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On the characterization of Hardy-Besov spaces
on the dyadic group and its applications

by

JUN TATEOKA (Akita)

Dedicated to Professor ¢, Watari
on the occasion of his siztieth birthday

Abstract. C. Watari [12] obtained a simple characterization of Lipschitz classes

Lip® o(W) (1 <p < o0, &> 0) on the dyadic group using the L[”-modulus of continuity
and the best approximation by Walsh polynomials. Onnewser and Weiyi [4] characterized
homogeneous Besov spaces Ber ¢ on locally compact Vilenkin groups, but there are still

some gaps to be filled up. Cur purpose is to give the characterization of Besov spaces Bg 4

by oscillations, atoms and others on the dyadic groups. As applications, we show a strong
capacity inequality of the type of the Maz'ya inequality, a weak type estimate for maximal
Cesaro means and a sufficient condition of absolute convergence of Walsh-Fourier series.

0. Introduction and notation. The dyadic group, 2¥, is viewed clas-
sically as the set of all sequences of 0’s and 1’s with addition (mod 2) defined
pointwise, and is supplied with the usual product topology. Qur results are
stated in the situation that 2 is the additive subgroup of the ring of in-
tegers in the 2-series field K of formal Laurent series in one variable over
GF(2) (see [9]). Such a field K is a particular instance of a local field; that
is, a locally compact, totally disconnected, non-discrete, complete field. The
results of this paper have extensions to any local field.

We need to set some basic notation. It is taken from [9] where the
fundamentals are detailed. For the additive subgroup K+ of the 2-series
field K, we may choose a Haar measure dz. Let d{az) = |a|dz and call
loj the waluation of a. Let |0] = 0. The mapping z—z| has the follow-
ing properties: |z| = 0 & = = 0, |zy| = |2 - |yl, |¢ + y| £ max(|z],|y]).
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(It 2] £ 3], then [a + | = max(ja],|y)).) Tet P° = {z € K : |z < 1}
and P = {z € K : |z < 1}. K is totally disconnected, hence the value is
discrete valued. Thus there is an element of P! of maximum value. Let p be
a fixed element of maximum value. Then an element z € K is represented as
oo
T = Z 143 pk:
k=i
which can contain a finite number of terms with negative powers of . The
addition and multiplication of two power series are defined in a natural fagh-
ion. The ring of integers PO = {z = ¥ s, axp"} coincides with the dyadic
group 2 as an additive group.

For E 5 measurable subset of K, let |E| = [, $x(z) dz, where &5 is the
characteristic function of E and dz is Haar measure normalized so |P%} = 1.
Then |PY] = |p| = 27 Let P* = {z € K : |z| < 2%} and P be its
characteristic function.

For 2 = zp + Z;ij arp®, ap € GF(2), zg € PY, set

"""15 k= —17
wieh) = {3

k< -1,
Then w is a character on K+ that is trivial on P?, but is non-trivial on
P~!. For z,y € K, let wy(z) = w(y - x). w is constant on cosets of P? and
if y € P* then w, is constant on cosets of P,
We assume that all functions are complex-valued and mg:\asurable.
If f € L}(K) the Fourier transform of f is the function f defined by

Fay= [ Fuyw,(u)du.
K

ap € GF(Q),

w(mo) = 1.

Then we have s‘fk = 2"Rp ;.

The space of test functions, S(K), is the space of finite linear combina-
tions of functions of the form h + &, h € K, k € Z. Then ¢ € S(K) if and
only if there are integers k, such that ¢ is constant on cosets of P* and
supported in P! (see [9, p. 36, Theorem (3.2)]). The space of distributions,
§'{K), is the space of continuous linear functionals on S(K).

Let {u(n)}2%, be a complete list of distinct coset representatives of P in
K*. We define w(0) = 0, u(1) = p~" and for n = bg+by -2+bg 2% 4. . .+by2°
(b = 0 or 1, by = 1), u(n) = ulbp) + g~ ulb1) + ... + g~ ufbs). Then
{wyin)lpo}oLy is a complete set of characters on P9, This is the Walsh-Paley
system (see [9, p. 85, Proposition (6.4)]).

The Dirichlet kernels are the functions Dyp(z) = }::;é wp(e), n >
1, Do(z) = 0. If f € L'(P°) the Walsh~Fourier coefficients {cux}fz =

-~

{F(u{k))} o are given by cx = [po f(0)wi{z) dz. The Walsh~Fourier series
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is given by f(z) ~ 3°.2 cxwg(z). The nth partial sum of the Walsh—Fourier
series of f is denoted by S, f(z) and is defined as 9, f(x) = >
If f € L(P%), 2 € P% n > 0 then Sy f() = 27 |
from the fact that Dy = 278, )
8§ = S(P?) is the collection of test functions on P°. We have pesi
and only if ¢ is constant on cosets of P™ in P° for some » > 0. If ¢ € § then

