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Weighted Ly integral inequalities for operators of Hardy type
by

STEVEN BLOOM (Loudonville, N.Y.) and
RON KERMAN (St. Catharines, Ont.)

Abstract. Necessary and sufficient conditions are given on the weights ¢, w, v, and
w, in order for
-7 _
3 (JP2(w(@)|TF(z))t(w) dz) < &7 ([ &1{Cu(z)]F{z)|)v(z) dz)

to hold when & and &2 are N-functions with & 0@1'1 convex, and I'is the Hardy operator
or a generalized Hardy operator.

Weal-type characterizations are given for monctone operators and the connection
between weak-type and strong-type inequalities is explored.

1. Introduction. In this paper, we will extend some weighted norm
inequalities from the Lebesgue setting to the Orlicz space setting. Given
a o-finite measure space (X,du) and an N-function @, the Orlicz space
Lg{X,du) is the Banach space normed by

1120 = 1$seceen = jat { [ #(L2L) auo <1}
X

In this paper, with the exception of Section 2, X will be either R+ = {0, oo)
or R", and p will be defined on the Lebesgue measurable sets.

A weight is a measurable function on X that is positive almost every-
where. For the Lebesgue space, L"(X), 1 < r < oo, which corresponds to
the N-function @(z) = z"/r, a weighted norm inequality for an operator T
has the form

1TF | pagx aw(zyan) < ClFlleex wie) doy-
This has a number of useful equivalent formulations, such as

(] mr@ioways)" <o [ 1)) )
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or

([ @)y dw) o( [ 1f @) e dz) 1/,.,

(J iztroyms) ™ <c( [ |f|Pa)1”’

where o = v~ P~ This last was used effectively by E. Sawyer in papers
such as [12] and [13].
The Orlicz space versions of these inequalities are

or

(N) !|Tf”Lg>2(X,w(a;)dm < CHf”Lq,l (X, v(z)da),
(0) @51( [ ea(7f)w) <a7( [ @:(Clfv),
(I) 27 ([ 2awiTs)) < o7 ( [ 2:(0vlf])
and

($) o7 [ a(Tro))w) <277 ( [ 21(CIFIw),

the norm, outer, inner, and Sawyer formulations. Unfortunately, none of
these are equivalent, and it is not clear which is the correct approach to a
weighted Orlicz space problem. (O}, (I), and (3) can be effectively combined
by allowing four weights ¢, u, v, and w, and considering the weighted integral
inequality

(11) 27 f Ba(w(@)|TH=))He) do) <7 [ 81(Cu(@)| (2) )o(e) da),

and this reduces to (0), (I), or (S) by taking the appropriate weight to be
identically one. We will seek criteria on ¢, u, v, and w for (1.1) to hold.
Characterizing (1.1) does not characterize (N). We will describe how these
relate in Section 2, but for now, we will simply point out that welghted
integral inequalities and weighted norm inequalities are different. We are
solving integral inequalities in this papér.

The first weighted Ls inequality was given by R. Kerman and A. Torchin-
sky in 1982 [6]. They showed that (O) holds for T = M, the Haxdy-
Littlewood maximal operator, when v = w, $; = $y = &, & € Ay to-
gether with its complementary N-function ¥, if and only if w belongs to the
Muckenhoupt A, class, with 1/p the Boyd upper index of &.

Quite recently, S. 8. Kazarian did the inner version of the Kerman-
Torchinsky theorem {5], and it is interesting that the techmiques and the
results are somewhat different from the outer theory.

A, weights have enough flexibility that proofs relying on them can be
fuzzy. Moving away from A, means grappling with inherent Orlicz space
problems. Thus, until quite recently, characterizations of weights did not
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exist in the Lg setting for such elementary operators as the Hardy antidif-
ferentiation operator.

The Hardy operator [ is given by

If(a) = [ £0)as
0

and its adjoint I* by

- [ rar

The grandfather of the (two) weighted norm inequalities is

THEOREM 1.2. Let v and w be weights on RT and let 1 < p < ¢ < o0.
Then

wn)  { J @) )" < ([ 1otz do)
0

0

1/p

if and only if
(1.4) [To= Y= D@~V ()9 < C for eachz > 0.
(See [1], (3], [9], [15], and [16].)

