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Two-weight norm inegualities for
the fractional maximal operator
on spaces of homogeneous type

by

ANA BERNARDIS and OSCAR SALINAS (Senta Fe)

Abstract. We give a characterization of the pairs of weights (v, w), with w in the class
Ao of Muckenhoupt, for which the fractional maximal function is a bounded operator from
LP{ X, vdu) to LY(X,wdu) when 1 < p < g < oo and X is a space of homogenecus type.

In 1990, C. Perez ([P]) gave a characterization of the pairs of weights
(v, w) for which the fractional maximal function over cubes in R™ is bounded
ag an operator from LP(R™ vdx) to LI(R™, wdz), 1 < p € ¢ < oo, when
v~/ (1) belongs to Muckenhoupt's class Ag. The main purpose of this
work is to extend the result of C. Perez to spaces of homogeneous type.
One of most important technical points of the proof is, as in [P], a suitable
modification of the Calderén-Zygmund method. In particular, we extend
the method H. Aimar and R. Macias ([AM]} use to obtain Muckenhoupt’s
theorem on weighted L? boundedness of the Hardy-Littlewood maximal
function in spaces of homogeneous type. _

The definitions and the statement of the main result are in Section 1.
Section 2 is dedicated to the proof of that result.

1. By a quasi-distance on a set X we mean a nonnegative functmn d(,-)
defined on X x X .such that -

(1.1)  for every x and y in X, 'd(a:,y) =0 iff z =y,

(1.2)  for every x and y in X, d(z,y) = d{y,z),

(1.8)  there exists a finite constant K > 0 such that for every z, y and
zin X,

d(:l), ?j) < K(d(ﬂ';, Z) + d(ziy)) .
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A quasi-distance d(-,-) defines a uniform structure on X. The balis
Bz,r) = {y : d(z,y) < r}, r > 0, form a basis of neighborhoods of =
for the topology induced by the uniformity on X.

Let X be a set endowed with a quasi-distance d(-,-) and assume that a
positive measure u, defined on a o-algebra of subsets of X which contains
the balls B(z,r), is given and has the property that there exist two finite
constants, a > 1 and A, such that ‘

(1.4) 0 < u{B{z,ar)) < Au(B(z,r)) < oo

for every z € X and r > 0. Such a set X with d and 4 will be called a space
of homogeneous type and denoted by (X, d, ).

In 1979, R. Macias and C. Segovia ([MS1]) proved that, if (X, d, W) is
given, one can always find a continuous quasi-distance d'(-, ) equivalent to
d(-,-) (i.e. there exist ¢; and cp such that ¢;d'(z,y) < d(z,y) < cad' (2, ),
Vz,y € X). In the following, we always assume that the quasi-distance d is
continuous,

Let (X, d, ;1) be a space of homogenecus type. For 0 < v < 1, we denote
by M, the fractional maximal operator defined by

= 51 —‘—“—1 1 !
M ] (#) = sup B Bf £ ()] dpel), f el X, du),

where the sup is taken over all balls B such that = € B. Note that M, f is
a measurable function.
A weight w is a nonnegative function in LL (X, du) and we shall use

w(A) to denote [, wdp. We say that a weight w belongs to A, if there
exist finite positive constants C' and § such that

B) _ o(w(EN
(1.5) ul) C’( ) ,
u(B) w(B)
for every ball B and every measurable set £ C B. It can be proved that this

inequality is equivalent to a similar one where 4 appears instead of w and
conversely (see [CF] and [MS2]).

The main result of this work is the following theorem.

(1.6) THROREM. Suppose 0 < v < 1 and 1 < p<g<oo. Let (w,v) be a
pair of weights with ¢ = v=1/(e~1} ¢ Aco. Then _
(1.7) ”M'Yf“LQ(X,wd#)S C”f”LP(X,vd,u) for all f € L¥(X, vdy)
if and only if
w(B)p/qa'(B)ph'l

(18) #(B)(l—'v)p

<C<o0 forlevery bal'lBCX.: ‘
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(1.9) Remark. The equivalence between (1.7) and (1.8) for the case
p < ¢ was obtained by R. Wheeden ([W]) simultaneously with the authors
but under the weaker hypothesis that o satisfies a condition like (1.4). His
techniques are very different from ours and are based on some previous
results for the fractional integral operator obtained in [SW].

(1.10) Rem ark. By using Theorem (1.6) it is possible to obtain a similar
result for the fractional operator defined, for each v € (0,1), by

Y fy) 1 d
h I ?[ w(By, d(z,y)))t - duly),  fe LK du)

In fact, by following the reasoning for R™ in [MW] and using results of
[MT], we can prove |1y f|| poqx wapy & | Mo 1l Lo¢x wan), for each v € (0,1)
and cach ¢ € (0, 00), whenever w € Ag. From this and (1.6), it follows that
(1.8) is equivalent to {1.7) with M, replaced by I, whenever w and o belong
t0 Ao This last result is an extension to the case of spaces of homogeneous
type of one of C. Perez {[P]) and it was previously obtained by E. Sawyer
and R. Wheeden in [SW] using different techniques.