-~

¢ is a “polynomial”, that is, ¢ = }:i:_;l P(u(k))wy(z) for some n > 0. Let
S(4) be a subset of § spanned by &;’s (0 <5 < j). &' = (P is the space
of distributions on P? If f € § then f = Yoo frwe)we, where (f,ws)
denotes the action of f € S'(P%) on wy € S(PY). That is, f is a “formal

Walsh~Fourier series”. The Fejér kernels, K?(z} and K2 (z) (n > 0), are the
functions ' B

mn—1
k=0 CkﬂUk(Z).
4+pn F(t) dt, as follows

1 -1
KS(:I’:) = ZAg_k..lwk(m)s n>1,
n—1 k=0
+1)...
Kf=o, ag=PFDBrn g
2
and
. 1 38 8 .
KB (r) = i D bALKy forn=Y b2, by=1 b =0orL

n—1 1=0 3=0
Let of f(z) = f = K2(x) be the Cesiro means of order 3 of the partial
sums of the Walsh-Fourier series of f whenever f € §/(P?).

- Let {4;}52, be a family of functions on P satisfying A;(z) = 2/8;(z) —
27 P 1(x) for j > 1 and Ap = Py. Since Dy (x) = P &;(z), Aj(z) =
Dyi{z) — Dys-1(z) for j > 1.

The Besov space B (PY) = B% (0 < p,g < oo and —00 < & < o0) is
the collection of all f € §'(PY) such that

3 aqf q 1
1£lms, = (322099145 » £13)
. i
is finite (modification if g = c0).
C denotes a constant, not always the same one.

1. Characterization by means of difference, oscillations and ap-
proximation. To give a characterization of By, by means of difference and
oscillations, let

182 filpg = [izcm‘{ f (2¢" J 1f(m%u) - f(m)l"du)pﬁdw}q/p] v
=0 po pi
and
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1D e = [ 32201 (5 (5 — 52 S0

3=0

Furthermore, to give a characterization by approximation, let

> ; . 1/q
| B fllpg = (ZQWJEP(W:JE)Q) , where

§=0
E:D(2jsf)=inf{ﬂf"_g”?9:gES(j)}i F=0,1...
For g = oo or r = co we have the usual modifications.
The following theorem generalizes and improves [4, Theorem 5(a)] in the
inhomogeneous Besov case in the dyadic group setting. The corresponding

theorem and its proof for the R™ case are somewhat complicated (see [11,
p. 101, Theorem; p. 105, Theorem; and p. 81, Theorem]).

TuEOREM 1. Let 0< p, g < oo and r > 1. If a > max(1/p— 1,0), then
171132, % 1152 Fllsg + I filo = 107 Fllog + 1 Fllp = 1 E Fllpg + [ £llo-

We shall need the following theorems (cf. [11, p. 22, Thecrem, and p. 129,
Theorem)).

TuroreM A. (1) (Nikolskif’s inequality) Let 0 < p £ g < o00. If ¢ €
S(5), then ||g]l, < BC/P=YD |l

(ii) (Embedding Theorem) Let 0 < p < 1 and o > 1/p — 1. Then
By, C L' C LP. The inclusion maps are continuous.

Proof. (i) As ¢ € S{j), we may write ¢(z) = 27 fp, 8(y);(x — y) dy.
If 0 < p £ 1, then |¢(z)| < 29 sup, |¢(y}|*~* [ |$(y)|Pdy. Taking the supre-
mum with respect to 2, we have ||¢[|w g 29/7)|¢||,. Similarly, if p < g, then
181, < |2l 0[5 < 2022/ g,

(it) By (1), [|4; = fll1 < 2W/P=DI||A; « f|,. Hence we have BS, C
By, (1/p~1) On the other hand, Ba"(l/r’" < BY, is well known (see [L1,
p- 47 Pmpos1t1on 2(ii)]). Therefore T|fﬂ1 < ifllae, < Ifllmg,- =

We shall use the type of reverse Hélder inequality due to DeVore and
Sharpley {1, p. 26, Theorem 4.3] in the dyadic group setting. This plays a
vital role in the proof of Theorem 1. Let 0 < v < s € 1 £ 7 and 8 =
L/s—1/r > 0. For f € §'(P°) and Q ==z + P? (j > 0) set

fomi(z) = f;(z) = up 2% { Gon (| f ~ San 17 ()},

THROREM B. If f € &', then there exists a constant C such that
| — S Fllr(@y < Cllfamgl

Q)
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Proof. First, we show
~F

[(f = Sos f)Pg]" (t)<0ff* W= du+ O 2 (1),

0<t< 277! where $¢ and g* denote the characteristic function of Q and
the decreasing rearrangement of g respectively. Let E = {u € Q@ : f;(u) >
f1(8)}, so that |E| < t. Let ¢ be the integer with 20/t < ¢ < 2=(i+4)
(i > 1). Since Sqx f and Sges f are constant on cosets of PPt} we have, on
o+ P"“"'l,

(S flu) = Sawir f ()" = Sgrn (| f = S f17)(w)
< Sowta(|San f = FI"Hw) + Sgrar(|Ggp42 f — FI7) ()
< 280 (|Sax £ — FI7) (u) + Spera (| Soers £ — f|")(u)

