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The following theorem includes [5, p. 64, Theorem 9] whose assurmption is
given by [|Sa£? f||p.1 in our notation.

THEOREM 5. If f € B;,/f’ (0 < p<2), then 3120 |(fwe)| < oo

Proof From Theorem A(i) and the definition of B;"q, we have B;’/lp -

BM? for 0 < p < 2. Thus, we obtain the theorem from (3.12) and Theo-
rem 1. m
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Weighted Orlicz space integral inequalities
for the Hardy-Littlewood maximal operator

by

8. BLOOM (Loudonville, N.Y.) and
R. KERMAN (St. Catharines, Ont.)

Abstract. Necessary and sufficient conditions are given for the Hardy-Littlewood
maximal operator tc be bounded on a weighted Orlica space when the complementary
Young fanction satisfies Az, Such a growth condition is shown to be necessary for any
weighted integral inequality to occur. Weal-type conditions are also investigated.

1. Introduction. For an N-function @, the Orlicz space Ly (X, du) is
the Banach space normed by

[fle = inf{/\ >0: )! @(L@) dp(z) < 1}.

The usual Lebesgue spaces LP(X, du}, 1 < p < oo, arise from the N-function
®(z) = ¥ /p. These Lebesgue spaces satisfy a A, condition; that is,

P(2z) < CP(a).
Most papers trying to describe a weighted operator theory in an Orlicz
space setting have made Ay assumptions. It is easy to see where these arise.
Marcinkiewicz interpolation is one of our most cherished tools. Suppose we

start with a sublinear operator 7. Then T' is of type (co, 00) and of weak-type
(1,1} if and only if, for each A > 0,

[z : Tf () > N < % |
| f ()] > A/ K]

1f ()] de

where K = 2||7"|oo. Writing @ as

1091 Mathematics Subjeet Classification: Primary 42823,
The first author’s research supported in part by a grant from Siena College.
The second avthor's research supported in part by NSERC grant A4021.



150 S. Bloom and R. Kerman
we have
T (M)
fopds=[o() [ dedr<cf == [ 1f(@)|dzdx
[@:]TF (=)|>A] 0 F1>A/K]
K| f(x)|

A)———d z< [ ®(C|f(z)

=C [If) [ ¢

provided ¢ satisfies a Dini condition, that is,
T
f ?S—(S—Sl ds < Co(z).
0

¢ Dini is equivalent to a Ag condition on the N-function complementary to
&. So an operator like the Hardy-Littlewood maximal operator M satisfies
an Ds integral inequality provided this complementary Az condition holds,
The converse is also true [14].

To avoid As, one needs to improve this argument, or avoid interpolation.
In [3], we characterized weighted Lg integral inequalities for generalized
Hardy operators, obtaining both weak- and strong-type inequalities with
no As assumptions. With hopes high, we turned to the Hardy-Littlewood
maximal operator.

The weighted theory for the maximal operator,

Mf(z)=sup {ﬁ f |f(y)|dy : I is a cube in R™ containing x}
T

is quite beautiful. A weight w is a function on R™ which is positive and finite
almost everywhere. w belongs to the Muckenhoupt A, class if
-1

(% Ifw(z)dm) (TII'T Ifw(x)—l/@—“ dm) <cC

for all cubes I. The maximal operator M is a bounded operator from
LP(R™, w(z)dz) to LP{R"™ w(z)dz) if and only if w € Ap, 1 < p < o0
See [10].

