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Integral operators on weighted amalgams
by

(" CARTON-LEBRUN (Mons), H. P. HEINIG (Hamilton, Ont.)
and 3. C. HOFMANN (Dayton, Ohio)

Abstract. For large classes of indices, we characterize the weights u, v for which the
Hardy operator is bounded from £7(LP) into £9(L%). For more general operators of Hardy
type, norm inequalitiss are proved which extend to weighted amalgams known estimates
in weighted LP-spaces. Amalgams of the form £9(I%), 1 < p,g < 00, ¢ # p, w & Ap,
are also covgidered and sufficient conditions for the boundedness of the Hardy-Littlewood
maximal operator and local maximal operator in these spaces are obtained.

1. Introduction. The weighted amalgam on the real line with weight w
is the space £9(LF), 1 £ p, ¢ < oo, consisting of functions which are locally in
the weighted Lebesgue space LI, Where the integrals over intervals [n,n+ 1]
form an £ sequence. The norm

n+1 a 1
(1) 1 lpsoa = { 3 ( f w@eaz) 3",
neZd n

with the usnal convention applying when p or ¢ are infinite, makes £2(L2)
into a Banach space.

Amalgams arise naturally in harmonic analysis and were introduced by
N. Wiener in 1926. For a systematic study of these spaces and their role
in Fourier analysis we refer to [7] and [9]. In this paper we study operators
of Hardy type and the Hardy-Littlewood maximal function and extend to
welghted amalgams some of the well known mapping properties in weighted
LP-gpaces (cf. [1], [4], [13]). Specifically we characterize in Section 2 the
weight functions 1 and v for which the Hardy operator (and its dual) is
bounded from £4(LY) into 9(LE), for large classes of indices. The more
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general Hardy-type operators
xr

(K@) = [ keyfy)d, (K f)t)= fkmt

—00

are considered in Section 3 and conditions on the weight functions u, v in
terms of the kernel k(z,y) are given which imply their boundedness between
weighted amalgams. This extends to amalgams corresponding L? results of
(1], while the case k = I reduces to that of the Hardy operators discussed
in Section 2.

The significance of the Hardy-Littlewood maximal operator in harmonic
analysis is well documented ([8]). If

w4-h

(M1)(@) =sup 32 Jiswna (le)(m)=|3u31|—§—| [ 1)l dy
ey d

are the maximal and local maximal operators on R, then conditions on the
weight function w are given which imply their boundedness on £9(L2), 1 <
p < ¢ < oo, g#p. These results are contained in Section 4. For the Hardy -
Littlewood operator A, the conditions on w are somewhat stronger than
the A, condition (Theorems 4.2, 4.4, 4.5). For the local maximal function
M, the condition w € A, is, however, sufficient for the boundedness of
My 8(LE) — £9(LE), 1 < p < g < oo (Theorem 4.7).

Throughout R, Ry, Z and N denote the real line, the positive real num-
bers, the integers and natural numbers respectively. The conjugate index p’
of p € Ry is given by p’ = p/(p— 1), p # 1 and similarly for 3, ¢, 7 etc. Pos-
itive constants are denoted by A, B, C,... (sometimes with subscripts). x g
is the characteristic function of the set E and we also Wrlte X(nn11] = Xn-
Inequalities (such as (1.2) below) are interpreted to mean that if the right
side is finite so is the left side and the inequality holds.

We conclude this section by stating some known results. The following
inclusion relations are easily established (cf. [7]):

PrOPOSITION 1.1 If1 < gy < gp S o0 and 1 < p < 00, then (4 (L1) ¢
£2(LE), and if 1 S pi Spa S 00, 1< ¢ < oo, then £1(LE3) C 49(L11),

THEOREM 1.2 ([14, Theorem 7.1]). Suppose 1 < p, ¢ < oo and ju, v
are nonnegative requlor Borel measures on R, Then there exists o constant
B > 0 such that

(1.2) {f ( J gd#«)qu(ﬂf)}l/qSB{ fg”dﬂ}w,
R . R

(—o0,a]

for all nonnegative g € L%, if and only if
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(i) in casep < g,

B1Esup( fdv)uq( fdu)l/pf<oo;

VER My o0) (—o00,3]

(ii) 4n case ¢ < p,

st{f( fdu) /q( f]d.u) u(y)}l/r<oo>

where 1/r = 1/q l/p

Furthermore, if B is the smallest constant such that (1.2) holds, then
B~ B; fori=1,2,

Here and in the sequel A ~ B means that there exist positive constants
C1, €y such that ¢ < A/B < (.

The following corollary of Theorem 1.2 will be used in our study:

COROLLARY 1.3. Suppose 1 < p,g < oo and uy, > 0, vy > 0, k € Z. Then
there exists a constant B > 0 such that

(1.3) {3 5 w) '} < B(Cvner) ™,
neZ k nez

Jor all nonnegative sequences {as} € E‘}’un}, if and only if

(i) in cose 1 <p £ q < o0,

o0 m

B, = sup ( Z un)l/q( E y,{bmp')l/p{ < 00}

(i) 4n case 1 < g < p < oo,

B={ T (S w) (3 w) " <o,

med  n=m U= 00

where 1 /¢ == 1/q — 1/p.