< 9l=kBY  inf ¥ Lo kDBY  sprp ¥
- uEfB-&-PJfk(un + uEa::I-lP“'l’l(fk-i_l(u))

—kp
<Oy inf | (fu(u))

Hence, using the monotone property of f7 with respect to j and the inequal-
ity inf, e pait fo(u) € FE (270D for o € @\ E, we have,

iti—2
|21 £ (%) = Saess=s F(@) S D (1850 f = Sawers Fll oo eapier)
k=i
itj—2 i+§—2 g {k+1)
<C Z 9~Fk inf u) < C Z f ) tdy
) uEx-t Ph+L o A
o (J+1) :
<C f fwePtdy  forz € Q\E.
¢
On the other hand, since Sy f — f a.e. as j — o0, forx € Q\ E,
oo
|Spsei-r f(&) = F@) £ Y [Sanf () — Sprs fl2)]
k=itj—1

o0
<C ¥ 27Pfi(a) < Com PR < CEf (1),
k=i-+j—1
Therefore, we have
g~ {f+1)

Suf@) - FESC [ W ot OFSE) fors e Q\E.
t
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Since |E| < t, by the property of decreasing rearrangement we have the
desired 1nequa.11ty
Next, taking the L -norm (r > 1) over [0,2"U*))] and using Hardy’s
inequality, we have
9= G+

1r
([ 1~ 5w P10l ()1 t)
a
— (341} p—{i+1) . ) . T
<e( ] FI growsafa) "o f wnere)’
0 4 g
9—(i+1) 1/
<o J weesorg)
0

< Cllfi e my@rpivry € Cllfil Liemi@ = Cllfillzey
because L* = L(s,5) C L(s,7).
Since 8 = 1/s—1/r > 0 and g* is decreasing, the first term above is not
less than
2"‘3

o( J 1 -swh)pal at)"" = 0| ~ Sy Flzoiay

Thus, Theorem B is proved. m

Proof of Theorem 1. The proof is carried out for the case 0 <
p <1< ¢ < o0, the remaining cases are similar. The proof is based on [6,
Theorem 1] and contains four steps:

(11) 1187 flipg < ClIDE flipas
(12) D7 fllog S CIDSfllpg for 0 <y <p and [D3flps < Cllf|zg,
(1.3) flisg, < CUEFlipg + I Flp)s

(14)  1E%Slpg S |IS7 Filpg-
The first step is to prove (1.1). By Minkowski’s inequality, we have

(2 [ If(a+u) - )"
pi

< (2 [ Ifte+w) - Sofle+uran)”

P
([ 152 f() -
pi

< A{Sas (| — Sas fIM) (e

fo)rav)”

VYT 4180 £ () — f(@)IP.
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Then
< (29 [ 1500 - S (P @) do

F=0 po
+ [ 1805(@) - fla)paz]” ”)” !

po
(L2 lsws - 71g)™".
i=0

157 £1ip

Since So; f ~ f a.e. as § — oo,

|f — 8a f [<Z|Sza+k+1f Sysan f| <2232,+,, (If = Sasu f])-

k=0

Hence, by the fact that ¢ C /! (0 < p < 1), Minkowski’s inequality and
then Holder’s inequality, we obtain

w5, - 11g)" < 63 2
3 ‘)
j=0 i=

‘ iszz'w«(lf — Syitx f|)”9]1’/q

[Zzw{ZIISw(lf Sossx D) lp }Q/P}P/q

_7_...

SOY [ Y2185 (1f — Suree £ a
k=D =0
< C’Z o—apk [Z 2997 || S (| f — SszDH%] "
k=0 J=0
= O Dy B, < CIIDEf|2,,

which proveg the desired inequality.
The second step is to prove the two inequalities (1.2).

"The crucial point is the first inequality that is a reverse Hélder inequality.
We set o,  and s one after another as

o= ——-—~  a>f>e

w =S =
T 2 A

B= , Y <s<p

Using Theorem B, we have
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q/
D211, -—szﬂ{w’”’~ [ 47 = S 2}

j=0

‘ a/
SGZ2MJ{2W/T f “fj”iﬂ(m—}—Pj)dm} g

a/p
_C’ZQ"“”{Q”’/” f | f {supQ”ES(fn 7)(£)}* dt|p/3dm} ,
j=0 P
where S(n,7)() = {5 (| - sznfrf)(t)}w Replacing sup,,y; with 102,
and using the fact that £ C £ (0 < s < 1), we have

9Pi /T f| {supQ”ﬁSnfy }Edt|
po +P’ nzj

. } 74
= [ f{sup2(""”ﬁ3(n,7)(t)}3dt‘
PP z+P7 nzj

o | {izn-v o5t} " a

P ppi m=)

< [ igﬂ(n"ﬁ)ﬁs I {s(n,q)(t)}"dtr”dx.