L. Quinsheng in [10] made substantial progress in the study of Lg in-
equalities for I. He did an outer version of (1.3) in which &#; and &, together
with their complementary functions ¥; and ¥, satisfy the A, condition and
the two Orlicz spaces correspond to p < q.

In the same paper, Quinsheng adapted Sawyer’s two-weight proof for the
Hardy-Littlewood maximal operator to an Orlicz setting, to obtain an (8)
version. This is perhaps the least natural of the various formulations in this
context, and Sawyer’s proof does not seem to adapt to any of the others.

Heinig and Maligranda extended Quinsheng’s Hardy operator result to
the four-weight setting of (1.1) and dispensed with one of the Ay cond1t10ns
in [4].

With this recent progress in mind, it seems reasonable to characterize
(1.1) for the Hardy operator without any A; assumptions. We do this for
the generalized Hardy operators, first treated in [2].

DeriNiTION 1,5. A generalized ffa'rdy operator, or GHQ, is an operator
f k(z,v)fly) dy,

where the kernel k is nonnega,twe, nondecreasing in z, nonincreasing in ¥,
and satisfies the triangle inequality

(1.6) k(z,y) < Dk(z,2) + k(z,), y<z<z.
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These include the Hardy operator, k = 1, and the Riemann-Liouville
fractional integral operators k(z,y) = (2 — y)®, a > 0. Weighted norm
inequalities for such operators have been studied in [2], [8], [14].

The main result of this paper is

TugoreM 1.7. Let T be ¢ GHO with kernel k. Let ¢, u, v, and w be
weights on RY, &1 and $y N-functions having complements ¥, and ¥y re-
spectively, and with $3 0 &7t conver. Then (1.1) holds if and only if there
emists C' > 0, independent of A,z > 0, such that

z (a(\ @)k,
(L8) Ef%(%ﬁﬁ%%%%v@ﬂySa@w)<w
and

r BAz
(1.9) Of 4] (m)v(y) dy € B\, z) < oo,
where
(1.10) a(h) = 81 087 [ &0w(w)ty)dy)
and
1) Bva) =808yt ([ Salrw)bly. 2))tw) dy)

The Orlicz space machinery is described in the next section. Section 3 is
devoted to weak-type Le inequalities, ie.,

(1.12) 45;1( { @Q(Aw(m))t(w)dw)

{ITf1>2}
< .@;1( [ #1(Cu()|f(z)])o(=) d:c).

We characterize (1.12) for the general class of monotone operators.

(1.1) is obviously stronger than (1,12). It is somewhat surprising that, for
the Hardy operator at least, (1.12) implies (1.1). This result, coupled with
the weak-type theory, gives Theorem 1.7 for T' = I. We present these results,
and also the connection between weak-type and strong-type inequalities for
GHO’s in Section 4. Finally, the proofs for GHQ’s are presented in Section 5.

2. Orlicz spaces. The standard theory of Orlicz spaces can be found
in Zygmund [17], Krasnosel'skil and Rutitskif [7], or Rao and Ren [11]. An
N-function & : R — RT is a nonnegative, convex function satisfying

&
b(z) lim 2 _

lim ——= =0,
z—0+ @ r—oo I
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Such a & has a derivative, ¢, which is nondecreasing and nonnegative, with
©(0+) = 0 and p(c0) = o0, so that

b

() = [ (1) dt,

0

and we can and will take v to be right-continuons. The Young function
complementary to & is given by

¥(z)= szp{wy -y}
This is also an N-function, and we have Young’s inequality
ab < &(a) + P (b)

If (X,dp) is a o-finite measure space, then the Orlicz space Ly =
La(X,dp) is the Banach space normed by either

Ilfli’éis"-""sup{‘f fgdu’: fw(rg\)g}

[ flle = inf {A: xf Q(lj—(/—\m—)—) du(z) < 1}.

These two norms are equivalent, and there is a Hélder inequality

[ f9au| < Cllflallglle.

(C' can be taken as (1) +¥(1).) Holder's inequality seems like a completely
indispensable tool for weighted norm inequalities, yet we will use this only
once.

There are a few eagy inequalities which we will need; and which we list
in the following

for all a,b6 > 0.

or

Lemma 2.1, Let & be an N-function with complementary Young function
W. Let 2,y > 0. Then

(2.2) P(x) £ zp(z) < D(22),
(2.3) $(z) + &(y) < Bz +y)
and

(2.4) qs(-“f%) < ¥(a).