In [7], Kerman and Torchinsky extended this to Orlicz spaces. They
examined the inequality

(1) J i@ de < [ $(C|f(2) hwiz)de
R R”
Assuming both & and its complement were in As, they showed that (1)
holds if and only if w € Ap, where 1/p is the Boyd upper index of &.
Since then, researchers have been chipping away at the A, assumptions.
Bagby [1], Gogatishvili and Pick [6], Pick [11], and Quinsheng [12] have all
tackled weal-type problems for the maximal operator. Pick and Quinsheng
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do strong-type as well. Pick has made the most progress. He showed that (1 (1),
even with two weights, forces a local A, condition on the complement to
&. This suggests that the Dini condition used for interpolating is actually
indispensable. That turns out to be true,

We say an N-function @ € A if its complement (see Section 2) belongs
to Ag. Our main result is

THEOREM 1. Let & be an N-function and let w be a weight on R™. Then
the following are equivalent:

(a) For all f,

[ EMf@@)de < [ #(C)5(@))u(z) da.
RM R™
(b) & € A§ and the weak-type boundedness
SN w(lz : Mf(z f &(C|f(2)w(z) dz
holds for all f.
(c) ® € AS and w satisfies the condition ‘
P(Nw(l
@) If Sﬁ(m%f)—ruﬁa%)w(z) de < B\ w(l) < 0o

for all cubes I, where ¥ is the complementary Young function to ®.

This paper is organized into three further sections. In the next section,
we describe the Orlicz space theory that we will use. Section 3 gives weak-
type results. These are quite general, with two Young functions and four
weights. Some interesting consequences are.described in the special one &,
one weight setting. In the last section, we present the strong-type theory
and prove Theorem 1.

2. Orlicz spaces. The standard theory of Orlicz spaces can be found
in Zygmund [15], Krasnosel'skil and RutitskiY [9], or Rao and Ren [L3],
and weighted theory is developed in the recent book by Kekilashvili and
Krbec {8]. An N-function @ : R* — R* is a nonnegative, convex function

satisfying
lim = 2z ) limn M = 00,
z=( o0 B
$ has a derivative ¢ which is nondecreasing and nonnegative, ¢(0) = 0, and
$(00) = 00, 80 that
®
B(z) = f B(t) dt
0

and we can and will take ¢ to be right-continuous,
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Set,
P(z) = inf{y : d(y) = T}

= fm P(y) dy
o]

This is also an N-function, and is known as the complementary Young func-
tion to @#. We have Young's inequality

ab < Pla) + () foralla,b>0,

and

and V¥ satisfies
¥ (z) = sup{ey — ${y)}-
Y

If (X,du) is a o-finite measure space, then the Orlicz space Ly =
La(X,dy) is the Banach space on which we take the Luxemburg norm

HfHds—mf{)\>0 ffb(u( ”)d,u(x)gl}.

The original norm used by Orlicz is

Hfllfé=sup{’f fgd.uﬂ: f‘l"(lgl)dugl}.

These two norms are equivalent, and one has the Holder inequality

[ f9du, < Ciflelols.

The following easy lemma is taken from [3].

LEMMA 2. Let & be an N-function with complementary function ¥. Let
z andy > 0. Then

(3) &(x) < z¢(z) < P(22),
(

(4) z)+ By) S P(z+y)
and
(5) | sp[%‘ﬂ] < W(g).

We will also need the inequality
(6) z <& ) (z) < 2.
The left inequality follows immediately from (5), and the other is just
Young’s inequality.

We say @ € Ay if $(2z) < CP(z) for all z > 0, and & € local Ay if this
holds for all £ > zg. ¢ € A§ if the complement ¥ is in Ao.

C will always denote a universal constant, and may change in subsequent
appearances.
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PrOPOSITION 3 (Bari and Stechkin [2]). Let & be an N-function with
derivative ¢. Then the following are equivalent:

{a) ¢ is Dind, i.e.,

f $s) ds < Co(z)
0

forall x > 0.

(b) There exists a § > 0 such that ¢(6z) < Ld(z) for all z > 0.
(c}) @ € A5,

Proof. (a)=>(b). Let ¥ be the complement and let 0 < § < 1. We have

& e o4 ¥ @
(7) f%@dy=f : f dqﬁ(s)dy:f d¢(8)10g-§
0

>f e s)log > (log 6)¢(6m)

Choose 6 so that log } = 2C. Then the Dini condition gives
2¢(8z) < ¢(z).