PO m=g 1.+Pi

IA
—

Then, by Minkowski's inequality twice,

IID"‘fH;',q<022“W{f’229+ 08 [ (S(n () }dt‘ }q/p

ne=g @k P

<oS e[S [ @ [ somore)e) "

n=j p° w4 PY
_OZQQQJ[iQ(n—y { f ( f (St (D) dt)p/q m}a/p]q/s
n=i P' otpd
‘Ci2°‘“"[§?2”“{ [ smeimmya) a) “’]“””
=0 m=0 Po .
< 0( i [i oa{fm+ag)

m=0 j=0

X{ f (2;‘ f{S(m+j,7)(t)}sdt)p/sdm}q/p:1S/Q)q‘/s

z+P!
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0o

(i [ Z pa(Bm-talk—m))

m=0  k=m
« { f (2k~m f {S(k,'y){t)}*‘dt)plsdw}wp]slq)q/s.
po z+PF-™

Hence, by the mean convergence theorem for partial surns {13, Theorem
2, or 5, p. 103, Corollary 6] we obtain finally

=2

1DEfg, < ( Z [ Z 2q(ﬁm+a(h-—m)){ f (S(k, +)(z))? dw}q/p} 9/?)4/3

m=0 " k=m
= $(B—a)m & o a/pys/ay qfs

so( L[y H S st

since o > .

= CHD?‘fH%q:

In order to get the second inequality, we write

03118, = o2 [ [ [ |1t st ] an) ™"

J=0 P° g4 P?
= izaqj( [ ‘ Z (Appr * f)(y)\ dy}m m)m-
F=0 PO x4 R=j

By the mean convergence theorem, the fact that €7 C #! (p < 1) and Hélder’s
inequality, for 0 <& < o, ||Dgf|4, is majorized by

izaqj( f 1 i(ﬂk-l-l * f)(a:)‘pdm)q/p
F=0 P k=g
= i aw( f ’i (A1 > f)(z J dmzs(k—g po—e(k—i)p )4/10
J=0
00

Po k=

o 0 oo .
SOY 20N Ay x FI2 = CY 2 Y osak | Ay

=0 kz=j F=0 fo==j

= k ) .
= O3 2 A+ S5 3 27O Y 25Dl Ay« £,
k=0 j=0 k=0

Therefore we have
105 fllpg < ClIfllg,-
The third step is to prove (1.3). '
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This proof is based on [11, p. 81, Theorem] Since there exists a step
function of best approximation for any L function, we can choose a sequence
g; € S(j) such that [|f — g;lly < 2Ex(2°, f),7 = 0,1,... Hence we have
4, fllp < Ek-—; | A * (gn—1— g} |[5- On the other hand by Theorem A(i)
or [L1, p. 26, Theorem|, we see that

1 4; % (gr—1 — gu)lIZ < CIPT*1* 2| 4] Bllgr—-1 — gll}
= 02D g1 — gull5.

Therefore, by Minkowski’s inequality, we have

[=.0]
I£l5e, = D209 4y % £}
4=0
oo = . N afp
< szaqa(ZQ(k—J)(l—P) lgo_1 — g,c“ﬁ)

/
< CZQQQJ(ZZI(lmp)!Egj'i'l—l - 9j+tH£)q P
10

= . Jaqa/
< C[gzz(l—m (2{;2"””9,-“_1 “9j+i||§)p q}q ’
~ pan

[Zz’“ (L2l o)’ e

i=

< O3 2,1 - g5 + Claol
i=1

< O 2||g; ~ FllE + O F|8,

j=0

since 1 — p— ap < 0.

Taking the infimum over all such sequences {g,} gives
1fllBe < CUIE*Flpq + 1 Fllp)-

The last step is to prove the inequality (1.4).
By the definition of best approximation, we have

Ep(?,f)snf—szjfnﬁ{ [l [ vte

<{f f}f(m)—f(m-}-h)l’"dh) /dx}””

PO pi

flz+h)) dh‘pda;}l/p

icm

Hardy-Besov spaces on the dyadic group 137

Then we have the desired inequality:
oe :
1B 5 = 320 Ey(27, )7 < IIS2 Il
§=0
These steps together with Theorem A(ii) complete the proof of Theorem 1. w
To obtain a variation of Theorem 1 for the case r = g = oo, we let
Il = jglgwllﬂj # fllps 1flls = sup [A[Z*17( +R) = £()les
[l =sup2f — Sy flly,  [Iflle = sup 2°7 (27, £).
720 jz0
The following corollary generalizes the result of {12, Theorem)|, [4, The-
orem 1] and [10, Theorem 3].
COROLLARY. If 0 < p < 00 and o > max(1/p — 1,0), then
17l = [ flls + 1 Flle = IFll5 + [ Fllp ~ | £]5 + [ flip-

Proof. The proof is carried out for the case 0 < p < 1, the remaining
cases are similar. The outline of the proof is to show || f||s < C|fllo, [|flp <

Cllfls, [f]8 £ Gl flle + | £|lp), and then ||f|l£ < C| fils.
Since Sy f(z) = Sy f (2 + h) for || = 277, we have

BITPNFC+R) = FOME < 229 (- + h) = Sas F( + )+ |1F — Sas FI1E)
=2VTRI||F — Sys fIIE if (Bl =277

Thus, we get || f|ls £ C|ifilp.
Next, since f(x) — Spi f{z) = Topm ;11 Ak * (o) for ae. g,

Z Ak*fH < sup2 > lae i)

k=j+1

71l < Sup?""