Purthermore, if B ds the smallest constant such that (1.3) holds, then
B By fori=1,2

Proof. Let b defnote the Dirac measure concentrated at & € Z and
define pu = 37 vé"p by and v = 3, 5 updy. Then the expressions By, § =
1,2, in Theorem 1.2 reduce to those in Corollary 1.3 above. Moreover, the
Hardy inequality {1.2) becomes

(Sl 3 o)} 55k or)”

ned h=—00 nel
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for all nonnegative g € Lf = 2 The result then follows if we set

{wh '}
ap = 'uk g(k), for then 'uk P (k)P = alvk.

Note that Corollary 1.3 still holds if Z is replaced by N. For this latter
case the result was also obtained by a different method by G. Bennett ([3]).

2. The Hardy operator in amalgams. In this section we consider
the operators P and P* defined by

- [n Enw= 1

Let T be either P or P* and » and v weight functions, that iy, « > 0,
v > 0 ae withw € LL_ and o'% € Ll where P € (1,00) is some index.
Then conditions on the weight functions are given which are showu to be
equivalent to the boundedness of T' : £9(L8) — £9(LE) for certain ranges of
the indices p, B, q, §.

THEOREM 2.1. Suppose u and v are weight funclions and 1 < p, B < oo,
1< § < g. Then there is a constant B > 0 such that

(2.1) 1P Flpses < Bll g for all £ € (L)
if and only if
(a} in case < p,

sup{Z(

-1 n+1

)Q’/P}lﬂz{ mZ (f Ulwﬁ,)@'/iﬁ'}l/r}" <o

meL n=—oo R
and
n+1 1/ o "]
P o\ L/P
Co=sup sup (fu) (f vl“’”) < oo
n€Z 0<a<l ¥ .

(b) in case 1 < p <P, Cy < oo and
n+1  ndl

OgEsup{ f (fu)s/p( ftv]“ﬁ')sm w(py! dt}m < 0o,
noo1 n

nEeL
where 1/s = 1/p — 1/p.

Proof Sufficiency. Since |Pf| < P(|f|) we may assume without loss of
generality that f > 0. Moreover, C1 < oo implies that (Pf){x) exists for
every ¢ € R. In order to estimate ||Pf|,,u,q note that since

(Pf)(z ffclt—i— ffdt for x € [n,n + 1],

O
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we have
n+1 1/p
([ 1en@Pru@) ar) ™ <vio(ppm) + 1,
T
where

n4-1

Un= [ u and an{Tlu(m)(ff)pdm}l/p.

T

koo
Let a = [\" | f. Then (Pf)(n) = ¥"p____ a; and therefore

lpacg < {Zgg/p( i ak)q 1/q+ (ZTﬁ)l/q L+l
oo nEL

TLEZ k:-v-

1P

since § < ¢, Corollary 1.3(i) implies that

(2.2) 5 < B( Zvnag)l/q
neZ

for any positive sequence {V,,} satisfying
e, & NV 4
B = g1 ( UQ/:D) ( Vl_q
' mEPZ Z n;m " ) < o0
By Hélder’s inequality

W s (n_ftf%)l/ﬁ( o)

-1

If we choose V, = (f : v ~P)~U/% p € Z, then on substituting, the right
side of (2.2) is dominated by 1£|5,,7 and with this choice By = ¢} < oo.

To estimate I3, observe that Theorem 1.2 applied with measures y =
vy, v = uxa, and f = gul? yields

7 < c( Tlvfﬁ)l/ﬁ
n

under the following conditions:

(a) in case 1 <7 < p, if and only if €y < oo, where €' ~ Cy;
(b) in case p < B, if and only if C3 < o0, where C' ~ (3. Therefore [n <
Cllfllgg = Cllfllpv,g where the last inequality follows from Proposition

1.1, since § < g. From these two estimates of I'1 and I; the sufficiency of the
theorem follows.

Necessity. Let U, and V;, be defined as above. For any nonnegative se-
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quence {a;} define f =} 1.2 agvi= yi. Then, forn <z <n+1,

a

(Pf)(z) = Z Apton [01°F,
k=—o0 I
where A = ap—1 f:_l v~ This implies that

n41

(T epwruwe)”= (3 a)ve

k=—00

and therefore

1P lip = {qu/p( Z Ak) }uq_

k=00

On the other hand, an easy calculation shows that |flz.qe =
{3 nen ALVa}H T so that (2.1) implies that

{EU,;{/F( i Ak)(l}l/q SB(ZA?;Vn)l/q
nek k=—o0 neZ

for all nonnegative sequences {Ax} € f?vn}. Hence by Corollary 1.3, C1 < oo
for 1 < p, f< oo, since 1 <§ < g < co.

It remains to show that (2.1) implies C3 < 00 if < p, and C3 < oo if
P> p. Choose f = gxm, where g > 0 and m € Z is fixed. Then by (2.1),

m--1 T 11

ra o) ulz) s} < |PFlpe < ok

™
for all m € Z with B independent of m. Hence, by Theorem 1.2 applied
with the appropriate measures (see also [2, Lemma 1.1], [13]) it follows that
(3 < oo’ whenever 7 < p and in case § > p that C3 < co. This completes
the proof of the theorem.

In case 1 < g < § the embedding property of the involved sequence
spaces differs from that given in Theorem 2.1. The result is given next.