(b)=(c). Fix y and put & > ¢(y)/6. Since ¥ (y) = inf{t : () > y} and
¢ is nondecreasing, we must have y £ ¢(6z). Thus 2y < ¢(z), or

P(2y) S Y(d(z)) S e
Since this holds for every z > ¥(y)/§, we in fact have
v(2) < 53)

and A» follows on integrating <.
(c)=(a). Finally, if ¥ € Ay, then

Y(2"z) £ C"p(x), formn=0,1,2,...,
and we can take C > 1, obviously. So

f¢y)dy i qu d‘y<10g6’2¢( )

=i, YLk +1

ra]) o2 =

and by the definition of 1,

78( G ) < olo)

But
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Hence,

| 2 dy < 205 Ojote).

We would like to thank our referee for pointing out the reference [2].

There is an important connection between norm inequalities and integral
inequalities. This next proposition is from [3].

PROPOSITION 4. Suppose T is a linear operator acting from a o-finite
measure space (X, du) to a o-finite measure space (Y, dv). Let & be un N-
function and let Ly .q,(X) be the Orlicz space with the norm

10 = ot {2 > 0: J o) auw <1}

and let Lg cq,(Y) be defined similarly. Then
[ (TS dvlw) < [ #(C|f(w)]) duz)
X

Y
if and only if
“Tf”eﬁ,sdv < CHstP,sdp.
for all e > 0, with C independent of .

3. Weak-type integral inequalities. The complete characterization
of weak-type weighted Lg inequalities for monotone operators on R was
given in Theorem 3.1 of [3]. The argument used there can be applied to
other operators. For example, it is eagy to adapt it to obtain

THEOREM 5. Let 0 < a < n, and let M, f(z) be the fractional maximal
operator on R™,

M, f(z) = sup {|I|a/n—1 I‘ ()| dy 2 I is o cube containing tc}
I

Let t, u, v, and w be weights on R™, &, and P be N-function; with com-
plements ¥y and Wy respectively, Assume further that $; o &7 Y is conver.
Then weak-type boundedness,

® o [ ®0w@)ue)ds] <07 [ a(Clf@)lul)ele)d],
J

[Mo F>2]
holds if and only if
O g e s <
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holds for each cube I, where

(A T) = By 0§51 [ f Ba(Aw(y))t(y) dy].
I

A couple of remarks about this theorem may be in order. In the Lebesgue
setting, and in an expression like f(|f(z)|u(z))Pv(x) dx, the weights w and
v can obviously be combined. This is not true for general &, and that neces-
sitates confronting such unpleasant four-weight inequalities. The convexity
assumption in the theorem corresponds to the Riesz triangle p < ¢ in the
Lebesgue setting.

Proof of Theorem 5 The necessity is essentially the argument
of [3], with & chosen so that

!wl(%)ﬂfld

1) = g0 (5 ) st

For the sufficiency, let I' C [z : M, f(2) > )] be a compact set. For each
z € I, there exists an open cube I with [I|*/™=% f,|f| > A, and I' is covered
by finitely many of these cubes. Let I; be the largest, and Ir.; the largest
remaining cube digjoint from Iy U ... U I}, Let J; be the cube concentric
with I but triple its side length. We have

A< Ll 1,
I

= 20MI1*/"  EcI,

and

rclkh
and the Iy's are digjoint. Hence,
. I, |/l
) < [ 1@ a0, 5 o
P4 .

f.z 87| £ (2) ulz) - m”—éi(\’m-)‘r-——-:jgm)|ufk1“’“*lv(w)dw

H

A

f By (230 F () |ula))v(e) de
I

+ IWL( ’Y()‘ajk)
I

Chu(z)v(z) jjkia/n.‘l)v(m) da

IA

[ #:02- 80| f(@)|u(@))e(z) de + v\, o),
T
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50
T < [ 812377 C f (w)u(2))v(z) dz
Iy
and thus

