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Thus, (3.26) is bounded by a constant times

1 q
S (L [ jean)
ik *
Since odp is a doubling measure, we may apply Lemma (3.15) of [SW1] di-
rectly to see that the last sum is at most ¢/|f[%» , which proves Theorem 4,
LX)

provided that we verify the condition

Z a%‘" < cald? .
Qkcql
This condition is proved exactly as (3.20) in [SW1}, using ¢ > p and the fact

that odu is a doubling measure, and in fact does not require the maximality
of the QF.
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Pseudotopologies with applications to one-parameter groups,
von Neumann algebras, and Lie algebra representations

by

JAN RUSINEK (Warszawa)

Abstract, For any pair B, F of pseudotopological vector spaces, we endow the space
L{E, F) of all continneus linear operators from F into F with a pseudotopology such thai,
if G is a pseudotopological space, then the mapping L(E, F) x L{F,G) 3 {f,g) — gf €
L{E, ) is continuous. We use this pseudotopology to establish a result about differentia-
bility of certain aperator-valued functions related with strongly continuous one-parameter
semigroups in Banach spaces, to characterize von Neumann algebras, and to establish a
result about integration of Lie algebra representations.

0. Introduction. If E is a Banach space and L(E) is the space of all
contimious linear operators in F, then, if L(E) is endowed with the stan-
dard norm topology, then the composition of operators in L{E) is con-
tinuous, When L(E) is equipped with either the strong operator topol-
ogy or weak operator topology, the composition of operators in L(E) fails
to be continuous unless F is finite-dimensional. If F is a Fréchet space
with a topology that cannot be determined by a single norm, then, as
proved by Bastiani [B] and Keller [Ke], there is no reasonable topology
on L(F) under which the composition of operators in L(F) is continuous.
In this paper, for any pair E, F of pseudotopological vector spaces, we en-
dow the space L(E, F) of all continuous linear operators from E into F
with a pseudotopology such that, if G is a pseudotopological space, then
the mapping L(E, F) x L(F,G) > (f,9) — gf € L(E,G} is continu-
ous. We use this pseudotopology to establish a result about differentia-
hility of certain operator-vained functions related to strongly continuous
one-parameter semigroups in Banach spaces, to characterize von Neumann
mm_’lQ.‘)l Mathematics Subject Classificotion: Primary 46A99; Secondary 47D05, 46L.10,
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Key words and phroses: pseudotopelogy, continuity, compos.utlon of. op-eriators, dif-
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algebras, and to establish a result about integration of Lie algebra represen-
tations.

1. Pseudotopological spaces. We begin by recalling a number of ele-
mentary facts from the theory of pseudotopological spaces. A more detailed
account can be found in [F-B].

If F is a set, then 27 denotes the set of all subsets of L.

DEFINITION 1.1. A filter on a set I is a nonempty subset X of 9% such
that

(i) & X,
(i) if X; € X and ED X9 D X1, then Xp € X,
(iif) if X, Xp € ¥, then XinNnXseXx

DEFINITION 1.2. A filter basis on a set E is a nonempty subset % of 2%
such that

(i) 0 ¢,
(if) if X1, X» € B, then there exists X3 € B such that Xy C X1 N X

If £ is a subset of a set ¥ and % is a filter basis on F (in particular, if
% is a filter on E), then, obviously, % is a filter basis on F.

Given a filter hasis B on a set E, we denote by [B] the filter on E such
that A € [B] if and only if there exists B € B such that B C A. [B] is called
the filter generated by B. For B C E, we abbreviate [{B}] as [B], and, for
z € B, we contract [{z}] to [z].

The set of all filters on a given set F is endowed with a partial order <
defined by %; < %, if and only if X D X,.

For a family {X; : ¢ € I} of filters on a set E, the filter sup;¢; X; in the
sense of the order < always exists—it is the filber generated hy the filter
consisting of all sets of the form | J;.; Xy, where X; € X;.