We shall use Holder’s 1nequa11ty and then a simple variation of [9, p. 179,
Lemma (2.1)}:

Suppose o > 0 and {ax} s a sequence of non-negative numbers such

that sup, 2%Fay, < 0o. Then sup, 2%¢ E}";Hl a; < Csupy 2% gy .

For 0 < £ < @, we have, by Hblder’s inequality,

w2 3° 1 Sgrir o) < Compaten St g
J kg4l k=i
< Coup2*d 4+ fl, = Ol
J

From the third step of the proof of Theorem 1, we get easily [ fils <

Clllfle +1£lx)-
To prove [|f||z < C||f|ls, we rewrite {8, p. 359, Lemma 2.1] as follows: .
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Let f € S(n). Then for any integer k > 0, there exists g € S(k) such
that || f — gl|B < C2° fpu [|F(- + 1) — FC)IE dh.

If || — fnllp — 0 as n — oo, then Ep(2%, fr) — E, (2%, f) as n — cc.
Therefore,
E(28 £) < 02° [ FC+R) = F(IIEdh
P.'c
for f € LP. Hence, we have

) 1/p
sup2°* By(24, ) < Csup (2* [ 27*|(-+ b) = £} dh)
k0 H>0 b

ifp
k =0 £0, e B - £(IP dR
Saig%@ P{ PPN+ ) = SO )

< Gs%p\hl"“llf(- +h) = f()lle = Cl flls-

Thus the corollary is proved. =

2. Characterization by atoms. We shall show that each f € B2 (P°)
can be decomposed into a sum of atoms.

We define an (o, p)-atom a(z) (—oo < a < 00, 0 < p € o) to be a
function satisfying, for some point zo € PY and non-negative integer k,

(2.1) supp a C zq + P*,

(2:2) la(z)| < O|P*|>~HP,

(2-3) la(z — y) — a(z)| < O[P*1* VP lylf it |y| < 275,
and

(2.4) f a(z)dz =0,

where [ > . The constant function a(z) = 1 on PP is also considered to
be an atom. We write ag for an atom satisfying (2.1)-(2.4) for a given
Q ==zp + P*.

We call m(z) an (o, p)-molecule if there exist a non-negative integer k
and a point zp € P? such that

(2.5) m(z)} < CLP*|*22(1y 2k |z — &)=Y,
(2.6)  Im(z - y) - m()] < CLP*[*"VP=y (1 v 28| — 5oy~ M
if [y < 27",
and
(2.7) [ m(z)dz =0,
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where 1V f(z) = max(L, f(z)), | > « and M > max([l/p — a,1]. We also
write mg for an (o, p)-molecule satisfying (2.5)-(2.7) for a given coset of P*
in PY, Q = zq + P,
It is easy to check that a non-constant (w, p)-atom is an (o, p)-molecule.
The following decomposition theorem for B (P°) is based on compara-

ble R™-results [2, Theorem 2.6 and Theorem 3.1]q and improves [4, Theorem
6] in the dyadic group setting,

THREOREM 2, Let —o0 < o < 00, 0 < p,g < 00.
(a) Bach f € By, can be decomposed as follows:
o
f=20 2 a
where the ag’s are (o, p)-atoms. The numbers Aq satisfy
> a/p
(S0 )"} = 1s1ss,
jz() iQi:Z"j

(b) Suppose f = E;‘;O Emmz_j Agmg, where the mg’s are (o, p)-

molecules. Then
£z, < C{ Z ( Z I)\QV’)W}W.

k=0 {Ql=2-k

Proof. (a) For each f € §'(PP), we have

F=3 frdpxa; -«fo*AJ)(t jlo— ) de
7=0

j=0 po
i 3 ffm (z —t) de,
J=01Q =2~ @

where {Q} are cosets of P?. Since f » A; and A; are constant functions on
each coset @ of PY,

o0
IEDINDY
J=0 Q=2 yeQ
Fory € Q, define A = |Q|7*H/2(fxA;)(y) and ag = |Q|*~H/PH1 A (z—y).
For @] = 277 (1 < §), we have suppaQ y + PIL ag) < 1Q* Up o
291 = Q|Pi=112~1/7 and [aq(e)de = \Q\O‘“V?’“fﬂ (z—t)dz = 0.If
[t| <279, then |ag(w — &) — aq(m)] =0. For 7 =0, ag(z) = |Q!°‘ 1/p+1 g 5

1QI(f * 4) () Aj(z ~ v).
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constant function on PP, Thus, ag is an (o, p)-atom. Moreover, we have

