothetic. Then the number of facets of the (m--1)
dimensional polytope P is Am(6)(k — 1) -+ 2; this is less than the estimate
A (6)k which was obtained for the number of vertices. As the numbers of
vertices and edges in the 2-dimensional sections are identical, it follows that
the number of facets of P, is less than the namber of ity vertices.

Remarks. a) A word is in order concerning the size of ny{d). In the
above process, for n = ed/n?9~1) we chose ¢ in the recursive process to
be & = n/{d — 1) ~ ¢/n¥ @1 and the integer k, for which we applied
Proposition 2.1 at each step, was chosen to be k = ¢/+/e ~ ent/{4-1) But k,
if used in Proposition 2.1, must be at leagt ng(m), so we get the requirement

(2.16) n > no(d)?

where ng(d) is, by the proof of Proposition 2.1, of order $(logd), that is
“almost” a constant, Now, clearly, the size of the estimate cd/n2/{?=1) makes
values of n smaller than the estimate {2.16) meaningless for large d.

b) It seems to be unknown at the present moment whether the depen-
dence on the dimension of the right hand side of (2.1) can be improved.

3. Volume approximation of a general convex body. If X is a
convex body in R?, a polytope P with at most n vertices can be inscribed in
K and satisfy the same volume-difference estimate (2.1), with B§ replaced
by K. The constant ¢ there is independent of the body K. This result follows
from a result of Macbeath [9], according to which the value of

o i SN Pl
QU= Zin T

is maximal for K = Bf (where B, ranges over all polytopes inseribed in K
with at most n vertices). However, this estimate, which is based on successive
Steiner symmetrizations which increase Q{K), does not give any algorithm
to construct the approximating polytope. In dimension 2 this result (or
rather a more accurate upper bound to Q(K)) is known ag the Sas theorem
[11]. It is proved by a method which is “partially constructive” (cf. [4], p. 36).

We bring here a proof of an estimate of the form (2.1) for a general
convex body K. This estimate is again of the form f(d)/n? (¢~%) which is
best possible in general (cf. [5], [6] and [8]). Our method gives ad®/n?/ (41
instead of ed/n% 41 But it provides a “partial algorithm” in the sense that
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at each of d — 1 steps we need to approximate only 2-dimensional convex
figures {concave functions) by polygons (piecewise linear functions) and the
rest is a well-defined procedure, provided that the volumes of sections of K
of different dimensions are known,

LeMMA 3.1, Let f be a non-negative, decreasing concave function on the
interval [a,b]. For every p > 1 and positive integer k, there exists a piecewise
linear function g on [a,b], with at most k nodes, all of them on the graph
of f, which satisfies

b b
1) J ey ~g@prae <% [ fopds

where ¢ is a constant independent of f or p.

Proof. By changing scale we may assume that [e,b] = [0,1] and f(0)
= 1. We clearly have

(3.2) F(2)? — g(2)? < pf(0){f(z) — 9(z)} = p{f(z) — ¢(z)}.

Using the Sas theorem we can find a piecewise linear g with at most k
nodes on the graph of f such that

1 1
(3.3) [ U@ -ge}da< 5 [ f@)da.
0 O

This g safisfies (3.1). In order to show that, we only need, by (3.2) and
(3.3), to compare fol flz) dz with fel f ()P dz. Now, since f is concave and
0< f<F(0) =1, we have f(z) 2 1 —z on [0,1]. So

t 1 1 &
Jf(m)pdmZmzmoff(m)dm

(with a little more effort one can obtain fGl flz)de £ ((p+1)/2) fol f(z)? dz,
which is the best estimate for this comparison). m

THEOREM 3.2. There exists o constant C such that for every positive
integer d and an integer n > 2d and for every conves body K in R, it is
possible to construct o polytope P, contained in K, having af most n vertices,
which sotisfies

[\ Py d?
K[ = REEn

Remark. The meaning of “possible to construct” was explained at the
beginning of this section.

(3.4)
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Proof of Theorem 32. For £¢ > 0 and m a positive integer, let
Am(€) be an integer, as small as possible, such that for every m-dimensional
convex body K it is possible to construct a polytope P ¢ K with at most
Am(€) vertices satisfying |K \ P| < ¢|X]. Let K be an (m + 1)~dimensional
convex body. Define f on the interval [e,b], a = min{t : K{¢) # 0}, b =
max{t: K{t) # 0}, by f(t) = |K (t)|1/™. By the Brunn-Minkowski theorem,
f is concave. Given a positive integer k we define, using Lemma 3.1, points
to=a <t <..<t,=>bsuchthat f and the piecewise linear function g
on [a, b], whose nodes are (24, f(%;)), satisfy (3.1).