Fori=1,...,n,let E; be a set and ¥; be a filter on &;. By X x... XX,
we denote the filter on Fy x... x B, generated by the filter basis {4 x... %
At A€ X, i=1,...,n}. If Fisaset and f is a mapping from £} x...x B,
into F', then by f(%1,...,%,) we denote the filter [f(X; x ... x X,)] on F.
In particuiar, if F is a vector space over R or C and ¥ and ) are filters on
E and VW is a filter on R or C, in this way we can define the filters X -+
and V¥ on E.

DermnirioN 1.3. A pseudotopology on a set F is a map assigning to
every © € E a set of filters on E, each called a filter convergent to =, in

such a way that, if X |, F denotes that the filter X converges to x, then the
following conditions are satisfied:

(l) itx Lr E and I1 - x; then 3::1 l:r E: '

icm

Pseudotopologies 275

(i) if X1 o B and X3 |, E, then sup(%,,Xs) [ E
(iii) [«] L B

DerINITION 1.4. By a pseudoiopological space we mean a set endowed
with a psendotopology.

b

Derinrrion 1.5, Let E be a pseudotopological space. A subset A of E
is said to be closed if, for any filter B on A,

DerINrmIoN 1.6. Let F and F be pseudotopological spaces. A mapping
[ from £ into F is gaid to be continuous at z € E if

xlmEif(X)lf(“F

2. Pseudotopolegical vector spaces. Let R be the field of real num-
bers and let K be either the field of real numbers or the field of complex
numbers. A vector space F over K is called a pseudotopological vector space,
PVS for short, if E is a pseudotopological space such that the mappings
Ex E3(z,y)—ao+yecEand Kx B> (t,x) — tw € E are continuous.

The pseudotopology of a PVS is determined by the family of all filters
convergent to 0. We write X | E in place of X [o F.

Let W be the filter generated by the family of all open neighbourhoods
of 0 on K. '

Tt is clear that the pseudotopology on a PVS satisfies the following con-
ditions:

(i) if X1 | E and X3 | E, then X1+ X2 | E,

(ii) if X | £ and t € K, then tX | E,

(iti) if X | E, then VX | B,

(iv) if z € E, then V[z] | E.

TuroreEM 2.1 ([F-B, 2.4.4]). 4 PVS E s a topological vector space if
and only if

2.1) (sup %) | E.
LB

If (2.1) is satisfied (so that E is a topological vector space), thfm supg p X
coincides with the filter generated by the family of all open neighbourhoods
of 0 in E.

TueoreM 2.2 ([F-B, 2.8.7)). If E and F are PV5’, then a linear map-
ping from E into F is continuous if and only +f it is continuous at 0 in E.

For a pair E, F of PV8’s, we denote by L(E, F) the space of all contin-
wous linear functions from E to F. We abbreviate L(E, E) as L(E).

DEPINITION 2.1. A filter X on a PVS E is called quasi-bounded Vx| E
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DEFINITION 2.2. A subset A of a PVS E is called quasi-bounded if the
filter [A] is quasi-bounded.

It is easy to establish the following result.

TuEOREM 2.3. Let E be a locally conver vector space with a topology
determined by o family of pseudonorms {p;: ¢ € I't and X be o filter on E.
Then ¥ is quasi-bounded if and only of , for each i € I, there ewist B, eXx
such that

sup p;(z) < 00.
weB;
DEFINITION 2.3. A pseudotopological space E is called Hausdorfl if

X|l:E&X |, E=0=y.
Hereafter all PVS's will be assumed to be Hausdorfl.

3. Differentiability. Giver a pair E, F of PV§'s and a mapping r from
E into F', let @r be the mapping from R x E into F' given by
_ [r(z)/t fort#0,
Or(t,z) = {O for t == 0.
DEFINITION 3.1. Let F and F be PVS’s. A mapping r from E into F
is called a remainder if r(0) = 0, and, for each quasi-bounded filter X on E,
we have &r(V, %) | F.

LemMA 3.1 ([F-B, 3.2.1)). If E and F are PVS’s, f is a mapping from
E into F, and = s an element of E, then there exists at most one lineor
mapping | from E into F such that the mapping

(3.1) r(h) = flz+ &)~ f(z) —i(h)
is a remainder.