{i( > llx\le)”p}”"
-{X( %

HQ‘—M-UPU # A;;)(y)]p) ‘f/p}l/q

=0 1Q| e
(ST e f e ara)”)
im0 |Q|=2-d Q

o ) a/py1/g
=SS ( [irwagra)”} Y = ng,
i=0 PC‘
(b) To get the norm estimate, we write

e 5= (5, 3 semel]

7 o0

<(3+ ) 3 DaPlldyemal,

B0 h=jri’ |Q@l=a-»
We shall use the following pointwise inequalities:
(2.8) 14, * mg(a)| < 02 U=Rtk(/p—a)(1y ok gy ~M
(29) |4 % moa)| < CRU—DMHE/p=a)(1 y 91| ))~H
If we can show (2.8) and (2.9), then since £F C ! (0 < p < 1), we have

oo

171G, = > 229114 = 11

=0

> J
ﬁCchxqa‘{Z 2 IAg|Pa=(i=R)ipth(1-op) f (1V 2]a) M7 dg
j=0 k=0 @t
[=9]
+ 2
k=j+

ifk<q—1,
if j—1<k

‘)\Q‘PQU"’“)MP'I“’“U-*CMP) f (1V2‘T|QJD_MP dm}Q/P

1|Q|=2"

— Ci 2aqj{ ( Z o~ (J—kjlptk(l—ap)—k
: f=0

k=0
n i z(j—iﬂ)Mp—I-k(l—ap)—j) Z &/\le}q/

b= |Q)=2-*

P
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co J oo
-cy {(Z 2=G=kll-alp | $ iR OTp-1ep) 3 thl"}m
F=0 k=0 k=741 |Ql=2—*

Applying Young’s inequality, we have

0 oQ o0
il <03 ( IAQV’)W{ZTW“““’+22“~”"(M?"1+m)}m
i=0 =0

§=0 " |Ql=2~

= a/p
~ey (T k)™,

i=0 | Q=1

since I — > 0 and Mp — 1 +pa > 0.

We shall now work towards a proof of (2.8) and (2.9). Consider (2.8)
first. By translation, we may assume z4 = 0 in (2.6). Using the fact that
[ A;(y)dy = 0 and (2.6), we have

145 % maa)] = | [ (maole ~ #) - ma(a)4;(t)
< O|PH(t/p=Dgm b1y Mz [ |4,(0)|at

pi=t
= O U=RLEb(l/p=a) (] y gbigy~M

The proof of (2.9) is similar. By (2.7) and (2.5), we have
4 ma(a)| = | [ male—)(45(t) - Ay(e))d
< [ Imq(z = )l14;(t) ~ 4;(z)) dt

se( [+ [+ f Jarase=e)

[t)g2=F  Je=2mdH gjmpmdt
X (LV 2%z = )™ ™| A(8) - A=) dt
=1+ I+ 1.

If |z < 277, then A;(x) = A;(t) = 2 in I, |z -4 = 277+ and A,(z) =
=4;(1) =271 in I, and |5~ ¢ 2 272 and A;(z) = 2L and A;{f) = 0
n IIT. Hence, I =0,

If = 021«:(1/1)-0:) j‘ (1 v, 2k:—vj+1)~M| - 2j—1 _ 2j_1|dt
[#|=2 4"

= G2J«:(1/p—«cv)+(j—k)M’
and

JIT == 02}"(1/1’““) f (1 y/ zkltD-—sz_l di

t|ze9+
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j
= gps/eme) =ty 1y 2k|e) M at

=2 |t|¢2—j+'ﬂ

J
= Cz’ﬂ(lfp‘“a)+j—1 Z: 2~(k—j+n)M_J'_|_n.ﬁ1

n=2

4
— sz(l/pﬂoz)-—(k—j)M Z 2n(1wM)

]

= Q2k/p—a)+U—-k)IM " ginee M > 1.
Therefore we have
|4, % mg(a)| < C2FU/P=al+U=RIM  for || < 277,
Similarly, we obtain
|A; « mg(z)] < Ci/pmalr(f=kM=nM  for || = 2797 1 <,
Thus we have (2.9). n

3. Applications. As the first application of Theorem 2 we shall show
the strong capacity inequality of the type of the Maz'ya inequality ([3, p. 54,
Theorem 1]).

For 0 < p < oo and a compact subset A of P°, we set
Cap, ,(4) = inf{]| F|I% . f>1lon A, fe ngp(PO)}.

Basic properties of Cap,, , will be useful:

(3.1) Cap, p(A1) € Cap, ,(42), 41 C A,
(3.2) . Cap,, ( U Ai) < 37 Cap, »(4)),
(3.3) Cap, (@) =0,

Capp({e : 1£(2)] > A)) < X7 f [

THEOREM 3. If 0 < p € 00 and max(1l/p - 1,0) < & < oo, then
[
J Conep({s € PO 17(@)| > XN d < Ol i,
0

Proof. Let f € By,. By Theorem 2 we have Ag and ag such that

o0 s /
f:Z Z Agag and (Z Z |Ale)1pS||f”B;}p'