PROPOSITION 2.2. Suppose u and v are weight functions, 1 < p, F < oo,
1<q<q,1/r=1/9—1/7. Define

ct={ SIS (T 3 (fory 7"

CkEZ n=k n nEm—00 p—1
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(1) For 1 <5< p, let

SR s SN ¥/ 4
D, = sup (fu) (f ul“f’)
ag(0.1) o n

(i) For 1 < p <P, let
D = { 7?—1( ij\-lu)S/p( f Ul_ﬁ,)s/#v(ﬂlﬁﬁ, dt}l/r ,
n ¢ n

where 1/8 = 1/p — 1/B. Then there is a constant B such that (2.1) holds
if O < oo and {Dn} € & (respectively C} < oo and {D,} € £7) in case
1< P <p (respectively in case 1 < p < 7).

Conversely, C{ < oo is necessary for (2.1) whenever 1 < p,p < oo. Also,
sup,, Dr. < oo {respectively sup, D; < oo) is necessary for (2.1} in case
1 <P < p (respectively, in case 1 < p < P).

Proof Again, without loss of generality we assume f > 0. With the
notation as in the proof of Theorem 2.1 it follows as before that

[P Fllpwy < { Z U;{/"‘( i ak)q}l/q + (ZTE)W Ll
nez

nei k=—o0

Since ¢ < g, Corollary 1.3(ii) yields
AL/G
(2.3) I < B(ZVna%)

ngZ
if and only if

p={ T (Z o) (3 w)

meLd  n=m

r/qd YL
! Vo1 } < 00.

As in the proof of Theorem 2.1, if we choose V, = ([, v1=F)=/F | the
right side of (2.3) is dominated by ||f|| 54 Moreover, with this choice of
Vi, Ba = C] <oofor 1 <p, f< oo
(i) If 1 < 7 < p, then by Theorem 1.2(i) with measures u = v1 =%,
v ==y, and f o= gul?,
n41

{ f (ff) dm} <Oﬂ(?LfﬁU)l/ﬁ

if Oy~ Dy 'l‘herefore by Hélder’s inequality with index v = §/q,

(3om) Ao ) Y < (o)

ngd nez
Since gv' = r and {D,,} € £ the result follows.
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(ii) If 1 < p < P the argument is the same as in (i), only now we apply
Theorem 1.2(i1) instead of 1.2(i). Hence the sufficiency assertions follow.

The necessity of the condition ¢ < oo is established in the same way as
the necessity of (; < oo in Theorem 2.1, only now part (i) of Corollary 1.3
is applied instead of part (i).

To prove the necessity of sup,, D, < oo (respectively sup,, D], < co) we
note that if | P f||p,uq < Bl fll5v,7 holds for all f € £4(LE) with some B > 0,
then the inequality holds in particular for all f in the subspace £9(LP) of
£7(L%) since ¢ < g (cf. Proposition 1.1). Theorem 2.1 is then applicable with
¢ = ¢ and this proves the assertions.

The preceding results are now applied to show that the dual operator P*
of P coincides on the amalgam space with @ : g — |, fo g. A classical duality
argument then yields the corresponding conditions for the boundedness of Q.

THEOREM 2.3. Suppose 1 < p, P < 00,1 < T < ¢ < oo and u, vare weight
functions. Let Cy, Cy, and Cy be as in Theorem 2.1. Then the operator ()

is bounded from €9/ (I, ) into €7 (IF, ) if end only if

ul—#
(i) C1 < 00 and Cy < oo in case P < p,

(ii) Cy < oo and C3 < o0 in case p < P.

Proof. We shall prove the assertion for ¥ < p only since the remaining
case can be dealt with in a similar way.

(a) Suppose C and Cy are finite. By Theorem 2.1, P is bounded from
£9(LP) into £2(LE). Since (LB)* = ¥y forl <p< oo, u>0ae,
and (£9)* = 02 for 1 < ¢ < co, the dual of £2(L%) is 07 (L7, _) (ct. [9]).
Similarly [£9(L2)|* = ¢4 (Li 1~ ). As a consequence, the dual operator P*
of P is bounded from £¢ (szl_p’) into £9' (Lf ;_ﬁ,). The sufficiency part of
the theorem will thus be proved if we show that P* = Q. To do this, let
F20,f€8(L), 2 0,g€ ¢ (I, _,) and define fiy = fx(ony N € N,
95 = gX(-5,5), 5 € N. In view of the local integrability of v1~# and u, it is
easy to see that fiv € L' and gg € L. Therefore

(2.4) [ P e)gs(eydz = [ (Qos) (v it) ds

R 4

for all N, § € N. The sequences (Pfy)(z)gs(z) and (Qgs)(t) f () are both
increasing with N and S. Moreover, the former converges to (Pf)(z)g(z)
a.¢. and the left integral of (2.4) is uniformly bounded by

J (P @) dz < 1P| - | Flao gl gl rmst -
J _ _
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It follows from the B. Levi theorem that
Jm (@Qas)®) (D) = (Qo)(0)F1)

S-s00

a.e. and in L. In particular, this means that (Qg)(t) = [ g exists for each
t e Rand

J Phe= [ f(Qq).