[ 8:00)Hy) dy < E20 87| [ 81(2-3"Clf(@)u(@))v(z) de|.
Ta Ty

Summing over k gives

[ EB20w0)tsydy < 3 83087 [ 123" CI (@) u(2))v(z) de).
r k I

But (4) applies to &g 0 &%, so this last sum is bounded by

&y od?l_l(z f@1(2-3“”“Olf(m)|u(w))v(m)dm)

ko Iy

<8007 [ #1(2-3772C|f(#)lu(e))w(z) da],
o

and that proves the theorem.

This last result has some history. For the Hardy-Littlewood maximal
operator (o = 0), Bagby did a one-weight version of this, when #; = &,.
We say a weight w € Wy if '

SNw(lz: Mf(=) > N) < [ $(C1f(e)|)w(e) da.
A

Bagby, in [1], characterized the weights for which a slightly modified form
of this inequality holds. This is the first weighted Orlicz space paper that
completely escaped the Ay conditions, and we are quite indebted to this
work. Pick extended this to a two-weight setting [11], assuming a doubling
condition, which he and Gogatishvili eliminated in [6]. For a further gener-
alization, see [5].

In the Lebesgue setting, for 1 < p < oo, it is well known that M is of
weak-type (p, p) with respect to w if and only if it is of strong-type (p, p) with
respect to w, and this is equivalent to w € A,. For Orlicz spaces Lg, with @
and its complement ¥ satisfying Ay, the Kerman-Torchinsky Ag condition
and the condition (9) are equivalent. What happens away from Ag?

Recall that a weight w € 4,,1 < p < 00, provided

(o) ) s

I I
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for all cubes I. The limiting condition as p — 17T,
1
il f w(z)de < Cess infw(z),
I

is denoted by Aj. The 4, classes are nested, that is, Ay, C A, ifp < g,
and the union of these classes is customarily called Ao. The Ly integral
inequality for the maximal operator proven in [7] relied heavily on the “re-
verse Holder” property of 4., weights. It would be nice if Ago were necessary
beyond Ay, Nice, and also true:

THEOREM 6. We haove

m W = Ay, U

N-funciions @ N-functionys &

W = Ay.

. Proof. Let w(I) denote [, w(z) dz. By Theorem 5, if & is an N-function
with complement &, then w € Wy if and only if, for each A > 0 and cube I ,

(A )w
(10) If w(a—il-}w%)w(m) dr < B(\w(I) < oo.

So assume that w € Ay, and take ¥(z) = f 9(y)dy, where ¢(z) = inf{y :
¢(y) 2 «}. By (3),

BN w(I) () S(\w(l)
/ o) v < B Z J o(Grto) =

Now w € 4, means

w(l)
—_— nf
’II < Cessrmfw(m).
So, with this C,
w(I)
< 1] * »
Cl” (m) 1 aeonl

Thus
(Nw(l)
W(W S(o(A) £ A
and (10) follows, so long as C is taken to be > 1.
Conversely, if w & Aj, it will suffice to construct an N-function ¥ for

which (10) fails, for the A with $(\) = 1. In other words, we will construct
such a & for which ‘

w(!
(11) ;f zp[o—l*ﬁ%]w(@ dz < w(I)
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must fail for every choice of C. Now w & A; means there are cubes Iy on

which
1

— [ w > 2k? essinf w.
| Iy | If - T
k

In particular, if

1
Ek={mefk:w(m)<mf{w}

then iE |
K
= — > (.
b | Tk
Set
alk) = {295k E;

This is a nondecreasing sequence which tends to infinity. So we can choose
a subsequence {k;} on which a(k;) is strictly increasing. Define () to be
continuous, strictly increasing, ¥(0) = 0, and ¥(k;) = a(k;), and let
&®
W(z) = [ w(t)dt.
0

‘Were (11) to hold for ¥, then, by (3), we must have

1 w(l)
9 7 (st <20
But
)
oyl \killig T ) | 5 Foj I w0
> (kj) Bl alky)tu, 2 kj

|If€=;i |
so that (12) fails.