Proof. (2.2) and (2.3) follow easily from &(z) = [; @(t) dt,  nonde-
creasing. For (2.4), fix a y with 2y — &(y) = 0. Let h = y — &(y)/z. Now
$(¢)/t is nondecreasing (by (2.2)) and since h < y, we have

3) 20 _

) y -
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which means that
&(h) < ha =y — $(y) < ¥(z).
Taking the supremum over all such y’s gives (2.4).

For many applications, it helps to have a constructive definition of the
complementary N-function ¥. This can be done by setting

(z) =inf{y: p(y) 2 ¢} and P(a) fwwdz

This and the standard complement are essentially equivalent.

Now we turn to a comparison between norm and integral inequalities.
Norm inequalities are weaker than integral inequalities. In fact, integral
inequalities are equivalent to the uniform boundedness of a family of norm
inequalities, as evidenced by

PROPOSITION 2.5. Suppose that (X, du) and (Y, dv) are o-finite measure
spaces and thet T is a linear operator mapping measurable functions on X
to measurable functions on Y. Let ® be an N-function and, given £ = 0, let
L eau(X) be the Orlicz space with the norm

||f”<b,adp=inf{ f@('f(“”)') du(x )<1}

with Lg can (V) defined similarly. Then

(2.6) f ST Fy)]) du(y) f &(C|f(=)]) dp(a)

if end only if
”TfH‘?,Edy < OHfH‘p,EG'.LL
holds for all € > 0, with C' independent of .

Proof Suppose the norms are bounded. Fix an f not identically zero

and put
-1
e=( [ o) au)
Since ”qus,Ed# <1, HTf“gﬁi.Edy < C. Thus,

j@(%ﬂ)dyglz

Replacing f by Cf gives (2.6).

[ 2(f) du.

icm
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Conversely, fix an f and let o = || || cqp. Then [ S(|fi/a)edp < 1, and

)dugef (I‘ﬂ)d,u by (2.6)

SO

Fo()ew=ed#(7(&)

<1

L]

which shows that
|7 fllp,ea0 < Cor.
A consequence of this is a duality inequality which we will use later.

CO.ROLLARY 2.7, Let (X, dp), (Y,dv), T, and & be as in Proposition 2.5,
& having complement ¥. Let v and v be weights on X, and t and w be
weights on Y, and let T* denote the adjoint operator to T'. Then

(28) J 2T @)W dy < [ S(Culw)|f(z))(z) de
holds if and only zf
29) [ #(w) T g(@)v(a)dz < [ W(O(wt) " g(y))t(y) dy

Proof. Suppose (2.8) holds. Let Sf(z) = (uv)~1T*(wtf)(z). (2.9) is
clearly equivalent to

J# (S
and this will hold provided

15 llee < CllFll2,et

e(e)de < [ #(C)F(y)))Hy) dy

for each ¢ > 0. But

187100 < Csup {e| [ (5o : lgllon <1}
For such a g,

| [ (Shgv| =¢| [ T*twtf)-g/u| = | [ fuTigu))e]

< CllflleecllwT(g/u)lls.00.

So we need

lwT(g/u)llo.et < Cliglaen,

which, by Proposition 2.5, holds if and only if
J #wIT(g/))t < [ &(Cg)w

an inequality obviously equivalent to (2.8).

The other direction is similar.

There, by the way, was our promised Hélder inequality. If you blinked,
you probably missed it!
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3. Weak-type inequalities. An operator T'f(x) = [o. k(z,y)f(v) dy,
z € R, is called monotone on R if its kernel k(z,y) is nonnegative and
either increasing or decreasing in x.

The complete characterization of weak-type weighted Ls inequalities for
monotone operators on R¥ is given by the following

THEOREM 3.1. Suppose T is a monotone operator on RT with kernel k.
Let t, u, v, and w be weights on R™ and let &1 and &5 be N-functions with
complements ¥y and W, respectively. If k is nondecreasing in x, then the
weak-type boundedness (1.12) holds if and only if

(3.2) I ml( Cf;uw)k Q‘Ey@;))v(y) dy < a() z) < oo

where ¢ is given by (1.10).
If, instead, k is nom’ncmasing in x, then (1.12) holds if and only if

(3.3) f !,Zfl( G’)\'LL y)v( ) ))fu(y) dy < a"(A z) < oo,
where
(3.4) o*(ne) = 81007 ([ B2 (w(y))tw) dy).

