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Pointwise ergodic theorems for functions in
Lorentz spaces Ly, with p# oo

by

RYOTARO SATO (Okayama)

Abstract. Let = be a null preserving point transformation on a finite measure space.
Assuming r is invertible, P. Ortega Salvador has recently obtained sufficient conditions
for the almost everywhere convergence of the ergodic averages in Lpg with 1 < p < o0,
1 < g < oo. In this paper we obtain necessary and sufficient conditions for the almost
everywhere convergence, without assuming that v is invertible and only assuming that

B F 00,

1. Introduction. If r is an invertible null preserving transformation on
a o-finite measure space (X, F, 4}, then A, ,, and M will denote the ergodic
averages and the maximal operator, respectively, defined by -

Anmf@) = = 3 flr's)

and
Mf= SUPOAn,mEfi .

Ty
In [6], Ortega studied the good weights W for M to be bounded in
Loo(Wdp) (1 < p < o0, 1 <g < 00), under the additional assumption that
T is measure preserving. Among other things, he proved that | M f||pgwas <
C|\# lpgiwap if and only if sup,, >0 [|Anmfllpecswan < Cllf|pgwap, € being
a positive constant, not necessarily the same at each occurrence. Applying
this result he then considered a null preserving 7 on a finite measure space
and proved that if sup, o [[Anmfllpes £ C|lfllpq, where 1 < p < oo and
1 < ¢ < oo, then for any f in Lue(u) the ergodic averages Ao f converge
almost everywhere as n - co. It seems to the author that this condition
for the validity of the pointwise ergodic theorem is too strong. In fact, as
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is seen in [6], this condition implies |M fll,g < Cllfllpgs and thus Ay, f
converges strongly in Ly,{¢) as n — oo, However, in general, the pointwise
ergodic theorem does not imply the mean ergodic theorem. (To see this,
a counterexample due to Ryll-Nardzewski [7] is sufficient.) So the author
thinks that it would be of interest to find necessary and sufficient conditions
for this almost everywhere convergence. This is the starting point for the
study in this paper. We will find necessary and sufficient conditions, without
assuming that 7 is invertible and only assuming that p 5 co.

For this purpose, we first consider a positive linear contraction T' on
Ly (p) and prove a ratio ergodic theorem. As a corollary, we obtain the
desired result.

2. Preliminaries and results. Let (X,F,u) be a o-finite measure
space and M () denote the space of all nonnegative extended real-valued
measurable functions on X. As usual, two functions f and ¢ are not dis-
tinguished provided that f = g a.e. on X. Let V & M+ () be such that
V > 0 a.e. on X. The space Lp,(Vdu), where 0 < p,g< coor 0 <p< oo
and ¢ = oo, is the collection of all measurable functions f on X such that
|l fllagsvan < oo, where

(4 fo~ g5y VWPt a9 (g # o0),

e = { SUP4s0 ([ pimey V AT (g = o0).

Note that |[1z|pqvay = ( f EVdu.)l/ P, 1z being the indicator function of
Ee F. Also, \flppvan = (J IfIPV du)"? = || f|lgsvan and hence Ly, (Vdp)
= Lp(Vdu). The basic properties of Lorentz spaces Ly, (Vdu) are explained
in Hunt [4]. When V = 1 a.e. on X, we write || f||,; and Ly, (1) instead of
| Fllpgsvan and Lpq(Vdp), respectively.

Let T' be a positive linear contraction on Ly {p); thus |T'f]|1 < ||f]1 for
all f € Ly(p) and TL () C LY (p), where L (p) = Ly () N M {p). In
order to extend the domain of 7" to M*(y), fix any f € M*(u) and take
fae Li(u),n=1,2,.. ., suchthat f, T f a.e. on X. Then define

Tf= li‘;[,ann a.coon X .