R
By Tonell}’s theorem this identity remains valid for all f € #9(Lf) and
g € 07(LP,_ ), which yields P* = Q.

ul-p

(b) Suppose now that @ : ¢ — [ g is bounded from Eq'(Lil_p,) into
Eq’(Lfl__ #)- Then (2.4) and arguments quite similar to those above show
that @* = P. Hence P is bounded from £9(L?) into £9(L2). The necessity
part of Theorem 2.1 then shows that €} < oo and s < oo.

Remark 2.4. 1. The following reformulation of Theorem 2.3 may be
mmore manageable:

THEOREM 2.3'. Suppose u and v are weight functions and 1 < p, p < oo,
1 <§<q < oo Then there is a constant B > 0 such that |P*f|lpuq <

B||flls,g 4 and only if
(a) in case 1 < B < p,
m—1 71 o0 41 — v
a/py /g AN S V)
CfEsup{Z(fu) } {Z(f’ul"‘"’) } < 0
mez ~ T n n=m n
and
Nt 1/p n+l . 1/—/
C; =sup sup (f u) (f’ul_P) p<oo;
neZ D<ol nka

(b) in case 1 < p < p, Cf < 0o and
41 ]

ci=an{ T (J " (Frr) " e <o

where 1/s = 1/p ~ 1/P.

2.In case 1 < ¢ < § < 00, similar arguments can be used to obtain the
dual analogue of Proposition 2.2. We omit the details.

3. Variants of Theorems 2.1 and 2.3 held for amalgams of weighted
Lebesgue spaces over (0, co) and sequence spaces over N. Of course if p = ¢,
¥ = § they reduce to the classical weighted Hardy inequalities [4], [11], [13].

We conclude this section by applying Theorem 2.1 to cobtain the classieal
Hardy inequality in amalgams.
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COROLLARY 2.5. If 1 < p,g < oo and f > 0, then

o ety @ NP (e/ey e ool 2\ 9P
(S[TGJ) ) == 50 ™)
Proof. Let f be supported on Ry and set p =5, ¢ =7, u(z) = z7F,
v(z) = 1 in Theorem 2.1. Then T < sup,,5q ™ 1d (e nm Ol < oo
Also, the 1ntegrals in the definition of €'y are dominated by (e 4+ n)™!
x (1— @) /Pal/?  which is bounded by 1if n > 1. If n = 0, the integrals are
dominated by (p — 1)~*/7. Hence the result follows.

3. Integral operators of Hardy type. We now consider the operator
K defined by

(Kf)(= fk(w,y fydy, f=z0,

and its dual K*. Here we assume that the kernel k(z,y) > 0 is nonincreasing
in the first variable, nondecreasing in the second and defined on the set
A = {(z,y) € R? . y < z}. As in Section 2 we consider weight functions
u and v on R, that is, functions which satisfy © > 0, v > 0, w € L], and

v € Ll for some P & (1,00). In our results conditions on these weight
functions v and v are given which imply the boundedness of K and K* on
amalgam spaces with weights w, v, thereby extending the corresponding L¥
results given in [1].

THEOREM 3.1. Let 1 < PSp<oo, 1 <f<qg<oo. Suppose u and v are
weight functions and K is the operator with kernel k& defined above. If there
exist numbers 8, € [0,1] independent of n € Z such that

n+1

(3.1) D1—~sup{ Z ]gnmryg(f )q/p}l/q
X{ Em: k(m + 1 n)‘-j,(l--'y)( jﬁvl_ﬁ,)q’/ﬂf}l/@f
T | R

and
Al

L/
(3.2) Dy=sup sup {fk:(y,a)ﬁpu(y)dy} g
neZ a€{n—-1ln+l) ~

o Jrar ot a)”

are finite, then there exists a C' > 0 such that |K f
f e a(Lf).

P.q = < OHf”:D ”U,q folr a‘il
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Proof. We use the method of majorization quite similar to that used
in the proof of Theorem 2.1. Due to the possible singularities of the kernel
k(z,y) on the diagonal z = y a modification of the decomposition of K f is
required. Specifically, for f > 0 and for n < z <n-+1,

n—1
(EN@) = [ bz, y)dy+ fk(m,y)f(y)dy:Tx(m,n)+Tz(w,n)~
— X Mol

0 - e+l i .
If Up= """ uand a; = Ji_1 f, then because of the monotonicity assupp-
tions on k{zx,y),

n4-1

([ Tu@,n)Pufe) dz) 8

"

n—1
SUMPTi(nyn) =UMP [ k(n,y)f(y)dy

n—1 n—1
=Ur 3y f k(n,y) fly) dy < UMP S k(n,i)as.
i=—00 1 i=—00

Therefore from |1, Theorem 4.1} it follows that

736 < (02 3 won 1, 9a") " < a0 (- voa)

nead P=—00 nez

provided

(3.3)  sup ( i

k)

Y
k(n+ 1,m)rue )

m

x( Z k(m+1,n)(1 Nyl q) /q’<oo.