2. In this section, we prove Theorem (1.6). For this purpose, we need
two covering lemmas.

(2.1) LeMmMmA. Let E be o bounded subset of X and assume that for each
x & B there exist y(z) € X and r(z) > 0 such that v € B(y(z),r(z)).
Then there exists a sequence {B(y(x:),r(x:))} of disjoint balls such that
E c U2, Bly(z:), 5K (xz:)), where K is the constant of (1.3).

Proof. See [CW], p. 69. m

Now, we prove a covering lemma that extends a result of H. Aimar and
R. Macias ([AM]) to the case p(X) < oc. First, we introduce some notation.
If B = B{x,r), we write B for B(z,5K%r) and B for B(z, 15K°r). Let D be
such that u(B) < Du(B) for every B. Fix v € [0,1). If f is a nonnegative
integrable function and EF a measurable set, we denote ;J,(E)W_-l JE fduby
mef. Let b > 2D? + 1 and, for each k € Z, let 2, = {y € X : bF+l >
M., f(y) > b*}. Note that, if u(X) < oo, then mx f < M, f(z) for all
z € X. In this case, for each f, we denote by kg the integer such that
bFetl > yny f > BP0, Then, clearly, 2, = 0 for k < kq.

(2.2) LeMMA. For any nonnegative integrable function f with bounded
support, and any k € Z such that 2 # B, there ezists a sequence {_,3{c Vien
of balls satisfying:

(2.3) 2 c U2, BE.
(24) BFOBF=0ifis#i . oo
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(2.5)  If p(X) = oo, then for every BY there exists zf € Bl such that
if r¥ is the radius of BE,r > 5K*r% and 2% € B = B(y,r), then
PR 2 My f(a}) = mpf > B* 2 mpf.

(2.6)  If p(X) < oo, then (2.5) still holds for k > ko, but if k = ko we
only have ome ball BE® such that 2y, C B¥ = X and b+l >
Mﬂff(w’f") > megf > b*o . for some m;‘"‘u € Bf”.

(2.7)  Ifo ¢\ S22, U2, B! and M, f(z) < o, then M. f(z) < b*.

(2.8) LetIf ={(lim) € ZxN: 1> k+2 B,nBs # 0} and let
Af = U{l,n)EI;.‘ By, Then 2u(A}) < u(BF).

(2.9)  Let Ef = BF — A¥. Then 2u(E¥) > p(B¥) and WX~y EF) = 0.
If 2 € EBf and M., f(z) < oo, then M, f(z) < bF+2,

(2.10)  Let F} = BF — A}, Then u(F}) > u(ﬁf)/@A) and

Z ZXFJ!"(Q:) <3,

h=—o0 j=1
where x g denotes the characteristic funciion of the set B,

Proof. In order to obtain (2.3)—(2.6) we first assume MX)=o00. lfz €
{2y, the integrability of f implies that the set Rg(z) = {r > 0: mpf > b*,
€ B(y,r)} is bounded. We can choose 7(z) € Ry (2) in such a way that if
r > 5K%r(z), then r ¢ Ry (z). Thus, there is a point y(x) € X such that

(2.11) bk_H > ﬂ(lr.yf(.'l‘,) > ml?(y‘(m),r(:c)).f > b® = mg(y,r)f

whenever r > 5K°r(z) and € B(y,r). The boundedness of the gupport
of f implies that of (24, therefore Lemma (2.1) can be applied to obtain a
sequence {Bf} satisfying (2.3)--(2.5). If u(X) < oo and k > ko, it is easy to
see that we can still find r(z) € Ry(z) and y(z) € X such that (2.11} holds.
Then, by applying (2.1) again, we obtain (2.3), (2.4) and the first part of
(2.6). If k = ko, we can choose & € (2, and r > 0 such that Blayr) = X,
Then, with 2% = z and r = r we have the last part of (2.6). Now, (2.7)
follows easily from (2.3)-(2.5).

In order to get (2.8), let us first show that if [ > k + 2, n € N and
Ei N g;“ # @, then '

(2.12) Bl < B,

even more: 75, < r¥. Indeed, suppose that v, > r¥. Then B¥ ¢ B!. Thus
ks M 1 7 7 n
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from (2.5) and (2.6) we get o
k Bly— -
O 2my f 2 (WBLWBL) ) Tm, £
> D—lmBLf > D—lbl > D_lbk-l-z,

which is a contradiction. Now, (2.5), (2.6), (2.4) and (2.12) yield (2.8) in the
following way:

MANS D wBl<D v (buz ffdu)lf(l—w)