It is easily seen that by this process 7' can be uniquely extended to an
operator on M*(u) satisfying T(f + g) = T'f 4 Tg and T(af) = aTf for
all f,g € M*(u)and constants o, 0 < & < o, For simplicity, the following
notation will ‘be used:

g (f.e) = (;T"f)/(i’fiﬂ) and  M(f,e) = sup Ry(f.e)

=)

for f € M* (1) and e € LT (u), with € > 0 ae. on X.
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We also consider a null preserving transformation 7 : X — X. By defi-
nition 7 is null preserving if it is measurable and satisfies (7~ E) = 0 for
all B € F with u(E) == 0. We call 7 ergodic if £ € F and 7—*E = E imply
u(E) = 0or u(X \ E) =0, and conservative if there exists no £ € 7 such
that 77*E < E and u(E\77'E) > 0. As is well known, if an operator
T: Ly{p) — L) is defined by the relation

[Ttdu= [ fdu (feLi(p), E€F),
E 77 E
then T becomes a positive linear contraction on Li{u). T will be referred to
as the Frobenius-Perron operator associated with +.
We are now in a position to state the first result.

TeEOREM 1. Let T be a positive linear coniraction on Li(u). Let V €
M*{p) withV > 0 g.e. on X and e € L (u) with e > 0 a.e. on X. Let
0<p<oo0<g< oo, and suppose r satisfles 0 < r <1, r <pandr < q.
Then the following are eguivalent:

(a) For any f € L, (Vdu), lim, RG(f,e) ezists and is finite a.e. on X.

(b) M(f,e) < oo a.e. on X for all f € LY (Vdpy).

(¢) There exists a U € MT (i), with U > 0 a.e. on X, such that

1 r
Uans (§Iflbavas) (>0, €L (Vaw).
{M(fe)>A}
(d) There ewists a U € M¥(p), with U > 0 a.e. on X, such that

limninf f Udp < (%[]fﬂpq;v@) (A>0, fe L (Vdp)).
{RE(f.e)>A}
Proof. By virtue of the Radon-Nikodym theorem, we may and do as-
sume, without loss of generality, that p(X) = 1.
(a)=-(h). Obvious.
(b)=>(c). We recall (cf. [4], §2) that Lpg(Vdp) is a linear space and has
a complete invariant metric ¢ such that

8 2(0, 1) = o(0,|£1) and o(0,¢f) = |¢["e(0, £)
for all f € Lye(V'du) and constants ¢, and further such that
(2) | Flogivan < 1000 A" < @/ = )Y I fllsqivan

It follows that L, (Vdy) is an F-space, with the topology induced by
|| [lpg:v - Next we notice that the mapping f — Rf(f, e) from L} (Vdu) to
the space Lo(p) of all real-valued measurable functions on X is continuous
in measure. In fact, if this is not the case, then there exists a sequence {fx}
in L (Vdu) with o(0, fi) < 2=% and pw({R2{fr,€) > €}) > 6 (k > 1) for
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some positive reals & and §. Then the function f = ¥ oo, fi is in L;Q(Vd#),
and writing Ex = {R}{fx, €) > ¢}, we have

R} f.e)(z ZRO(fk,e) >521Ek

But, since § < u(Eg) < ,u(X) = 1 for all k¥ > 1, the function A(z) =
3 ore 1 tp, (z) satisfies b = co on a set of positive measure, which contra-
dicts (b). Consequently, the mapping f — Rf(f, e) can be uniquely extended
to a mapping from the full space L,q(Vdu) to Lo(u) and it is also contin-
uous in measure. By this and the completeness of the invariant metric g,
(b) implies that there exists a positive decreasing function C'(A) defined for
A > 0 and tending to zero as A — oo such that for all f € Lt (Vdyu) with
0(0, f) £ 1 we have

(3) p({M(f,e) > A <C)  (A>0).