T O

It we choose Vi, = ([, w'=F)~¥/7  then (3.3) coincides with D of (3.1).
As in the proof of Theorem 2.1,

/1
(32 %) < 1l
neZ

Next observe that an application of [1, Theorem 2.1] yields
n L n+t1 *

(f To{z,n)Pu dm) /p_{n_fl m)(n_flkm y)f ) }/p

< 4D, ( _lefﬁ) /8

n-1
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provided that Ds given by (3.2) is finite. Therefore
n+1

[T2(,m) p,uq < ADQ{Z( “pr+ 1‘!‘ Ufﬁ)q/iﬁ}lfq

neZ n-1

< 24D{ 3 ( f Ufp)q/p}

neZ  n

/4

7,0,

where the last inequality follows from Propaosition 1.1. Since |[K f|lpu.q <
I T2 (> ) fipug + | T2(5 m)llp,u.g the result follows.

Remark 3.2. If k(z,y) is defined on the larger set A={(z,y) e R?:
y < z} then the conditions (3.1) and (3.2) in Theorem 3.1 can be replaced

by

Dy = ity 4 { ;k(n, m)vq(?-lu) 9/p}1/q
x{ i k(mn(lﬂw)q( f - _,)q/p} ,<OO
T -1

and
n+1

- /e
Dy =sup sup ( f k(y, @)*Puly) dy)
n€Z a&nntl)

o

«(f ke 0Bu(y) 7 ay) 7 < oo

T
to insure the boundedness of K : £9(LF) — £9(LE). The proof of this is quite
similar to that of Theorem 3.1 and hence omitted.
Arguments similar to those used to prove Theorem 2.3 show that 1f Dy
and Dy of Theorem 3.1 are ﬁmte. the dual operator K* of K on 7 (L )

coincides with J : g — [, k(=,t)g(z) do. With an appropriate change of
the names of weights and role of the indices we can state the dual result of
Theorem 3.1 as follows:

THEOREM 3.3. Suppose u and v are weight funciions (v > 0) and L <
P<p<oo,1<g<g<oo, B,ye (0,1 If

D= Sup{ Z k(m+ 1, n)vq( fnu)qh’}l/q

mez a1

{ i k(n, m)? 17)(]‘ 1- -,) /"’}1/4’

ne=m 1
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and

Dy =sup  sup
nEZ ag(n—1,n+1)

{ fa ko, 9)PPu(y) dy}l/p
n-1 )

n+1

[ Fromagr )

are finite, then there exists o ¢ > 0 such that | K* < OV lsws
s 1K fllpe < Clflpng for

Note that this result corresponds to the statement regarding P* in
Theorem 2.3,

The previous theorems and remarks apply in particular to operators of
convolution type. For example if

(k* f)(z) = fkw—wf)

where k(z) > 0 is nonincreasing on R, then we obtain from Theorem 3.1 at

once

COROLLARY 3.4. If p, B, ¢, G, 3, v are as in Theorem 3.1 and the wesght
Junctions satisfy

n--1

néd ad(n—~1ni1)

iuel%{ i k(n — m)'rq( f u)‘l/?}l/q
n=m+1 J
- 5\ 7 )P LAE
{n;wkm—i-l_n(lv (fv ) } e
and
sup  sup ( le(y — a) Py (y) dy)zlp
&

< ] bla P O Pupapr ) < oo,
n—1

then ”FC * f”p,u,q < O”f”ﬁv’uaﬁ'

From this corollary and its dual one obtains easily mapping properties
of various fractional integral operators in amalgams, thereby extending the
weighted LP results of [1] to weighted amalgams. Note in particular that if
we take k(z) = 2% /T'(a), 0 < o < 1 and f supported in (0, oc) we obtain
from Corollary 3.4 weighted amalgam inequalities for the Riemann-Liouville
fractional integral operator. From this one also deduces estimates for the left
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handed fractional maximal functions My, 0 < o < 1, defined by

ot+h
— hoc-l !
(Maf)(e) = sup B _fh H

since (Mo f)(z) < I(a)(Iof)(2), where Iy is the Riemann-Liouville frac-

tional integral operator (cf. [1]). . .
Corresponding results can also be obtained for the Weyl fractional inte-

gral operator by using the dual form of Corollary 3.4 based on Theorem 3.3,

4. The Hardy-Littlewood maximal operator in amalgams. In
this section weighted amalgam norm inequalitics are proved for the Hardy--
Littlewood maximal and local maximal operators on R defined by

1 o 1
= — dy, Mif)z)= sup — fly)| dy
(M7)(@) = sup 5 fr FWldy, N = w0 f ()]
respectively, where z € R and I is an interval centered at ¢ with length
| Lz |-
The weights considered here belong to certain A, weight classes. Recall
that w € 4,, 1 < p < oo, if for every I C R, there is a constant €' > 0 such

that
p—1

{4.1) (l]lﬁ }f w(:c)da:) (le }f w(g) " P-H d:a) <0 <oo,
and we Ay if
(4.2) |Tlr| If w(z)de <C esmsei?fw(:c) .