0

Proof. We do the nondecreasing case. The other is similar. Suppose
(1.12) bolds and fix = > 0. Since « and v are weights, they are positive
almost everywhere, and so

k{2, y)
n (U(y)'v(y))v(y) S0 wme

If we fix @, we can thus find sets E, C {y: k(z,y) > 0} with

k(z,y) )
!If( u(y)dy < oo
J oG e
and with B, increasing to the support set {y : k(z,y) > 0}. Fix such an
E = E,. Consider
o (200,
5 \ulyh(y)/ e

Now @,(t)/t is nondecreasing, and has full range R*, so this integral is a
continuous, increasing function of £, with range R*. So we can choose ¢ > 0

for which
B

u(yjv(y)

icm
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Set

_ 1 ek(z,y) \ v(y)
=g " (u(wv(w) h(,g) =W
Then for ¢ > z,

Ti(s) > Tf(z) =24 > A,
and so, by (1.12),

a(hz) € 610 851 [ ®20m(s)ts) ds) < [ &u(Cufp
{a:Tf(s)=>2}

{2 ten)n (Gt o

< [0Sty e

= 2(3',\5.

In particular, a(A, 2} < oco. Also, by (2.2), with 91 the derivative of ¥, we
cbtain

[ g (200 Y Heg)
7=J ”1(4cf\u(y)v<y)) u(y)

ek(z, y ek(z,y) \ v(y)
<[ w(strn) war s [ n(Geg) L=
But, again by (2. 2)

4CA a(A, z)k(z, )
12 200 2 (i) ) o

Combining these, and letting n — oo, gives (3.2).

Conversely, fix f > 0 and A > 0. Put By = {z : T'f(z) > A}. We can
assume without loss of generality that £ # 0. The monotonicity of Tf
assures us that ) is an interval of the form (8, co) (or [, 00)). Let v > 8.
Then Tf(v) > A, and so

A ) k(Y
20(07) < [ 20f5)uty) - Sp I oy dy

(M 1)k(y, y) - .
Sf@ﬂ?(?uf)v-k f Wl(_——“\u(y)v(y) )v(y) dy by Young's inequality,
< [ 8120ufw+a(hy) by (3.2).

Hence,

a(h ) < fﬁil(20uf)'u.
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But as v — 3, alA,y) — $10 égl(fEA @ (Aw(y)t(y) dy}, so that (1.12)
holds.

4. The connection between weak- and strong-type inequalities.
For the Hardy operator If(z) = fox f(y) dy, weak-type boundedness and
strong-type boundedness are completely equivalent when @50$7 " is convex.

THEOREM 4.1. Let €1 and @3 be N-functions with £ 0 <l5i'1 convex. Let
t, u, v, and w be weights on RY, Then strong-type boundedness for the Hardy
operator

(42) 07 ( [ Balwl(@(f(=))He) da)
<o7' ([ 21(Cule)|f(@))w(e) da)

holds if and only if weok-type boundedness
(4.3) 452‘1( [ Ba0w(@)i) dm)
{a:{ 1 ()| > A}
< o7 ( [ #:(Cule) £ @) v (z) dx)
holds.

Proof. One direction is trivial. To prove that (4.3) implies (4.2), take
f 2 0. Choose {z,} so that Jf(z,) = 2" Put I, = [25,-1,%,) and f, =
Fxi1,. Then

[ &awif)t <3 [ #a(2"w(a))t(z) da.
no I,
Now if ¢ &€ I,, then

Tn—1

I(Bfﬁwl)(w)EES j: fn—l(y)dy = B j‘ f(y)dy 2:2n+¢ > 9"
0

B2
and so

In C{e I(8fn-1){z) > 2"}
Thus, by (4.3),

f ¢2(znw(m))t(m)dwg¢go@;l( [ #:(8C fu-r(z)u(@))o(z) da:).
In

Applying (2.3) to &5 o 87! gives
[@2(wif)t<, o@;l(z [ @1(80ufn_1)v):sﬁ2 ot (jasl(scuf)v),

proving the theorem.

icm
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Remark 4.4. Similarly, weak-type boundedness and strong-type bound-
edness are equivalent for the dual Hardy operator I*f () = [ fly)dy.