DEFINITION 3.2. Let F and F be PVSs. A mapping f from E into F
is said to be differentiable al z € E if there exists | € L(E, F') such that r
defined by (3.1) is a remainder. If f is differentiable at =z, then [ is called
the derivative of f at = and is denoted by D f(x) or by f'(z).

DEpINITION 3.3. A net (2,)aca in a PVS E indexed by the dirccted set
(A, <} is said to converge fo o € K if the filter generated by the filler basia
{{zp: @ £ B} : @ € A} is convergent to z in B,

LeMMA 3.2 ((F-B, 4.3.1]), Let B and F be PVS's and [ be a mapping
from E dnto F differeniiable ot © € E. Then, for eny v € E,

. flz+ )~ fle) .
i St = [

exists in the sense of Definition 3.3.

The following two theorems will be very important in the sequel,

icm

Pseudotopologies 277

TuroreM 3.1 {[F-B, 3.3.1]}. If E, F, and G are PVS’s, f is a mapping
from E into F differentioble ot x € E, and g is a mapping from F into G
differentiable af f(x) € F, then go f is differentiable at © and

Dgo f)(z) = Dg(f{z))Df(z).

TuporeM 3.2 ([F-B,4.2.1]). If E, F, and G are PVS’s, end f is a linear
and continuous mapping from E into F, and g is o bilmear continuous
mapping from B > F into G, then [ and g ore differenticble and

Df(z)(h) = f(h) (z,he E),

[)g(.’ﬂlj,ﬂfg)(fbl, hg) = g(ﬂil,hg) -+ g(hl,ﬂtg) (.’2:1, hi € K, 22,ho € F) .

We now introduce a class of pseudotopological vector spaces that is not
specified in [F-B] but will be of direct relevance in the subsequent consider-
ations.

For any r > 0, let I, = {t e K [t| <}

DEFINITION 3.4. A PVS E is called a C-pseudotopological vector space,
CPVS for short, if

¥|E=LX|Fioreachr>0.
Obviously, every locally convex topological vector space is a CPVS.

THEOREM 3.3. Let B be o CPVS, f be a mapping from R™ into F, and
z be an elemment of R, Then f is differentiable ot x if and only if there
evists [ € L(R", E) such thot
ol bR) = fle) 1) _
im = 0.
=0 Il
Proof. Suppose that f is differentiable at z, and let r(h) = f(z + h) —
F(z) — f'(x)h for cach b € R". For each s > 0, let B, = {h e R™: ||} < s}.
Since 7 is a remainder, ©r(V, B) | E for the quasi-bounded filter B on R™
penerated by the family {B, : s > 0}. Thus, if €' € Or(V, %), then there
exist b > 0 and ¢ > 0 such that

¢ Or(l, By) = {f(‘” T th) - ft(‘“) — = o g <o n) < S}U{O}.

Let B == q(Bp,), where _
fla+y) - flz) - flaly
¥l |
and g(0) = 0. Cleazly, B C C, and so O € sq(V™), showing that_.sq(vn) <
Or{V,B) and, hence, sq(V") | E and finally g(V") | E. (We did not use
here the assumption that E is a CPVS.)
Now, let B be a quasi-hounded filter on R™ and suppose that ¢(V") | E.
Then B, € % for some b > 0 and, as E is a CPVS, we have Iyq(V") | E.

for y € E\ {0}

qly} =
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To complete the proof, it suffices to show that @r(V, B) ~ I1g(V"). Given
D D Lg(B,) with a > 0, let C = Or(I, 5y, By). Clearly, C' € OT(V, B) and

since

||tF fla+th) ~ f(x) - f'(z)th

ift#£0and h e F~ {0},
Tea 10

otherwise,

it follows that Or(t,h) € I,g(Ba) for ¢ € I,y and b € By, Hence € C
hq(B,) C D, showing that D € @r(V,B). =

Or(t, h) = 151
0

4. Pseudotopologies in L(E, F). Following [F-B], for every pair I, F
of PV8’s, we introduce a certain pseudotopology on the space L{E, F) of
all linear continuous mappings from E into F'. The space L(E, F) equipped
with this pseudotopology will be denoted by B(E, F). :

DEFINITION 4.1. Let E and F be PVS’s. A filter X on L(E, I") is said
to be convergent to 0 in B(E, F) if, for any quasi-bounded filter % on E,
X{®B) converges to 0 in F, that is,

(4.1) X|B(E,F)e (VB | E=X(B)| F).