Note that if w(z) = |z, then w € Ay, p > 1, if and only if -1 < a <
»—1,

The definition of the two-weighted 4, class is similar. Thus (u,v) € 4,
1 < »< oo, if for every I C R,

(& J e i) J w(m)"lﬂp—”dw)M <C <o,

I

These definitions are completely analogous in the discrete case. Thus,
the discrete maximal function on Z is defined by

. N
Mi(g)(m) = su Qn | »

where & = {an}nez 18 a sequence of real or complex numbers,
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. A.positive sequence w = {w, }nez is a weight in AS, 1< p < oo, if there
is a constant C > 0 such that

N+ N No+N _
1 1 0 p—1
(4.3)  sup ( Y )(__ v —1/@_1))
N +1 i w
NZ0 + vl 2N +1 NN *

<0 <o,

where Ny € Z is arbitrary. :
Th? smallest} constant C'in (4.1), (4.2) and (4.3) is also dencted by A,
Ay, A;',, respectively. Since integers with counting measure form a space of

homogeneous type, a result of Calderén [5] (see also [10]) shows that M? is
bounded on the weighted sequence space £, 1 < p < o0, defined by

- {a ={an}: (30 [an|""wn) P oo} :

nez
whenever w satisfies (4.3).

We shall also need the notion of reverse Hélder inequality. A- weight
function w is said to satisfy the reverse Hélder inequality of order r > 1,
written w € RH, if for every I C R, there is a constant ¢ > 0 such

that
1 A
(mfw) =5 /w
I

The results of this section are concerned with amalgams £9(L2), 1 <
P, g < o0, p # g. For g = p the amalgam reduces to L2, and a celebrated re-
sult of Muckenhoupt [12] then asserts that the condition w € A, is necessary
and sufficient for the boundedness of M.

Remark 4.1. It is well known that if w € A4,, 1 < p < oo, then
there exists an » > 1 such that w € RH,. In particular, if w € Ay then
w € RH, for some r > 1, and therefore w™ € A4, for some » > 1. (See
8, Lemma IV.2.5, Theorem IV.2.7].) We shall use this fact in Theorem 4.5
below,

The firat result is
THEOREM 4.2. If L <p < g < 0o and

(1) we 4y N Agp/q,
(i) w e RHQ/;,J,

then there exists C' > 0 such that
(44) ”Mf”p:'w:q S O”.f”p,w,q v



148 C. Carton-Lebrun et al.

Proof. Let r = (¢/p)’. Then there exists {bn} = b € {7, with |[b][¢~ = 1,

such that
n+1
IMF1 Zb f (Mf)ayuwe)de = [ (M[)(z)u(z)dz,
R

where u(x) = ¥, baw(z)xn(z). Since w € Ay, theveis a py, with 1 < Po < py
such that w € Ay, ([8]). Define v(z) = 3,z Amw(z)xm(2), where for each
m € Z, Ay = max{tm, Om), with

-1 Yr-pd
o = W MBI M), Wam= [ w, Bm= Y b
n k== -2

In what follows, we successively prove
(1) (’LL 'U) € APO:
(i) J 1P < ClIAIB e
Since (u,v) € Ap, implies [(M f)Pu < C [|f|Pv (see [8, Corollary 1.3,
p- 393]) the boundedness of M on £9{L2) will follow.
Proof of (i). Let I = [zg — h,z¢ + h], 2 € [ng,n0o + 1]. We consider
two cases.

(a) Suppose 0 < h < 1. Then

Al mf""’<(

n=ng—1 I
On the other hand, for z € I,
ng-+1
v(z)/ (tpo) = Z AL O=po)yy () 1/ Opoly ()
meng—1

. , L
where for each m with ng—1 € m < ng+1, we have Ay, = By, = ZZSJ(U w1 i
As a consequence,

P
ral) = ( e )
nn-l-l

(Y w7 (7 Ifw(m)l/(l—m))

k::‘n.n e 1

oL

po-L

which yields A (I)Aq(1) < A;,. (Here we assumed without loss of generality
that Eﬁf’:mml by > 0; otherwise there is nothing to prove.)
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(b} Suppose k > 1. Then

| otz
f Sor 2. bW < Oy(no, B,
I k=ng—[h]—2

where [-] denotes the greatest integer function and
ving, [h]} = min{M‘l({kak})(m) :m € [np — [h] — 2,n0 + [A] + 2]}.
Algo, for z € I,

no+[h]+2

w@) /0 =Y

meng~[h] -2

A,},{(l‘m)w(n:)l/(l'm)xm(x) ;

where A;" < ol < Winy(ng, [B]) for each m € [ng — [B]—2,n0+ [R]+2].
This implies

(i ) (i o)™

ng-[h

1 pa—1
< C{% Z W/ (pa—1) ( j‘ 1/(1 —Po))} < Cdy,.

mz=ng—[h]—2

Assertion (i) now follows from (a) and (b).
Proof of (ii), By Hilder’s inequality with exponents r' = g /p,

Jure=3 4 T iew < (2 4) W7l

meEZ m

Now, Apy, = max(@m, fm) < o + B, and by Minkowski’s inequality this

implies that
(S sz "+ (D)

Cloarly, (3, Br)" < C|lbller = C, since |[bljer = 1.
On the other hand, from the boundedness of the discrete maximal func-
tion ([5], [10]),

1/r m)" /r
(gaz;) I (Z Md({b%}x ) )1

m

<o(2u)" =0
&
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provided {W "} € A3, ie,,

1 No+N 1 No+N ) =1
] wr')  <oo.
(45) sup sup (2N+1n D M )(QN-I—l > ”‘) =

NocZN>0 =Ng— n=Np-N

To show that this condition is satisfied, note first that Holder’s inequality
and w € RH, yields
a4l ntl

-1 ; 7_/7,;
1< o ) S0 f wT )Wy,
<(For) (o) <o Torpm
so that W77 < C’(f:“'w”’") and the first factor of (4.5) is majorized by
1 No+N+1

IN +1 NN

—r

Similar arguments show that the second factor in (4.5) is dominated by

1 Ng+N  n+l , r—1 1 No4-N+1 , el
- s — r
(2N+1 > Jw ) (2N+1NfN v )

n=Ng~N n n—

1 Nq-}N-l—l r
< O( 'w) .
2N +1 Noon

0

But r = 1/(1 — p/q) and since w € A3._,/, the product of these two terms
is bounded and hence (4.5) holds.