(hm)elp (hin)elf B,
id /(1
SD( Z b-”(l""f))(ffdu) /)
I=k-+2 ﬁk

2
< Dth(kM)/(lw)(bl/(l—v) — 1)“1u(BJ’-°)(m§}cf)l/(1_”") < #(B;_c)/z_

In order to prove (2.9), let z be a point such that M., f(z) < oo; then
* € {2 for some k € Z By (2.3), z € EJ’-“ for some j € N. Assume that
z € A% then there exists (I,n) € I¥ such that z € ﬁj, and from (2.5} and
(2.6) we obtain -

M, f(z) 2 mg, f 2 D™ 'mp f > DT1E2 5 phtt

which is a contradiction. Thus the sequence {E}} is a covering of {z :

M, f{z) < co}. On the other hand, on account of the weak type (1,1/(1—7))

of M, (the proof uses the same technique as in the case v = 0; see, for

example, [C]), we have u({z : M, f(z) = co}) = 0. Thus (2.9) is proved.
From (2.4) we see that

o] .
ZXF}!“(J?) < XUge, FF (z) < Xz, &F (z),
j=1

for any k € Z. By definition of E}“ it follows that no point of X' belongs to
more than three of the sets U;"Q E;'J’c Thus, we get

o ] ‘oo .
’mz_m ?;1 Xrp (@) < k;{m XUz, mt (2} <3,
which is (2.10), This finishes the proof of the lemma.
With this lemma, we have the tools to pfove our maixi result.

Proof of Theorem (1.6). The inequality (1.8) follows easily from
(1.7) by taking f = v~V "y for each ball B, Now, assume that (1.8)
holds. Let f be a nonnegative function in LP(vdp). First; in order to prove
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(1.7), we suppose that f has bounded support. Then, from the above lemma,
with the same notation, we have

(M (&))" = 3 (M, (), () <09 6400, ()
P P
<BTY by, (2) S BY (mye )5 (7).
ki : ki ’
This inequality, (1.8}, (2.10} and the fact that ¢ € Ay allow us to obtain

M 1B gy S O (s f)Pw(BE )P/
ki

. (;’Z w(ggc)p/qa(Bf)P‘l ( 1 f fo~la d,u,)pa(Bgv)
ki

B (e

1 -1 " p
<% (s f Ve o
< CIUM7(fo™ N o (s -

where M7 is the Hardy-Littlewood maximal operator on the space of ho-
mogeneous type (X,d,odu). Then, from the boundedness of this operator,
we get

”-A/-[’rf“L‘T(wdy,) < Ol|f0—1|iLP(a'dp.) = C”f”LF('udu) s
which is (1.8). When f does not have bounded support, the result follows
by using an obvious density argument.

References

[AM] H. Aimar and R. Macfas, Weighted norm inequalities for the Hardy-Littlewood
magzimal operator on spaces of homogeneous type, Proc. Amer. Math. Soc, 01
_ (1984), 213-216. :
[C] A.Calderén, Inequalities for the mazimal function relative to o metric, Studia
Math. 57 (1976), 297-308.
[CF] R. Coifman and C. Fefferman, Weighted norm inequalities for mazimal func-
tions and singular integrels, ibid. 51 (1974), 241-250.
[CW] R. Ccilman et G. Weiss, Analyse harmonigue non-commutative sur certaing
espaces homogénes, Lecture Notes in Math. 242, Springer, Berlin, 1971,
[M81] R.Macias and C. Segovia, Lipschitz functions on spaces of homogeneous type,
Adv. in Math. 33 (1979), 257-270.
[M82] -, —, A well behaved quasi-distance for spaces of homogeneous type, Trabajos
de Matemdtica, no. 32, Inst. Ar%entino de Matematica, 1981. _ )
[MT] R.Maciasand J. L. Torrea, L? and L? boundedness of singular integrals on not
" necessarily normalized spaces of homogensous type, Cuadernos de Materndtics ¥
Mecénica, PEMA-GTM-INTEC, no. 1-88, 1988, o L

icm

Two-weight norm inequalities 207

[MW] B.Muckenhoupt and R. Wheeden, Weighted norm inegualities for fractional
integrals, Trans, Amer. Math. Soc. 192 {1974), 261-274.
[P] C. Peren, Twe weighted norm inequalities for Riesz potentials and uniform LP-
weighted Sobolev inequalities, Indiana Univ, Math. J. 39 (1990), 31-—44.
[SW] E.Sawyer and R. Wheeden, Weighted inegualities for fractional integrals on
Buclidean and homogeneous spaces, Amer. J. Math. 114 (1992), 813-874.
[W]  R. Wheeden, 4 characterization of some weighted norm ineguolities for the
fractional mazimal function, Studia Math. 107 (1993), 257-272.

PROGRAMA. BSPECIAL DE MATEMATICA APLICADA
UNIVERSIDAD NACIONAL DEL LITORAL

GUBMES 3450

3000 SANTA PR, ARGENTINA

Received October 18, 1991 (2852)
Revised vergion July 6, 1593