For GHO’s, this result is too strong. Still, if wealk-type boundedness
holds, as well as a dual condition, then one can obtain strong-type bound-
edness. Now duality is essentially a norm property, and deducing from an
Ly integral inequality another dual integral inequality seems to be guite
problematical. We can do it when &y = &5, as in Corollary 2.7. This vields
the weak-type connection:

THEOREM 4.5. Let T be o GHO with adjoint T*. Let & and ¥ be com-

plementary N-functions, and let t, u, v, and w be weights on RT, Then the
strong-type boundedness

(4.6) S w(@)|T(f(2))(z) de < [ 8(Cul@))f(z)])o(z) de
holds if and only if both of these wenk-type inequalities hold:

(4.7) f

{m|Tf (e} A}

D(w(x))t(e)dz < [ S(Culz)|f(z)])v(z) de

ond
A . Cl(z)] .
o {m:IT"fL(C)I:»A}!p(“(m)U(m))v(m)d <J W(w(w)t(:ﬂ))t(x)d'

We prove Theorem 4.5 in the next section.

5. Proofs of the GHO theorems. Our first result follows immediately
from the weak-type characterizations and Theorem 4.1.

THEOREM 5.1. Let &5 and &3 be N-functions with & o dil‘l conves. Let
t, u, v, and w be weights on R, Then for the Hardy operator I,

27 ( [ a1 (@)))tla) do) < 87 ( [ #1(0ul@)|f(e))o(a) de )
holds if and only if for each X and z > 0,

m‘ a(A, ) f
Bf Wy (W)”@) dy < a(Mz) < oo

where au( A, z) is given by (1.10).

In the proof of Theorem 1.7, we will need a slight generalization of this,
which we state as

LemMa 5.2, Let @y and Py be N-funciions with &, o 5151’1 conver. Let
t,u, v, and w be weights on BT, and let g(2) be a strictly increasing function



46 S. Bloom and R. Kerman

on Rt with o differentiable inverse, end with g(0) =0, and g{oo) = oo. Let

I, be the operator
g{=)

f fly)d

Then
37 ([ Brtu@)IL(f=))tie) do) < 877 ( [ 81(Cule)|f(@))e(a) da)

holds if and only if

[ (S5 ay < ah,74(0) < o0
0

for all  and X > 0.
Proof. We have

[ Ba(wlI, 11t = Of%(w(g*lty))|If(ymt<g~1<yn%g-l-(w v,

and the weighted Lg integral inequality asserted by the lemma will hold, by
Theorem 5.1, if and only if

" ay(A, )
I o (Graggt 0 a2 eath) <o

=d1007 ([ B0 dy) = (g7 (),
g7 M)
proving the lemma.

Now we prove Theorem 1.7. For the necessity, (1.8) follows from the
weak-type boundedness and Theorem 3.1. For (1.9), take E C [0,z] and
F C [z,00) with

Be(n,2) = 1 0977 ( [ S200u(y)k(y,))t(u) dy ) < o0
F
and

8r(0,)
Jn (Grmioey o dv <=

icm
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As in Theorem 3.1, we can choose an £ > 0 such that

A _eBr(hz) Noly) ,
(5.3) g%(a\u(wv(y)) = dy = Br (), 2).
Take
) = efp(A, x) A
Fy)=w (G(\u(y)v(y))gﬁp(}hm)v(y}m(y)-
Then
1 (Cuf)v = efr(A ) CAuv
J #:fousro= [ @ (L”I(G/\u( ) )
_.fW (;fj(/\;gy))v(y) dy by (24)
= Eﬁp()\,ﬂ:) by (5.3).
Hence,
88 (0,2) 2 3007 [ Ba0wle)TH6)10) dy),
Now for y > z, ’
fi’c z)ds > k(y, )ff(s)ds=/\ic(y,m),
0 0
80 we have

£8r(),2) 2 81 087 f%(,\w(y)k(y, 2))(y) dy) = B, 2).

In particular, 8(A,z) < oo, and so we can take F = (&, 00). Then 8p = 8,
and we see that £ > 1, Since the integral in (5.3) increases in €, (5.3) must
still hold when we replace € by 1,

Br(hz)
}[ v (C)\u(y)fu(y})”(y) dy < B(\ )

and (1.9) follows as E ~— (0, z).