This completes the proof of the theorem.

Remark 4.3. We now show that on the scale of A weights the result
is sharp. In fact we show that the condition w € RH,, is optimal.

THEOREM 4.4. Suppose 1 < p < ¢ < oo, Then for all & > 0 there is a
weight w with w¥P~% € A; and a function f € LI for which M f = oo,
Thus the estimate (4.4) fails.

Proof. Recall that |z|7" € A; if and only if 0 < B < 1. Let

wiz) = o] and f(z) = Y axa(e)

n=l

with & > 0 to be chosen. Then

00
q —Bq/p,, a0
P,whq ~ Z 7 n '
nw=1

171
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Clearly the sum is finite if
(4.6) 9(8/p~a) > 1.

It suflices therefore to show that for every 3, p/g < B <1, there is an «
such that (4.6) holds, but M f = oo.
Let = € [n,n 4 1], n € N. Then for every h > 0,
w+h oo

(%) WMD) 25 [ 3 k) dy.

w—h k=1

Now take h = n™, where m is large. Since & ~ n, the right side of (4.7) is
then larger than

m

n™ oo n™—1
n"™ f Zk“x;c(y) dy > n™™ Z k=
1 k=1 k=1

,nm
>n~™ [ y*dy
1
~ nm(a+1)—m = pMme

Therefore, for every sufficiently large m > 0 and z € [n,n+ 1], (M f)(z) >
Can™, that is, Mf = oo on [1,00) and so it is infinite everywhere. But
now, if ¢8/p > 1 then it is always possible to find & > 0 for which (4.6)
holds. This proves the result.

Note that if 1 < p < ¢ < oo and w?? ¢ A, then the conclusion of
Theorem 4.2 holds. This follows at once from Theorem 4.2, since w%/? € A4,
implies w € RH,/, and also w € A;. But then w € 4, for s > 1 and so
we A:n M Ag_p/q.

THEOREM 4.5, ff 1 <« g <p <o and w € Al; then ”Mf”p,w,q <
C fllpw.q Jor some C > 0.

Proof The argument is based on that given in [8, Theorem VI.5.2,
p. 555]. Let 8 = ¢/(p ~q) or 1/g = 1/p+ 1/(pB). Then there is a positive
sequence {u,} = u € £9, with |luflzs = 1, such that

{ %: ( ?1”‘??”) q/’ﬂ}l/qﬂ{ zn: [( ?1|flpw)1/pu;1/p]p}1/p(;ug)1/ﬁ

_ ( zﬂ: u:1 f f|P1l,u) 1/'p‘

.y .
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{f|f |p(zu an)) 2)d }1/n

Also, by Holder’s inequality with exponent p/q,

1M fllpwe < {Zv“l f \Mf’?,w} /p(%:vg)lf(ﬁp)

for any positive sequence {v,}. Now since p > ¢ > 1, there is a pp < p
such that pg — 1 > p — ¢ and hence (pp — 1)8 = (po ~ L)g/(p— ) > ¢ > L.
Therefore

1[0 ({u/ PP e < Cfl{untlles = C

and choosing vy, = [M‘Jl({u;,tw/(m_'1)})(m)]i""_1 it follows that

(Zvﬁ)l/ﬁ <C.

In order to prove (4.4) this argument shows that it suffices to prove

(8) [ MA@ (Y v (o) Jula) de
=C’f \f(a:)ip(Zu;lxn(w))w(a:)da:
R n

If we write
)Y vy xn(2)
n

and

) Z “'1:1)(71.(“’) :

then (4.8) holds (cf. proof of Theorem 4.2) if the weight pair (v,u) satisfies
Ap, for some py < p. That is, we must show that

w9 (3 [o) (i fee) RS

To establish (4.9), consider first 2k = {I| > 2. Let z be the center of I,
and suppose z € [m,m+ 1], m € Z. Then in analogy with previous argu-
ments, (4.9) is not larger than
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-1 _

(4.10) (Zh Z 'U—l f ) (% Zu,lg/(zio—l} 7_11()_1/(}70—1))?0 1 s

where summation is over all n € [m — [h] = 1,m + [h] + 1] (here [-] de-

notes the greatest integer function). Note that the second factor is obtained
from

’U,(.'B ~1/{po-—1) an(m —1/(po—1) ;/(Pn—l)'
new

Now by Hélder’s inequality with exponent r > 1, the first factor of (4.10) is

dominated by
1 o 1/t 1 i1 NS ¥is

But since w” € Ay, for r sufficiently close to 1 (cf. Remark 4.1),

1 L o RN 1 n+1 1/
FZ( )} <(mx To)
1 mA-{h]+1 i 1/r
() )
m—[h]—1
<C essinf w(z).

z&[m—[h]—1,m+[h]+1]