J‘mO}Q‘zZ*J' F=0 ‘Q':Q"Jf
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We may assume Q’s are mutually disjoint. By (3.2), we have
o0
[ Cap,p({z € PO [f(2)| > A})A"~1 dx
0
o0 on 41

Z f C‘a,pap({mePO IFl

-0 g%

I

()] > APAP1 dx

Z 2“”Capa1p ({m e PY. im Z |Agllag(z) > 2”})
e 00 i=0|Q|=2-4

< Z Z E znpca‘pa,p({m e PY: |’\QI|QQ(‘T‘.)| 2 211-})

J=0 [Q|==2~7 ne=-—s0

in

If |Qf = 277, then n < log, |Ag| —j(a~ 1/p) +log, C follows from the atom
condition (2.2), and

Capa,({z € P [Aqllag(2)] 2 2"}) < Capq,(Q) < |Zal,,

By translation, we may assume Q = P?. Now an easy calculation shows that
|%e%5s Z 27| Auy + B2

= Z epmg-piHm-1)p-1) . ogla-1/plpj

m=0

since oep + p -~ 1 > 0. Hence
J Capap{z € PO [f(z) > Ap)Nr—1ax
0

00 logy [Ag|=j(a—1/p)-+log, ¢
+{ap—1)]
< Z Z E Conp+(ap~1)j

im0 |@Q|=22~7 nm -0
=CY, > Mol =Clfif o
j::UIQJ:Z"’If

As the second application of Theorem 2 we shall show a weak type
estimate for maximal Cegaro means.

We list some properties of K2 (z) and K£(z) for n = S5_, 2%, b, =1,
bi =0 or 1 (see [15], [5, p. 46]):
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(3.5) AL KE(z)

29
= Zb Was 4., +2a~1 m){ Z kKk ~—...—21‘+k+1
1==0
— (25'— 1)K21i_1( )Aﬁ:gu_. YRS 1+D2i (m)ATﬁL 2’—-...—-2”‘1—-1}’
(3.6) InKL(z)| < 3nKL(z —326 2 Kk (e),
a—-(]
(3.7) K(z) = (2971 + 1/2)%; +Z2” ' (z— ).
r=0

Let a(z) be an (a, p)-atom supported by zo + P*. Then
(3.8) (la| * ;) (z) € CPipul(m — $0)2”_””(“"1/p)"”w,

where ¢ A u = min[i,u] and ¢ V u = max[i, u].
In fact, by (2.2),

(la| * &;)(z) = Il

(e PYN(za+ P™)
- ¢@',/‘\t:,(m - 930) f
(z+PYN(zg+P*)
< OBipulm — 20)|(z + PPYN (m + PY||PY|*~ /P
= OBipum — mg)2 ™ 1/PImuVe,

|a(t)] dt

la(t)] dt

From (3.7) and (3.8) it will follow that

(3.9)  oylal(z) < 02"“<a~lfp+1>{(z‘~1 + 2718y (x — z0)

I~1
+3 2w~z ~p")} IS
=)
and
(3.10)  opal(z) < 6‘2"“("‘“1/?’){2%(::3 ~ )
i—1
+Y i n - ")} >
=

We shall use the following obvious estimate.

icm
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H0<i<jand 0Lk, then

St < 0T

I=i

(3.11)

THLORDM 4. Suppose 1/2<p<1,0<g< 00, >0, and §=1/p—1.
If f € By, then for all A >0,

[{z & P°: Supia Fle) > A < (Cl fllsg, /2"

We shall prove below the following lemma.

LEMMA L. Suppose 1/2 £p <l and 8=1/p— 1 If ag(x) is a non-
constant {cv, p)-atom supported in  then

{z € P%:sup|ofag(z)| > A > 0} < (C|QI*/A).

If a{z) is constant on P° then
l{z € P :sup|ofagp(z)] > A > 0} < (C/M)".
n
Theorem 4 follows directly from Lemma 2 whose proof is similar to [7,
p. 85, Lemma (1.8)].

LeMMA 2. Suppose 0 < p < 1 and {aq} 15 a sequence of {a,p)-atoms
such that for each Q and each X > 0,

[{z € P°:ag(z)| > A > 0} < (C|QI*/N)P.
If {Aq} is a sequence such that {T(|AgP)¥P} < ||fllpe,, then

Haze]’o ]ZZ,\QQQ|>,\}’ (C 1|3, /W)-

Proof of Lemma 1. This proof is based on [16]. There is no loss in
generality if we assume a(z) to be supported in P*. We have @(k) = 0 for
0 <k < 2%and Sha(n) = ofa(z) = 0 for 0 < n < 2% Then we assume
n > 2% The proof is carried out for the number n = Eglﬁg”] b, 2¢, bpogn) = 1,
b; = 0 or 1 and 1/2 < p < 1. We have, from (3.5),

s c flogn] al-y
lonalz)l < — 2+ V% oja(z
(@) < — _zujll{z__;( 3~ losa(z)|

20 (2~ Doyi_ya(z)| + 2| Sia(a))
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logn] 2% [logn 2-1

== Z Zgﬁ(ﬁ N ilasa m)H-*—“ Z Z i# D jlosa(x)|

i=u+lj=2%41

a—-u—f—ly__l
[log n] o [log n] .
B0 = i85,
+7—?§ Z 9ilB-1)(g ——1)\Uzi_1a(:c)|+nﬂ Z 2'7|Sgia(x)|
t=u+ 1 k]
=14+ IO+I+1IV.