For the sufficiency, we will use a variant of a method of Martin-Reyes
and Sawyer [8]. Fix f > 0, f bounded with compact support. The conditions
(1.8) and (1.9) will still bold if we replace the kernel k(z,y) by a smaller
kernel. Since k is monotone in z, we can approximate k from below by
kernels continuous in x, and then salvage (1.1) by Monotone Convergence.
So we can asswme, without loss of generality, that & is continuous in z. In
that case, T f(x) is an increasing and continuous function, so we can choose
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a sequence {2, } with Tf(z,) = (D +1)", with D the GHO constant from
(1.6) and n running from —oo to some N, which might be +o00. Now

(D+ 1" = (D+ D) ((D+1)" - DD +1)"h)

Tp—1

~(D+12(Tkmmy F@) =D | hoao,0)7 ) dy)
0 0

Ty

12 ( [ (k@) ~ Dh(an1,1))F (1) dy
0
+ Tk(mn,y)f(y)dy).

Let I, = (Tp—1, %s). Then, by (1.6), we have
G4) (D41

Tp—1

< (D + 1)°Dk(@n, 2n1) f fly)dy+ (D+1) fk(xmy V() dy

n

Set ‘
Fn—1 -1
A= {n (D +1)2Dk(zn, 2n-1) f fly)dy < (—DL;)—-——-}
0
and
B={n<N:n¢A}
‘We have
[ B2(wTf) < D [ B((D+ 1) Muw(z))i(z) de
nEA I, 11
+ 3 [ Sa((D+ 1) w(z) i(x) da
nEB I
By (5.4), when n € A,
yr—1
f k(z,y)fdy > (_l?_f.é:[_).w,.
In
so if fn = fxr., we have
Tfn(ze) > 2{D+ 1yt

forn € A. Thus for z € 1,1,
T(2(D + 1)% fu) () > (D + 1)
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and so

IBEDD J

ned " {@T (2D 1) fr ) (@) > (D+1)*H )

$o((D + 1) w(w))t(z) de

Since (1.8) implies the weak-type boundedness (1.12) for T,

3 <3 F08 ( [ 2,20(D + 1) fu(@)u())v(x) dm)

neA n

<s 007 (Y f asl(zc(p+1)2fn,(x)u(m))v(m)dm) by (2.3)

= 82087 [ $120(D + 1) a(w)u(z)o(z) do).
It will suffice to get a similar estimate for 3, 5. Set

W (z) = 2D(D + 1)*k(zp, 2n-)w(z) for @ € Iy
and
h{z) =zpor  forz € Ly,

Then

h{m)
> < [ (W) [ fw)dy)ta) do
0

neBl
Let g(z) be strictly increasing with a differentiable inverse, and with g(z,,4.1)
= 2, _;. There exist such g's converging monotonically to k, and so, thanks
to the Monotone Convergence Theorem, it will suffice to show

[ W (@)L, f(2)a) do < B20 87 ( [ S1(Cuf)v)
with I, as in Lemma 5.2. This will hold provided

N ACLE

W) aw(A, g7 =) <o

where
w(ha)=8:087 ([ B0 (w))tly) dy).

As usual, ¥ (o/ (CAuv))/ e increases in o, so it will suffice to show (5.5)
with o replaced by something larger. But

J 80w )Hs) )

97 (=)

ozw()\,g"l(a:)) =@y 0 Py (

and so, if g~ (z) € Inty,
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w(d g (@)
=200 (X [ B(0D(D + 1) Kan, z-1)w(y)i(y) dy)
kzn ey
< &y 0 G71 (E [ #2(02D(D + 1 k(y, 25 —1 )w(y))t(y) dy)-
kzn Ixg

But z,_1 = g{zns1) = g{g71(z)) = z and so
aw (3,074 (2)) = 22027 ( f B5(32D(D +1)*k(y, @) (y))K(y) dy )

= B(2AD(D + 1)*,z),
whence (5.5) will hold provided

Df o ( 22};}();; : ))'u(y) dy < B2AD(D + 1)%, ) < oo,

which is (1.9) with C replaced by C/(2D(D+1)?). This completes the proof
of Theorem 1.7.