In each of the m~dimensional convex bodies K (¢;) we inscribe a poly-
tope P, with |K(t;) \ B < §|K(t;)| and with at most Ap(8) vertices. An
argument identical to the one in the proof of Theorem 2.2 now shows that
P = conv(|Ji_, P,) is contained in K and

2
K\Pl s (G )KL
This gives
C cpm
55) e +8) < 2my[SAn(6) = L0 6).

As before, (3.5) implies
ef M d ~ 1)-D/2(d — 1)

Aa(n) £

- n(d*l)/2
and the substitution A4(n) = n gives
ca(d - 1)°
M= eja-n "

4. Volume approximation of the unit ball of £ (1 < ¢ < o).
The method of approximation in the volume-difference sense, of a general
convex body K, which waa described in Section 3, can be improved if K
is given explicitly and has some nice properties. First, the algorithim may
become completely defined. Secondly, the dependence on the dimension of
the estimate may be improved and the polytope obtained by this procedure
may become more regular if the body K has some regularity properties. In
particular, if at each step of the process, the approximating polytopes in the
parallel sections are all homothetic, then the final approximating polytope
can be made to have not only at most n vertices, but also at most n facets.

In this section we treat ag an example the unit balls of the normed spaces
£ (1 < g < o), i:e. the convex bodies BZ. Here all the improvements
mentioned above are obtained. In the discussion which follows we fix 1 <
g < oo, The next lemma is elementary and we omit its proof.

icm
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LemMa 4.1 For 0 < a < 1 let D, be the triangle in R® bounded by
the lines: () z = 1, (ii) the line through the points (1,0) and (1 — a,
(1— (1—a)T)H9), (iii) the tangent line of the curve y = (1— 2911 through
the point (1 — o, (1 = (1 — a))V9). Then |Dgy| < cal¥™V/4, where ¢ is a
constant independent of q.

The following lemma is an extension of Proposition 2.1. We only sketch
its proof which is basically the same as the proof of Proposition 2.1, but not
as smooth.

LeEMMA 4.2, For every p > 1 there exists an integer ng = no(p) such that
for every inleger n 2> ng there exists a piecewise linear function g on [0,1),
with . nodes, m < 2n, located on the arc y = (1 — 2949, 3o that

1
I R L Of (1 — 297/ dg

where ¢ and na(p) are independent of q.

Proof. Using the same transformnation as in Proposition 2.1 and the
fact that
1 .
f (1 — 29 dy ~ cp~ /e
0
we only have to show that

. .
(4.2) plati)/a f =11 — 19 — h(8)} dt < n_cz
0

for some piecewise linear h(t) with nodes on
Iy={t1-tY9):0<t <1}

Let an integer k&, numbers 0 < g1 < g2 < ... < ¢ < 0, @5, t; and I; be
as in the proof of Proposition 2.1 (to be determined). For j =0,1,...,k let
E; be the domain in R? which is bounded by I'; and the line through the
points (£541, (1~ 9,,)1/9) and (¢, (1 —t])*/%). Using the Sas theorem we
divide the segment of I'; with ¢;41 < t < #; into I; subsegments so that if
h is the piecewise linear function whose nodes are the end-points of all the
subintervals thus consgtructed, we have

1y
(43) J{a-a0¥a—h)}at < |5
by ' i
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Clearly, E; C Dtj+1 {cf. Lemma 4.1), so we get

(44 JF - nias< z #(%)

i1
The rest of the proof is exactly the same as in Proposition 2.1, replac-
ing 3/2 by (g + 1)/q, of course; all the constants involved are bounded,
independent of g. m

(g+1)/q

‘We substitute Lemma 4.2 for Proposition 2.1 in the proof of Theorem 2.2
to get:

THEOREM 4.3. There exists a constant C, independent of ¢, such that
for every positive integer n > ni(d) i is possible o construct o polytope
P, ¢ B with at most n vertices satisfying
| BEN Py d

B =D

(4.5)

Moreover, if n is large enough with respect to d, then the polytope P, can
be constructed to have at mogt n facets.