(Cf. [8], pp. 2-3, for a proof.) This yields that if {fx} is a sequence in
L, (Vdu) such that > oo, o(0, fx) < 1, then the function g = Y 5o, | fil
satisfies

(4) p{M(g,e)> AH < C(A) (A>0),

because (0, ) < 57, o0, [ful) = iy 00, fi) < 1.
For a moment, fix a real number K > 0 and define (K to be the
collection of all sets E € F, with u(E) > 0, such that

{5) w(E)YM(fe)(z)) > K" ae onE

for some f € L}, (Vdu) with o0, f) = 1. Since u{X) < oo, if £(K) is not
empty, there exists a disjoint sequence {E;} of sets in Z(K) such that

(6} E e D(K) implies supu(EnNE;)>0.
i

Writing E(K) = J; Bj and ¢; = p(E;)"/", and choosing f; in L, (Vdu) with

o(0, fi) = 1, so that (5) holds with f; and F; instead of f and K, we then
see that

(7 sup M(e;fi,e)(e) > K ae. on BE(K),

and

(8) Z Ocz.fw Z&Cy‘ -—Z,U w1,

1

It follows from (4), (7) and (8) that u(E(K)) < C(K) —~ 0 as K — oo
Thus for each n 2> 1, we can choose a sufficiently large K, so that

©) WX\ By) < % where By = X \ B(K,,).
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Since the inequality
p({z € B : M(f,e)(z) > AH(M(f,e)(¥))"
> p({z € By M(f,e)(z)> AN (A>0)
holds for each y in the set {z € B, : M(f,e)(z) > A}, (6) gives
(10)  p({z € Bn: M(f,e)(z) > A}) < (Kn/A)
(A>0, fe L o(Vidu) with (0, f) =1}.

If X(K) is empty for some K > 0, then the above argument implies that
(10) holds with By, = X and K, = K. Hence, in any case, (9) and (10} hold.
In order to finish the proof, we take a sequence {a,} of positive reals

such that
(i)
m==l .
and define
= Z anlp, (z).
n=1

By (9), U > 0 a.e. on X; and by (2) if f € LY (Vdu) and ||fllpgvay =
(p/(p—r))7/" then (0, f) < 1. Thus by (10),

[ Ude< Y auu(Bun{M(f,e) > A})

{M(fe)>r} n=%
r o K, r » .
<< Zan( ) = Z Ay, (T) ;—:—;I}fnpq;‘/d,m
n=1 n=1

= (MMrlmvas) >0,

This proves (c).

(¢)=-(d). Obvious.

(d)=>(a). Let f € Ly}, (Vdu). We apply the Neveu-Chacon identification
theorem for the limit of the Chacon-Ornstein ratio ergodic theorem (see, e.g.
[5], Chapter 3) to infer that the ratio ergodic averages R (f, e)(x) converge
a.¢. on X, but the limit may be oo. Thus for the proof it suffices to show
that u({M(f,e) = co}) = 0. To do this, let A > 0. Then

{M(f,e) = oo} C liminf{RE(f,e) > A} .
Thus, putting B = {M(f,e) = oo}, we obt_ain, by (d) and Fatou’s lemma,

[Udpglimint [ Ude <37 pgvan
{R3 (f.e)>A}
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Letting A — oo, we get [p U du = 0 and u(E) = 0.
The proof is complete.

We now apply Theorem 1 to a null preserving transformation r: X — X
on a finite measure space. For simplicity we set

1 n—1 ; | o '
Anf(m) == ; flr'z),  MAf(z)= s | A f ()]

n<

THEOREM 2. Let (X, F, u} be a finite measure space and 7 : X — X be
a null preserving transformation. Let 0 < p < oo, ) < g € 0o and suppose r
satisfies 0 < r <1, r < p and r < q. Then the following are equivalent:

(a) For any f € Lpg{p), limy, Anf exists and is finite a.e. on X,
(b)Y MAf < 0 a.e. on X for all f € Lyg(u).
(¢) There exists a U € Mt (u), with U > 0 a.e. on X, such that