Proof of Theorem 4.5. The necessity is easy, since (4.6) forces the
dual condition {2.9). For the sufficiency, we follow the previous proof. One
of the estimates was handled by the weak-type boundedness (4.7); the other
reduced to showing

a(z)

(5.6) f @(W(m) [ 1w dy)i(z) dccilgb_gof_ﬁi’l( f d51(Cuf)'u)

0
where

W(z) = 2D(D + 1)*k(2q, 2n_1)w(z) for z € oy

and g was continuous, strictly increasing, with g(2n4.1) = ®n.1. Let Wy (y) =
W(g~1(y)) and to(y) =t(g ~Hy))(d/dy)g™ (y). Then, ag in Lemma 5.2, the
left side of (5.8) is

[ BW,(2)If(z))ty(x) da

so proving (5.6) is equivalent to showing

[ 7o) f@) (@) de < [ @(C(W,t,) 7 [£(2)|)tg(2) de,
by Corcllary 2.7, where I* is the adjoint to the Hardy operator,

x) = }of(y) dy.
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By Remark 4.4, (5.7) holds provided the corresponding weak-type inequality
holds, which, by (3.3), means that

59 JHEEEmw)umasa <o

e
where

* 2
aOva) = [ ¥ (5 Yot dy

0

and & is the minimal complement to . So we have to show that (4.8) implies
(5.8). By (3.3), (4.8) is equivalent to

(5.9) f gzs(

After a change of variable, the left side of (5.8) is

(5.10) f gzs( ((:,A )W( )) ty) dy < e (), x) < 0o
9™ (=)

and, exactly as in the previous proof, when g~ () € 1, this is controlled

A2y 2y ))t(w dy < a* (A7) < oo

2D(D + 1)*k(zp, z4-1) (y))t(y)dy
< j?gb( 2.D(D+1 2By, a-1) w(‘y)) dy

s J#(TGonm s ikt i)

since, once again, z,,..; > . Choosing C appropriately in (5.10), we obtain
(5.8) from (5.9).

Unlike the case of the Hardy operator, weak-type boundedness for a
GHO need not imply strong-type boundedness. This can be seen by a simple
example. Take &,(z) = &y(z) = 2%/2 and k(z,y) = (z —y)*/?. Let u(z) =
w(z) = 1, v(z) = e® and t{x) = z"* Then

B, ) = f,\2

so (1.9) fails, and with it goes the strong-type boundedness. On the other
hand, (1.8) easily reduces to

_zdy__
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€T

f y~? dy f (y—z)e¥dy<C
x 0
which clearly holds for all £ > 0. So the weak-type boundedness holds.
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On group extensions of 2-fold simple ergodic actions
by

ARTUR SIEMASZKO (Olsztyn)

Abstract, Compact group extensions of 9-fold simple actions of locally compact sec-
ond countable amenable groups are considered, It is shown what the elements of the
centralizer of such a system look like, It is also proved that each factor of such a system
is determined by a compact subgroup in the centralizer of a normal factor.

1. Introduction. In this paper we describe the centralizer and the struc-
ture of factors for ergodic group extensions of a 2-fold simple action of a lo-
cally compact second countable amenable group on a standard Borel space.

Our method is an adaptation of the methods developed by Lemanczyk
and Mentzen in (5], [7], [4] for Z-actions and consists in a description of
the ergodic joinings of these actions. We show that ergodic joinings are
relatively independent extensions of certain isomorphisms between normal
natural factors, For that we will need the ergodic theorem for our general
case (for proofs we refer to [1] and Krengel’s book [3]). For ergodic Z-actions
the form of the elements of the centralizer for group extensions of a discrete
spectrum transformation was found by D. Newton [8] in the abelian case
and by M. K. Mentzen [7] in general case. Here we generalize Mentzen’s
result to arbitrary locally compact second countable group actions, We also
generalize the main result of [5], [7] describing factors in terms of compact
subgroups in the centralizers of normal natural factors (for related results
see [2], [4], [o]).

2. Definitions and theorems. Let ® be a focally compact second
countable group and (X, B, 4) be a standard Borel space. We will say that
R acts on (X, B, 1) if there exists a Borel map from X xR to X (we denote
it by (%,¢) — xt) such that

(1) z(tyty) = (zty)te for all ty,tp e R and a2, z € X,
(i) e =z for a.a. z € X.
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