289 D. Zagrodny

[4] F. H. Clarke,. COptimization and Nonsmooth Anaclysis, Wiley Intorscience, New
York, 1983.

[5] R. Correa, A. Jofré and L. Thibault, Characterization of lower semicontintous
convez functions, Proc. Amer. Math. Soc. 116 (1002), 67-72,

[6] K. Deimling, Nonlinear Functional Analysis, Springer, Berlin, 1985,

[7] R.B.Holmes, Geometric Functional Analysis and ity Applications, Springer, New
York, 1975.

[8] A D.loffeand V. M. Tihomirov, Theory of Butremal Problems, North-Holland,
Amsterdam, 1979.

3] R. R. Phelps, Conven Punctions, Monotone Operntors and Differentiobility,
Springer, Berlin, 1989.

[10] C. Pontini, Solving in the effirmative o confecture about a limit of graedients,
J. Optim. Theory Appl. 70 (1981), 623620,

[11] T. Rockafellar, Directionally Lipschitzian functions and subdifferential caleulus,
Proc. London Math. Soc. 39 (1079), 331355,

[12] —, Generalized directional derivatives and subgradients of nonconver functions,
Canad. J. Math. 32 (1980), 257-280.

[18] —, On a special closs of conven functions, J. Opiira. Theory Appl. 70 (1891), 619~
621.

(14] -, Gonwex Analysis, Princeton University Press, Princeton, 1970.

[15] L. Thibault and D. Zagroduny, Integration of subdifferentials of lower semicon-
tinuous functions on Banach spaces, J. Math, Anal. Appl., to appear.

[16] D. Zagrodny, Approxzimate mean value theorem for upper subderivatives, Nonlin-
ear Anal. 12 (1088), 14131428,

(171 —, An example of bad conves function, J. Optim. Theory Appl. 70 (1891, 831437,

TECHNICAL UNIVERSITY OF LODY
ZWIRKI 38
00-924 LODY, FOLAND

Received January 8, 1993 (3217}

icm

STUDIA MATHEMATICA 110 (3) (1094)

Concerning entire functions in Bg-algebras
by

W. ZELAZKO (Warzawa)

Abstract. We construet a non-m-convesy nou-commutative By-algebra on which all

entire functions operate. Qur example is also a -algebra and a radical algebra, It follows
that some results true in the commutative case fail in general.

A 3()—algf:bra (.an algebra of type Bp) is a topological algebra whose
underlying topological vector space is a completely metrizable locally convex

space. The topology of a By-algebra A4 can be given.by means of a sequence
{|-|:) of seminorms such that

(1) lz}1 Slzle < ... forallzin A
and
(2) 2yl < Cilzlipilyligr forallz,ye 4, i=1,2,. .,

where C; are positive constants (one can easily have C; = 1 for all %, but here
it is more convenient to have inequalities of the form (2)). A Bo-algebra A
is sald to be multiplicatively-convez (m-convex for short) if the seminorms
(1) can be chosen so that instead of (2) we have

(3) lzyli < l2ldlyls

Note that (1) implies that if || - || is & continuous seminorm on a Bg-
algebra A, then there is an index m and a positive constant C such that

(4) (| £ Clalm

An element @ of an algebra A4 is said to be quasi-invertible if there is an
element i in 4, called a quasi-inverse of , such that moy = yoz = 0, where
zoy = xya-+y. Thisis equivalent to (z--¢e)- (y+e) = (y+e)- (z-e) = e,
If A has a unit element e, or to this relation in the unitization A, of A, if
there s no unit in A. That means that the quasi-inverse of an element % is
uniquely determined by .

forallz,y € 4, i=1,2,...

€ for all z in A.

[ —
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A topological algebra A is said to be a Q-algebra if the set of all its
quasi-invertible elements is open. If A has a unit, then A is a @-algebra
if and only if the set of all invertible elements of A is open. Clearly the
unitization of a Q-algebra without unit is again a @-algebra.

One can prove that the complexification of a real @-algebra is a complex
Q-algebra. Also, one can easily see that if for an element x of a topological
algebra A the series Y ;o (—1)'z’ is convergent, then z is quasi-invertible
in A with quasi-inverse Y ;o (—1)*z".

Let () = 3200, anl™ be an entire function of a complex variable ¢.
We say that o operates on a complex topological algebra A if the series
S, a;x converges for every @ in A. If A has a unit element e, we can
start the summation from 0, setting z° = e for each  in 4. The same
definition can be given for a real algebra A, provided all coefficients a; are
real numbers.

If Ais a real or complex m-convex Byp-algebra then all entire functions
{with real coefficients in case of a real algebra) operate on A. This follows
immediately from the formula (3} and the estimate

Y lana™i <3 lan|lalf, zed, i=12,..
T n

The main result in [2] gives a partial converse:

THEOREM A. If A is a commutative complex By-algebra, then A is m-
convez if and only if all entire functions operate on A.

The same proof works for real algebras, provided we only consider func-
tions with real coefficients.