For the union, clearly Ay C |JWea. Conversely, if w € Wy, we will show
that w must satisfy the fundamental inequality of Coifman and C. Peffer-

man [4], that there exists a § > 0 such that, for each cube I,

8wl 1
(13) [m sw(e) > |I|( ) = = |1
(13) implies a reverse Holder inequality, and 80 Ag.
Let

w(I)
B, ;= I ——- > =I~E 7.
T lx € Tw(z) = t] and Fyr ¢
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By (12), with ¥ the complement and ¢ = @’
1 w(l) ) t\ B, ]

2C _>_ —_— ] > _ &, T

A (wmw z ‘”(zc) i

‘Es{;)[l 20 0 t
[ = g/Eey) T BT

So we can choose ¢ so large that |Ey y|/|I] < 1/2. Obviously, then, |Fy 1| =
311, and so (13) holds with § = 1/t.

and so

4. Strong-type integral inequalities. Pick has shown that a weighted
Ly integral inequality for the maximal operator M forces the complement
¥ to be in local 4z [11]. A look at his proof shows that this results not from
the integral inequality, but from the weaker norm inequality. Since integral
inequalities are actually equivalent to a uniform family of norm inequalities,
it is not hard to modify Pick’s proof to obtain Aa.

THEOREM 7. Let & be an N-function, ond let ¢, w, v, and w be welghts
on R™. Then, in order for

(14) [ BwMf)ta)do < [ &(Cu(x) (@) )v(z) de
to hold for all f, we must have & € A§.

Proof. Since these are weights, there exists a constant X > 0 such that
the set

E=[zeR": K~ < t(x),u(z),v(z),w(s) < K]

has positive measure. Let x be a point of density of E. Then there exists an
rg > 0 such that

B(r,z) N EB| > §|B(r,z)|
for all 0 < r < rg, where B(r,z) = [y: |z — y| < r]. Let
B, = 3(2—“715/”?0’ m), m=0,12,...,

and let fin = xunp,, . Plel's construction showed that

(15) f ***C“l“'y'“"; = COm
(BonE 2 =yl
10 b)NBm
and
(16) Mfu(y) 2 C|EN Byllz -~ y[™"
when y & B,,. From (14) and Proposition 4, we have
(17) WM fmlle.et < Cliwfmllo.eo
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for all € > 0 and m, with C, of course, independent of ¢ and m. We claim

that
K

(18) |ufml @00 < $-1[1/(ev(E N By))]

For, if this number is A, then

o) g o) so(E)etsrnn o
BB

proving the claim.
Let & be the complement of ®. Using (6}, (18) shows that

lufenl@,c0 < Kev(E N By )& [H@’”}ﬁm}
< K%|E N Byl [gﬁ%{m}
< KiEn B ()
[ CamK
= K%|EN By~ (m)

Let

‘ 1
— -1 B Ert———r .
g=¥ [Et(BeﬂE)}XBanE
Then ||g||w,et < 1, and using Holder’s inequality, we have

|wM fonllg,er 2 C f w(M fn)get

1 dy
> CK %0 [_-M] |ENBn [ ——
et(Bo N E) (Bon BB |z = |7
by (16). Hence, by (15),
1
LS -2 -1y - -
lwM frnll8,et = CmKE " %e¥ [E't(Bo = E)] 1E N Bl
1
> ~2 a1 .
2 CmK ™ *e¥ [msK1BO|]
Now, fix y > 0. Choose £ so that
1
5K130| - !p(y)

We have shown that
wM fn|lg,er > OmE™2e|E N By
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and
[ fmlle,en S K26|EN Bm|W"1(02mK2W(y)).
By (17), we have
my < CKYW=1(C2m K2 (y)).