[ vass(50he) >0 fe Ly,

{MAf>A)

(d) There ezists o U € M (), with U > o0 a.e. on X, such that

1 T
s [ Udus(51lm) >0 F€ Lyl
SN (VW IPOV!

(¢) For any E € F, lim, n~ 2 S070 u(r—E) ewists, and further there

exists a U € M™T(u), with U > 0 a.e. on X, such that

I 1 '
111’!3;L111f f Udp < (Xl|f‘qu) (A>0, f& Lpg(u)).
{l4n f1>A} ‘

Proof The implications (a)=>(b) and (¢)=>(d) are obvious; (b)=>(c)
follows as in the proof of (b)=-{c) in Theorer 1.

(d)=>(e). We may suppose that 0 < U < 1 on X, Given an & > 0, choose
& > 0 so that u({U < 8}) < &. Then, since 0 < A, lp £lon X for E¢ F,
(d) implies that

J Anle)du <67 [ (Anle)U dp+ u({U < 6})

< 6“‘1( f Udp+ A f Ud,u.) + &
{Anlp>A}

1 n
< §t (Xulgllpq) 6 IN(X) +e (A > 0).

Letting A > 0 sufficiently small to majorize the middle term by ¢ and then
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letting {|1zlpy = w(E)*/? | 0, we see that
n—1
lim supn™! TTE) = 0.
W(E)—0 5> g#( )

It follows that the set {n=" 37 7%1: n > 1} is weakly sequentially com-
pact in Lq(u), where T' denotes the Frobenius-Perron operator on L;(u)
which is associated with 7. By the mean ergodic theorem (cf. e.g. [2], p. 661),
the averages n~' 3.7~ T%1 converge in the norm topology of Ly(u). This
proves the first part of {e); the second part is trivial.

(e)=+(a). The Vitali~Hahn-Saks theorem implies that the set function
Y(E) = lim,n~ ! 0 u(riE) (B € F) is a (countably additive) finite
measure, absolutely continuous with respect to g, and clearly it is invariant
under 7. Thus if we write

Y ={z:(dv/dp)(z) >0} and Z=X\VY,

then v(r7'2) = v(Z) = 0, and so neglecting v-null sets we may suppose
that ¥ ¢ v—'Y. Therefore 7 can be considered to be a measure preserving
transformation on the measure space (Y,r). We now consider V = du/dv
(which is defined on Y), e = 1y, and the positive linear contraction Ty on
L1(Y,v) defined by

Tyf(z)=f(ra) (zeY, fel(Yv),

and apply Theorem 1(d) to see that for every f € Lpq(Y, p), lim, A, f(z)
exists and is finite a.e. on V.

To finish the proof, it suffices to show that u{X\lim, +~"Y") = 0. But this
is immediate, since X \lim, 7~"Y is an invariant set under 7 and contained
inZ.

The proof is complete.

Remarks. (a) In Theorem 2 the hypothesis (p, ¢) # (o0, 00) is essential,
In fact, by using Chacon’s example [1] we see that there exists a conservative,
ergodic and invertible null preserving transformation v on a finite measure
space (X, F, ) such that

liminf A, f =0 ae and limsupdpf=1 ae on X
n n

for some f € L (u). But clearly (b) in Theorem 2 holds when (p,q) =
(oo, co).

(b} Let (X, F, 1) be a nonalomic finite measure space and 7 an ergodic
null preserving transformation on (X, F, u). Then to each ¢, with 1 < ¢ < oo,
there corresponds an f € Ly4(p) such that for almost all z € X the averages
A, f(z) fail to converge to a finite limit. In fact, by [4], there exists an
f € Lyg(p) which does not belong to L (u); using this fact and the argument
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in Proposition of [8], the desired result follows. We also note that the same

result holds even if L'fq(u) is replaced by L;f,q,(,u) with ' < 1, because

(X)) < oo implies Lig(u) C Lprg(p) with p’ < 1.
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