It is a long-standing question ([2], Problem 3, see also [5], Problem 13.15,
[6], Problem 16.8, and [8], Problem 17) whether Theorem A is also true for
noun-commutative algebras. In this paper we give a counterexample showing
that the condition of commutativity cannot be dropped.

In [2] it was also shown that for every entire function ¢ there is a com-
mutative non-m-convex algebra A, such that ¢ operates on A,. Thus we
cannot substantially relax the condition that all entire functions operate on
the algebra in question.

Turpin [3] constructed a commutative completely metrizable locally
pseudoconvex algebra A with exponent p, 0 < p < 1, on which all entire
functions operate but which is not m-convex, (The definitions are similar to
those for Bp-algebras. The only difference is that the seminorms satisfying
(1), (2), or (3) are not homogeneous, but p-homogeneous with exponent p,
ie. [Az| = |A|P|z| for each scalar A and element z.) Thus the condition of
local convexity cannot be relaxed either.
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Later the author [7] showed that there is a complete, commutative non-
m~convex locally convex algebra on which all entire functions operate. Thus
we cannot relax the condition of metrizability. All that means that Theo-
rem A gives the strongest possible result.

Using Theorem A, the author obtained in ([5], Theorem 13.17) the fol-
lowing result:

THEOREM B. Let A be a commutative complex By-algebra with unit which
is a G)-algebra. Then A is multiplicatively-conves.

The same proof gives the result for an algebra without unit, and since
the complexification of a Q-algebra is again a (-algebra, the result is also
true for real algebras. It was an open question (see [8], Problem 26) whether
Theorem B is true in the non-commutative case. Our example here also
provides a negative answer to that question.

Turpin [3] extended Theorem B to the non-metrizable case:

THEOREM C. Let A be a commutative complez complete locally convez
algebra with unit which is a Q-algebra. Then A is g maultiplicatively-convez
algebra provided the operation of taking inverse z — x~1 is continuous in A.

Similarly to Theorem B, this result can be extended to algebras without
unit (provided the operation of taking quasi-inverse is continuous) and to
real algebras. Our example shows that the problem of extending Theorem C
to the non-commutative case ([8], Problem 27) has a negative answer.

Using Theorem. B, the author proved ([5], Theorem 13.18)

THEOREM D. If a commutative complex By-algebra A has a closed radical
rad A, then this radical is an m-conves algebra.

Here again our example shows that the above result fails to be true if A
is non-commutative.

For more information on the classes of topological algebras mentioned
above the reader is referred to [1] and [4)-[6].

When presenting the above-mentioned example of a pseudoconvex alge-
bra, Turpin used the following lemma given in [2] (see Lemmas 2.1 and 2.2).

LuMMA E. For any continuous function u(t) > 0, 0 <t < oo, such that
Hmyo0 u(t) /t = 00, there ewists a continuous function u(t) > 0, 0 <t < o9,
such that 1imy e u(t}/t = co and

Wt + o ) S Bu(ty) .+ ultn)] 4+ v(n),

Our construction will also be based upon this lemma. Following Turpin
we choose v 50 that v(n) = n(logn)Y/? for n > 2. Thus

0 <4 < oa.

(5) v(n) = rynlogn with 1}Lm rp =0

and for the corresponding function u we have
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(6) Jlim afn}/n = o,

and

{7) u(ky+ ...+ kn) < 8[u(ks) + ...+ ulky)] +v(n)

for all natural numbers k1,..., k,, and n.
All results of this paper are corollaries to the following

THEOREM 1. There exists ¢ non-m-conver By-algebra A such that for
each z in A,

(8) lim z™ = 0.

N—+00
Proof. Let #1,ta,... be a sequence of variables, and consider the linear
span Ag of all products of the form

(9) bnbntr o tngks

wheren > 1, k > 0, We define on Ay an associative multiplication by setting
tit; =0 whenever j # 4+ 1. Thus every product £;, ...¢t;, is zero except for
the case when ¢, = i; -+ §~1, i.e. when the product is of the form (9). Every
element of Ay can be written in the form

(10) m~ZZ§(nk A

k=0n=1

where only a finite number of the coefficients £(n,k) are different from
zero. Define on 4p a sequence of seminorms setting for an element z of
the form (10),

(11) [elm =Y D 1é(n, k)| exp(8™ulk -+ 1)).

k=0n=1
Clearly these seminorms satisfy condition (1) for each z in 4. For z and y
of the form (10), with y having coefficients n(n, k), by (7) we have

leylm S D 16(m k)] In(p, 0)} exp(8™u(k + g + 2))
k,g>0;n,p>1

Y 6 k)] Ine, 9))

k,gm,p

exp(8™0(2)) Y |€(n, k)| exp(8™ u(k + 1))
ko

x 3 In(p, g)| exp(8™ u(g + 1))

Pq

I

exp{8™[8u(k + 1) + 8u(g + 1) + »(2)]}

1A

exp(8™v(2))

|x|m+1|y|m+1a
so that (2) is satisfied with Cy, = exp(8™v(2)).
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Denote by A the completion of Ay in the topology given by the semi-
porms (11). The algebra A consists of elements of the form (10) with infinite
summation, such that all seminorms (11) are finite. Clearly these seminorms
satisfy (1) and (2), so that A is a Bp-algebra.