Now fix m, chosen so that m > 20K*. For that m, which does not depend
on ¥, we have

2y < WY O KW (y))
or
¥(2y) < C2 K2 (y),
proving the theorem.
We now have most of the ingredients for Theorem 1. To finish off, we

will need a series of lemmas, modeled on the Kerman-Torchinsky proof.
Henceforth, let 7(w) denote the average of w over the cube I,

Iw) = I—}T f w(x) da.

LEMMA 8. If w € Wy, then there exists a constant C such that

(19) I(w)tﬁ[%[(zﬁ(%))] < Ce

holds for every cube I and every e > 0.

Proof. Standard arguments using (3) show that (2), and hence w € W,
is equivalent to

1 F(N)I(w)
(20) i f "”[““”“““o,\w(x) ] dw < OX

for each cube I and A > 0.

Given & > 0, since ®(A\)/X has full range, we can choose A so that
(BN (CA)I(w) = e. Then (20) says that I{(v(s/w)) < CA or

(B (2] o) -t

which i (19) with 2C replacing C,

LemMMA 9, Let w € Wy with & € AS. Then v = y(e/w) satisfies a reverse
Hélder inequality

(21) I < CI(w)
for all cubes I, with C' > 0 and r > 1 independent of e.
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Proof. Set B, = [z € I : v(z) £ al(v)]. We must show that there exists
an @ > 0, independent of &, with |Eq| _<_ 1|1, By (19,
C 1 w(z)
> = f - dz.

SaIOTE) = 2

On E,, ¥(e/w) < al{v) and so

From (6), we get

,Z.,gs (waf(ru)) < 2=al(v)

Thus
%aI(’u) < 6(20I(v)) S 20I(v)¢(2al(v)),
Qr
= < 2(20I().
So
e 1B 1
o((1/OV(w)) = || ¢(2al(v))’

By iterating Proposition 3(b), we can find a t > 0 sufficiently small that
(tx) < ¢(z)/(4C). Choose a = t/(2C). Then

Bal o $(H/OI() _ 1
< s < F

LeMma 10. Let w € By and & € AS. Then there exists an v > 1 such
that w € Wy, where &, is the N-function with derivative

&, (x) = ¢(a"").

Proof. Let ¢.(z) = ¢(z%/") and ¥,(z) = zy(z)". Choose r > 1 50
that (21) holds. We claim that there exists a constant C such that, for every

A> 0,
m | (Gw) sor

For this, let C/2 be the constant in (20) and let K be the reverse Holder
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constant in (21). Then, with & = ($,(X)/(CA))I(w), we have

o) sl fo(Gne))
(

1 Py (
Tl ;f ”"( Chw

1 ¢5()\1/r) r
SK™| —
i If”’[ oo 1))
™ @(2,\1/‘P) " ™
< K (T If [ i I(w)D < (KC)™A
by (20), proving the claim with C' replaced by (KC)".

Hence,

2 (%{@3 I(w))w < &.(Nw(l),

for all cubes I. This is (2), and would give w € Wyg_ were we lucky enough
to know that ¥, is the complement of &,. That, however, need not be the
cage, Still, the proof of the sufficiency side of Theorem 5 uses only Young’s
inequality, so it would suffice to show that &, and ¥, satisfy Young’s in-
equality. In fact, the proof would carry through verbatim if we just had

(22) 2y S $r(2rz) + T (y).
We show this. Let »' be the conjugate exponent to r, 1/r +1/r' = 1. Using
Young’s inequality for $(z) and for 2" /r, we get

oy =3/ g1y < wl/rr(ﬁ(wl/r) +¥(y))
< ap(a") + o yply) < & (20) + o 5 + EL)
and so
zy S P (22) + ¥y}

and (22) follows from the convexity of #,. This completes the proof of the
lemma.