Now, I = 0 since oya(z) = 0 for 1 < j < 2". We estimate IT + III by making
use of (3.6), (3.9), (3.10) and (3.11):

o+ 1r
[logmn] 2°—1 [log n] "
1 i
<Osupaj|a| {Z ZJ'S +22}
jmutl j=2% 41 -1
< C sup oylaj(z)
Fram
[logJ]
< 9 sup { 22 021|a{ T-) + - Z 210'2"‘5‘"1 }
i>er i=0 dilaia

< O-wa1/p) Z {22‘45 (z) + 022“’*@ T - r)}

i=0 r=0Q

+ C'sup opse|(2)

i>u
U

u u=l
DL AOED DA DL ACE

i=0 =0 i=r+1
ﬁ?::*l_(‘i:ﬂ}

<o2-“°‘{1m| MPg(x) +sz P

r=0
i—1
+02—~ua 1/;0)[@ () +sup22’" ip, (z—p )]

v.>u

Finally, we estimate I V by (3.8):

[logn]

z 2UE+D) (&, * |al)(z)

imutl
[log n]

2“”(0‘“1/?’)@ (z) 3 2% <2 e Pg, (o).
il

sor)} + ngg oy |al(z)
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Collecting these estimates, we have
H{z :|ofa(e)] > A}

y—1
< {x P C2N g~ HPEy (1) 4 (19 ue erﬂ%&% S %H
r=0

fun],
+ qm s CRTMeNE () 4 ¢ 2P, (x ~ A
{ (@) + Csup ¥ 2", (2 ~ p") > .

1>'u. =0
02-'“'!11041
{w: T > |m1/3’}

Oz—”ﬂ.aﬂ
{m P PP (x - ") > )mwgo’"]}‘

— U
+ Hm : OZA Pu(z) > 2””/”}

il -~
-+ C'sup Z {m : _______6’2)\ 2T‘d@u(m —p") > 2_'“/?}

Ta}'u =0

C1g-ua P = uex "o u~1
r3 ~(r+1
S( 5 )+{ ) 2 +Z2“’}

r=0 P=rg

Gz—ua P i-1 ,
() sy
A i>£r=0

_ o—ue B 0 1 e —p
= 3 ; where ro = logs 3 .

When p = 1/2, I = II = 0 and we can estimate JI] and IV in the same
way. Thus we proved Lemma 2. w

Remark. We can see by the same technique of the proof of the theorem
that Theorem 4 is valid for 0 < p < 1/2: However, we shall need a more
precise formula for K& and an inductive proof for a range of p.

As the third application of Theorem 1 we shall show a sufficient condition
for the absolute convergence of the Walsh-Fourier series. The well known
Bernstein-Stechkin criterion says

o0 o
(3.12) D 2RE (2, f) <oo implies 3 [{f,wn)] < oo,

i=0 k=0
where (f,wy) denotes the action of f € §(P°) on wy € S(P?) (see [14]).
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The following theorem includes [5, p. 64, Theorem 9] whose assurmption is
given by [|Sa£? f||p.1 in our notation.

THEOREM 5. If f € B;,/f’ (0 < p<2), then 3120 |(fwe)| < oo

Proof From Theorem A(i) and the definition of B;"q, we have B;’/lp -

BM? for 0 < p < 2. Thus, we obtain the theorem from (3.12) and Theo-
rem 1. m
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Weighted Orlicz space integral inequalities
for the Hardy-Littlewood maximal operator

by

8. BLOOM (Loudonville, N.Y.) and
R. KERMAN (St. Catharines, Ont.)

Abstract. Necessary and sufficient conditions are given for the Hardy-Littlewood
maximal operator tc be bounded on a weighted Orlica space when the complementary
Young fanction satisfies Az, Such a growth condition is shown to be necessary for any
weighted integral inequality to occur. Weal-type conditions are also investigated.

1. Introduction. For an N-function @, the Orlicz space Ly (X, du) is
the Banach space normed by

[fle = inf{/\ >0: )! @(L@) dp(z) < 1}.

The usual Lebesgue spaces LP(X, du}, 1 < p < oo, arise from the N-function
®(z) = ¥ /p. These Lebesgue spaces satisfy a A, condition; that is,

P(2z) < CP(a).
Most papers trying to describe a weighted operator theory in an Orlicz
space setting have made Ay assumptions. It is easy to see where these arise.
Marcinkiewicz interpolation is one of our most cherished tools. Suppose we

start with a sublinear operator 7. Then T' is of type (co, 00) and of weak-type
(1,1} if and only if, for each A > 0,

[z : Tf () > N < % |
| f ()] > A/ K]

1f ()] de

where K = 2||7"|oo. Writing @ as
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