Let  be an arbitrary element of A and let m be a natural number. We

have
cQ (= a]
ZZM(’G” anc»
fozm) my==1

where

wen) = 3 Emk)in+hi+lk-1). .

kit Fhm=k
..E(n+k1+...+km_1+1,km— 1)

Note that among the m! products of elements of the form

Elnt kit ki + Lk — Dinyb b1 - - bty boobyeg

only one product is different from zero. Thus we have

12) o™, anwxp(sm(kﬂ))

ZZ

T,k Ry bk =k

IA

E(n, b )E(n+ky + 1,k — 1) ...

cbint kb ket + 1k — 1))
x exp{8’[8u(ky + 1) + Sulko) + ... + 8ulky) +v(m)]}

exp(8v(m)) D> 3 & k)| exp(87 ulks 4+ 1)) ...

n,k kit kg =k
Emt ki ke T L R —

i

1)| exp(8 T u (k).

On the other hand, we have

(18)  lefhy 2 fm’Z Z

ke Ry kbm sk
.--[f(’n"i‘kl‘f'..,+km—-1+1:km"’“

Now (12) and (13) imply

[6(n, ky)| exp (89 ulky + 1))

1) exp(87 " u(km)).

exp(8/u(m))

(14) l=™|; <
m.

| |J+1

for all z in A and all natural 5.
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Put ar, ; = exp(8/v(m))/m!. Then (5) implies apm,; = m™ o Im) . For
large m we have 8r,, < 1/2, and so

mm\ Y21
i S\ ) i

But lim,, (m™/m)Y™ = ¢, thus ., ; < C™/(m!)?, for large m, where C is
a positive constant depending only upon j. Since lim,,(CM)™/(mN)1/2 =0
for each positive M, it follows that the right hand side of (14) tends to zero
as m — oo for each fixed 7 = 1,2, ... This means that lim,, ™ = 0 for each
T in A.

Note that limp, m,; = 0 implies o,y < Cj for all m, where Gy is a
positive constant. Thus (14) implies

(15) 275 < Cl|fy

for all z in A and all positive infegers m and j.

It remains to be shown that A is a non-m-convex algebra. Suppose to the
contrary that A is m-convex. Then there is a sequence (|| - [|;) of seminorms
on A satisfying (1) and (3) and giving the same topology as the sequence
(I-s)- Thus, by (4), there is a constant ¢; and a seminorm ||- || = || - |I; such
that e;1]x]; < ||z|| for all z in A. Similarly, there is an index k and a positive
¢y such that together with the previous inequality we have

c1|a:l1 < “:l’:“ < 62|:13|k, x €A

By (3), this implies that for any sequence (z;) in A such that ealzily < 1/2,
we have

n
Put @; = et;, and choose a positive € so that ep|et;|r = eoe exp(8%u(1)) <
1/2. Then limy, €[ty ...ty |1 = 0. But £ty ... t,|; = £” exp(8u(n)), and the

right hand term, in view of (6), tends to infinity for each positive £. The
conclusion follows.

As corollaries we obtain the following results.

THEOREM 2. There exists a non-m-convex algebra A on which all entire
functions eperate.

Proof. Let A be the algebra constructed in Theorem 1. Let w(C) =
>n 2n(™ be an entire function. Then (15) implies

Z lana™; < C; 3 lan] |27y < o0
n° T

for all & in A. Thus all entire functions operate on the algebra A, which is
non-m-convex,
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If we wish to have in Theorem 2 an algebra with unit element, we just
take the unitization A, of A. It is a non-m-convex algebra, and every com-
mutative subalgebra of A, is m-convex, being the unitization of an m-convex
algebra (see the Corollary below). Thus all entire functions operate on A;.

COROLLARY. There exists a non-m-convex By-algebra with all commu-
tative subalgebras m-conveg.

THEOREM 3. There ewxisis o non-m-convex Bg-algebra which is a
J-algebra.

Proof. Let A be the algebra of Theorem 1 and let # be an element in A.
Then limy, [2"z™|; = 0 for every j, and so there is a positive constant oF
such that [2"2™|; < C; for all n. This implies

=] o

n=1 n=
and the element » has quasi-inverse 3 >°  (-~1)"2™. Thus A is a Q-algebra.

The radical of a non-commutative algebra with unit is the intersection
of all its maximal left ideals (equal to the intersection of all its maximal
right ideals). Let A; be the unitization of the algebra A of Theorem 1, with
unit e. Every element of Ay of the form Me~ z, where z &€ A and A is a
non-zero scalar, is invertible with inverse 37 ((—~1)"A~""1z", Thus every
non-invertible element of 4; is in A, and so A is the only (two-sided, or
one-sided) maximal ideal of A coinciding with its radical. Thus we have

THEOREM 4. There exists a non-m-conver By-algebra with closed radical
which 15 not m-convez.
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