Set (ot
P(st
k{sg) = sup
(®) 150 B(t)
and
(23) o= lim ww__logk(s)'
s—0t  logs

@ is the Qrlicz-Maligranda lower index for @.
Notice, for & € A$§, that by Proposition 3(b), with that 6,

o5)s(3
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and so, if §7*1/2 < ¢ < §7/2,
5 n
M9 < (5)

log k(s) S nlog(2/8)
logs ~ log2--(n+1)log(1/6)
and so, ¢ € Af forces ¢ > 1.

but then

LEMMA 11. Let a be given by (23) with & € A, and let ¢ < . Then
there exists ¢ constant C depending on ¢ for which

P(at) < Ca?d(t)
forallt>0.and0 < s < 1.
Proof. There exists an sp such that

log &(s)

>
log s

whenever 0 < s < 8p. Thus k(s) < s for such s, and the lemma holds with
C =33

The heart of the argument is contained in our last lemma:

LEMMA 12. Let w € Wy and & € A§. Then there evists a p < o, with a
given by (23), such that w € A,.

Proof. Asin{7], it will suffice to prove that w is of weak-restricted type
(p,p) for some p < o, and that requires showing

1Bl _ o [w(E)]"
@ Tl [ w(r)}

for all cubes I and measurable sets B C I. Clearly (24) will Lold if it holds
whenever w(E)/w(l) < go. Fix F and put
w(E)
w(l)’
Let o > 1. Then there exists an sg such that

log k(s)

log 8

for all 0 < s < 8. Hence 1/k(s} < s=2%, or

P(st)
B(t)’

£ =

8%% < sup
¢
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and we can find a ¢ with s¢* < 28(st)/$(t). Using (3}, we have

s‘?"‘"ltﬁ(%) < 46 (st).

Now
#(st) = dn((st)") < ?_%;_g)’"_)
Likewise,
0 (0)()]
and so

80‘*"""14"7'd’)r. [(%) T] < 22—-7@57‘ [214-7'57" (:;_) T] )

Thus, there exists a y with
Sgr.u—wi—ﬁ-'r'@?‘(y) < 22—r¢‘r [2l+7'3'r"y]‘

Choose s so that s~ 1" = ¢ and set

_oa—1l+r

=—
Notice that p < « if and only if po — 1 < r(a — 1). Since this holds when
=1, we can choose ¢ = p(r) 8o that p < a. Since 8" = £1/P, we have
(25) ed,(y) < 2271 P, (2M7EN Py,
Let A = 21t7e/Py and let ¥, be the complement of &,. Then

yw(I)®, (M) E|
CAT)

o w(D)@e(A)
< G (y)w(E) + f v, ( g%?ﬁiw)w by Young's inequality

fince w & qu,,, 1)1v1c1mg; by 'w(I } gives
'E‘ fpp()\) y LB
T G SePe0) + 8.0 < (14 2278 )
by (25), and so
—’IELI < Cgl-w(l +22»—r)51/p’

proving the lemma.
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Now we prove Theorem 1. All that is left to show is the implication
(c)=>(a). Let @ be the index given by (23). Fix some p < « for which
w € Ay, as in the last lemma, and let p < ¢ < . Since w € 4,,

w(lz: Mf)>N)<2? [ |f@)Pu(e)de,
[w:2] (=) {>A]
for all A > 0. Hence,

[ o@fyw= [ ¢(M\w(lz: Mf(z) > A)dA

i
oc_ﬁg

C

[FaN

AP [ |f(m)[Pw(c) da d)
[m:2]f (@) >A]
2|f (=)
=0 [ if(@)Pu(z) [ $(NAPdrde
Q
2/f(x)]
<C [1f@)Pu(z) [ S@ENAdAda.
0

Now, by Lemma 11,

q
B(2)) = qs(ﬁ—m)—'w(x);) < 0(2|f)(\$)1) P{4]f(@)]),
and so
2|f(=)|
[ o< [ |f@Pd@f@)uE) [ A7 dde
0

=0 [ df(@)hw()de< [ S4C f(z))w(z)do.
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