Hence (4.10) is not larger than

1 , 1/¢f
o -
C(thv” )
nt . 1/{po—1) po—~1
1/ po—1) essinf w(z)
{%Z“ ) ( () e

k3
1 ALY 7 |
cof 2N mr 1S 1m0
"O(% 2ot ) (% D ur )
<O max vt)
nEfm- [h] 1,m-A[h]+1]

i 1/(pa~ 1 PU 1
g [’ﬂEifﬂ-w[h]IEi%n+[h]+1]M ({un })(k ) <C.

po-}

But the second factor is equal to D & e — [,, ~Lme-[a]41] Un. This proves the
boundedness of (4.9) in the case h > 1.
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In case b < 1, that is, |I| < 2, the interval I can meet [n,n + 1] in at
most three integers, say ng -~ 1, ng, ng + 1. Therefore (4.9} is not larger than

ng-41 1 no-+1 1( 9 1 (o) po—1
-1 ro- I - 10k
(T (G o) 3 o (g forven))

n
n=ng—1

n=ng—1
no+1
<o $5 )
n=ng—1
ng+l » 1/ {pg—1) -1
b 02: y/ (po—1) _1_f meSblnfw(m)) ‘ )}O
" | w(z)
n=na—1 I
nil nil 1( " po—1
<o 52 ) (8w,
ne=ng—1 n=ng—1

where we used the fact that w € A;. Since

no41

¢ min 1%2( 3 uh/’(:ﬂo—l))m—l’

n€lro—1no+1 g1

the last product is bounded independently of ng. This proves the result.

As g in the amalgam norm ||f||pw,q becomes larger than p, the norm
tends to emphasize more strongly the local behaviour of f. This is the rea-
son why for the local maximal function My {but not M) the weight class
Ay, independent of ¢, is sufficient to assure boundedness between weighted
amalgams. This is the content of Theorem 4.7 below.

The weight pair (u,) is said to belong to Ag loc, the local weight class
A, s> 1,i0f

1 1 =1
(4.11) sup (— u) (—— v”l/(s“1)> < oo,
Ik ] If 1| If

The next lemma we require is a variant of a result of Muckenhoupt (cf.
18, Ch. IV, §1)]).

LEMMA 4.6. If (u,v) € A; 10e, 8 > 1, then My is of weak type (s,8) with
respect to the weight pair (u,v). That is, for A > 0,

Ju<oxs [|fPw,
E;\ R

where Ex = {z : |(My f)(z)] > \}.
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Proof. Without loss of generality assume f has compact support in R,

for once this case is proved, standard limiting arguments yield the general
case.

Now if f has compact support, then E; is bounded and the proof follows
along the lines of [8, pp. 391-392).

If (u,v) € A jlac then for [I] < 1,
1 ]
4.12 = s
(4.12) (mlffl).(ffu)sc’rfmv.
To see this, observe that by Hslder’s inequality,
(i, | |f)8 < (J_ [irm) (& [ /e !
@ V) =\ 1 .

and multiplying by [, u yields (4.12) with ¢ the A, 1. constant.
For each 2 € E there is an interval I, centered at x, with |I,| < 1, such

that
1
A = Il
7 I;r K
Clearly,
F, C U I
cEE,

and by the Besicovitch covering lemma there is a countable subseqiience
{I;} whose union covers E) and 2; x1;(x) € C. Therefore, by (4.12),

[Ty
1 -5
<o () (F S 1)
J I; Iy

<oy [ Iff

il
<O [ |flv.

R

THEOREM 4.7, If 1 < p < ¢ < o0 and w € Ay, then | Myifllpwq <
ClF lp,,q- '

Proof. Arguing as in the proof of Theorem 4.2 it suffices to prove
(4.13) [ 1) (w)Pu(e)de < € [ |f(z)Pu(z)ds,
R R
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where
u(z) =Y bnxa{z)jw(z),
ned
n+2
vi)= S xnl@) 3 bm)uls),
neZ m=n—2

with {b,} = b € ", r = (¢/p)’ and ||b]|¢~ = L. For if (4.13) holds, then
as before the right side of (4.13) is dominated by [|f||7 ., , and the result
follows.

Again, the proof of Theorem 4.2 shows that the weight pair (u,v) €
Apg 1oc Tor some pg < p. Hence by Lemma 4.6 with & = pp, My is of weak
type (po,po) and since Apg lnc C Arlec for 7 > po, M1 Is also of weak type
(r,7) with respect to the same weight pair (u,v}. Thus (4.13) follows from
the Marcinkiewicz interpolation theorem.

Remark 4.8. The proof of this result, that is, (u,v) € Ap, loe, requires
that v(z) > 0 a.e., which is the case if b,, > 0. However, the sequence {b,}
was chosen so that the duality argument holds, which in fact is

by = C’( lele\P)‘””“l.

m

But this is clearly positive for nontrivial f on [n, n+ 1]. On the other hand,
if f =0 ae. on some interval [ng, np + 1] then the right side of (4.13) is
unaffected if we replace v on [ng,ng + 1] by

ng-2

ma,x(a, Z bm)w, g > 0.

Mm==tig-~2

In this case (u,v) € Apy 10c, Where the A, 1o constant is independent of &
and so (4.13) still holds.
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