5. Volume approximation of a convex body by polytopes con-
taining it. The method developed in the previous sections for constructing
a polytope contained in a convex body K, which approximates it in the
volume-difference sense, does not work in general if we wish to construct an
approximating pelytope which contains K. The cases for which the method
does work are those when there exists an orthogonal coordinate system in
R? and an enumeration of the coordinate axes, say %i,...,ZLq, 50 that for
each 2 < m < d—1 all the m-dimensional sections parallel tothe z1,...,Zm
axes are homothetic. Then we get the same estimates. We sketch in this
section how the process works in these cases. For demonstration we chose

once again the unit balls BY of £4, 1 < g < oo (including the Euclidean
ball).

PROPOSITION 5.1 Let fy(z) = (1 — a4 1 < ¢ < oo, For every
p 21 and n = ny(p), there exists o piecewise linear function g on [0, 1] with
m < 2n nodes such that all the edges of the graph of g are tangent to the
graph of fg, g(0) =1, g(1) = 0 and

. 1 ]
(51) [ oy - seryan s ij(m)pdw

with a constant ¢ independent of q or p.

Proof. We sketch the proof for ¢ = 2 and remark on the modification
for g # 2. If we divide a cireular arc 0 < o < /2 into n > 1 equal

icm
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circular arcs to produce a polygon P whose edges are the tangents of B2 at
the end-points of the division arcs and the radii bounding the sector S(a)
associated with <, then

@ cya®
2 P\ S(a)|=n{ tan— - — ) < 2.
2 1P\ 8o = nf tan - &) < 98
We now divide the interval [0, 1] exactly as in Proposition 2.1. We construct
a plecewise linear function & with the points (;, fa(¢;)) as points of tangency
of the edges of the graph of h with the graph of f;, and use (5. 2) to estimate

2 f MG — Falt)) it

In the case ¢ # 2 we lmltate the proof of Lemma 4.2 rather than Propo-
sition 2.1. Instead of the Sas theorem we use here known estimates of area-
difference approximation of convex figures by polygons containing them (cf.
eg [4], p. 39). m

THEOREM 5.2. There exists o constant C such that for every 1 < q <
co and every integer n > ny(d), it is possible to construct o polytope P,
containing Bg, with at most n focets, such that

i

P NBg| o d

|Beqi| = T A/ (d-1)
Moreover, if n is large enough with respect to d, then the polytope P, con
be constructed to have at most n vertices.

(5.3)

Proof Werepeat the recursive procedure, with a variation. Assume that
we can produce the approximating polytope for B*. The m-dimensional
Bectlons of B>t are B4t} = f,(#) BT, We choose ‘division points (¢;),1 =

..k, by Propo&utlon 5.1. Let P be the approximating polytope containing
B;", with
[P\ B < 8| Bg*.

Fori=1,..., k we approximate ,Bm‘*‘l( +) by fo(t;)P. Each (m—1)-face
of fo(t:) P supports By (t;) and hen(:e B+ at a single point. We extend
cach such face to an m—clum,mlona.l fat supporting B;”’“. Let P be the
(m + 1)-dimensional polytope whose m-dimensional faces are contained in
these flats (including the supporting flats at dzem+.). Clearly, P contains
B”"H If g is the function given in Proposition 5.1 (extended symmetrically

[ 1,1]), then, by homothety of the sections, the m-dimensional sections
of P are B(t) = g(t)P, so

1 1
(54 \B\BY=|P| [ 9@ do—|BY| [ file)"
-1 ~1



@
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< |BP| [ {g@)™ - fo(z)"} du+ 6|P)

< (fi +6(1 + 5)) 1B

L2
With notations analogous to those of the previous proofs, (5.4) is written
¢
(55) Am-l“l. (5 + 52 + 6) = W\/"E’\Hb((s)

Let 7 > 0 and assume i < (2(d—1))~1. For £ > 0 we define an increasing
sequence (m;), 7=1,...,d, by m =0, mz = ¢,
(5.6) i+l ='T7j2-+’.'?j-|-8, i=3,...,d—L
It is clear from the construction that there is a unique € > 0 such that
ne = 1. By (5.5), (5.6) and the known estimate for Ag() (here, for polygons
containing 2-dimensional figures), we have, with this e,
i1

(57) M) € Shama o) S - S ik
Also,
d—1 [ 2N
n=3 (Mp—n)=c+ Y (m+¢e) < (d—2n* + (d — Le.
i=1 =2

By the restriction on n we get € > n/2(d —1). Together with (5.7) this gives
Cg—l(d - 1)((1-—1)/2

pld-1)/2 !
which, as in the proof of Theorem 2.2, proves the theorem. Here the assump-

tion 7 < (2(d — 1))~* implies the restriction n > cd? for some constant ¢,
but smaller values of n are not very meaningful in the estimate (5.3). »

(5.8) Aan) <
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