THEOREM 4.1 ([F-B, 6.1.10]). If £ and F are normed spaces, then the
pseudotopology of B(E, F} coincides with the norm topology of L(F, F).

THEOREM 4.2 ([F-B, 6.3.1]). If E, F', and G are PVS's, then the map-
ping B(E,F) x B(F,G) 3 (f,g) — gf € B(E.G) is continuous.

THEOREM 4.3. If E is a PVS and F is a CPVS, then B(E,F) is a
CPVS.

Proof If X | B(&,F) and VB | E, then, since ¥ consists of linear
mappings, we have (I,X)(B) = I,(X(B)) for each ¢ > 0, and so, for each
a > 0, (I,X)(B) converges to 0 in F whenever X(3B) | F, showing that
B(E,F) is CPVS. =

The next three propositions concern an important case where F and F
are locally convex topological spaces but in L(E, F') a pseudotopology is
used. We omit the proofs which are easy and schematic.

PROPOSITION 4.1. Let B and F be locally conves topological vector spaces
with topologies determined by families of pseudonorms {p, t 4 ¢ I} and
{g; : § € J}, respectively, and let X be o filter on B(EF). Then X is
quasi-bounded if and only if, for each j € J, there exist o finite subset H(j)

of I, X; € X, and a positive number my such thet, for each [ € X; and
each = € E,

(42) G(fe) <m; > pilz)

i€H ()
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PROPOSITION 4.2. Let E and F be locally conves topological vector spaces
with topologics determined by families of pseudonorms {p; : i € I} and
{g; + § € J}, respectively. If f is a mapping from R™ into B(E, F) such
that, for each j € J, there ewist a finite subset H(j) of T ond a mappmg k
from BR™ into RY with limy_;, k(t) = 0 sueh that

¢ (Ft)z =~ f(to)e) S k(t) Y pile)
i€ H{(H)
then [ is continuous at {y.
Using Theorem 3.3, we can also prove the following.

ProOpOSITION 4.3. Let E and I be locally conver topological wector spaces
with topologies determined by fomilies of pseudonorms {p; : i € I} and
{g; : § € J}, respectively. If f is o mapping from R™ into B(E,F) such
that, for each § € J, there exist o finite subset H{j) of I and o mapping k
Jrom R™ into R with lim.o k(t) =0 and | € L(R", B(E, F)) such that

[ fs+ Mz - fls)z — (A= ,
Q‘J( |lh” ) S k(h') ie%;j)pl(gs)a

then f is differentiable at 8 and f'(s) =1
We now introduce anew “weaker” pseudotopology on L{E, F). The space
L(B, F) equipped with this pseudotopology will be denoted by Q(E, Fy.
DEFINITION 4.2. Let B and F' be PV8’s. A filter X on L(F, F) is said
to be convergent to 0 in Q(E, F) if
(4.3)  for each z € E there exists a filter B, on F'
such that X(z) < VB, and VB, |p F
and '
(44) % is quasi-bounded in B(E, F).
It is easy to see that Q(E, F) is well defined for every pair E, F of PVS's.
We have the following obvious

FacT 4.1, If E 4s o PVS and F is a locally conves topological space,
then (4.3) is equivalent to “strong convergence” to 0, that is,

(4.3") X(z) | F foreachz € E,

Note that if B and F are normed vector spaces, then, in view of Theo-
rem 2.2, ¥ | Q(F, F) whenever ¥ strongly converges to 0 and X contains
a set bounded in the norm topology in L(E, F). Note, moreover, that, un-
less E is finite-dimensional, Q{E, F') is not a topological space for the ﬁlter
M= SUPx (B, F) X does not contain a bounded set.

In view of Proposmons 4.1-4.3, we have the following three proposntmns
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PROPOSITION 4.4. Let E and F be locally conver topological vector spaces
and X be a filter on L(E,F). Then X | Q(E,F) if and only if X(x) | F
for each = € F and for each § € J, there exist a finite subset H(j) of J and
X; € X such that (4.2) holds for each f € X; and each ¢ € E.

PrOPOSITION 4.5. Let E and F be locally convez topological vector
spaces, f be o mapping from R™ into Q(E,F), and s be an clement of
R™. If, for each « € E, lim¢,, f(t)z exists in the sense of Definition 3.3
and, for some £ > 0, the set {f(t): |[t—s| < e} is quasi-bounded in B(E, F),
then f is conitinuous at s.

ProPoOSITION 4.6. Let E and F be locally conver topological wvector
spaces, f be a mapping from R™ into QE,F), and t be an element of
R®. If, for some l € L(R™, Q(E, F)) and oll 2 € E,

lim Fit+h)e — f(t)z - l{h)z
;) 4]
and, for some £ > 0, the set
Ji+h) — f&)=1(h
(b 010y
[
is quasi-bounded in B(E, F), then [ is differentiable at t and f'(¢) = 1.
The following is a simple but important result.
THEOREM 4.4. For any pair E, F of PVS’s, Q{E,F) is o CPVS.

Proof If X | Q(E, FF), then ¥ is quasi-bounded in B(F, F'} and, for any
z € E, there exists a filter B, on F such that X(z) < VB, and VB, | F.
To show that I,X | Q(E, F) for each a > 0, note that, for each o > 0,
LX(z) < IL,LVB, = VB, so I,X satisfies (4.3). The quasi-boundedness
of I,¥% follows from the quasi-boundedness of ¥ and the equality VI, X =
VX =

We now state the main result of the present section.

THEOREM 4.5. If E, F, and G are PVS’s, then the mapping
QUE,FYx QF,G)3 (f,9) — ¢f € Q(E,G)

=0

15 Continuous.

Proof Suppose that X |; Q(E, F) and 9 |, Q(F,G) and let (By)uer
and (i) er be the corresponding families of filters satisfying (4.3) such
that:

(1) (X - f){z) < VB, and VB, | F for each z € E,

(i) X~ f is quasi-bounded in B(E, F),i.e, VB | E = V(X - f)B | F,
(i) (B - 9)(y) < V4, and Vi, | G for each y € F,
(ii') D - g is quasi-bounded in B(F,G), i.e, ViL| F = V(P - )4 | G.
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Note that
PE) -9 <@~ )X =)+ D - 9)(f) +9(x—1).

Hence, to show that (%) - g(f) satisfies (4.3) and (4.4), it suffices to show
that (4.3) and (4.4) hold for all three summands of the right hand side of
the above relation.

To verify that the three summands satisfy (4.3) note that, if z € F, then:

1° By (1), (9 - 0)(X - £)(z) < (D - g)(VB,) = V(Y — ¢)®, and, by
(i), ("), (ii"), and (4.3), V(D — 9)B, tends to 0 in G.

20 (Y ~ g){f (=) < Vil and, by (ii), Vil | G.

3 g(X ~ fYz) < ¢(VB,) and, by the continuity of g and (i),
g(V®B.) | G.

To verify that the three summands satisfy (4.4), suppose that VB | E.
Then:

1° V(Y —g)(X—f)(B) = V(@D —g)(V(X-))(B). By (i"), V(X—£)(B) |
F, and so, by (ii"), V@ — g)(V(X - /(W) | G.

2° V(Y — g)(f(B)} | G for f('B) is quasi-bounded.

3° Vg{X — f}{WB) | G on account of (i’), the continnity of g, and the
identity Vg(X — f}{B) = g(V(X - £))(B). =

5. Applications and examples

5.1. Strongly continuous semigroups. Let E be a Banach space, (S(t))+>0
be a strongly continuous one-parameter semigroup in F, and A be the in-
finitesimal generator of (9(¢));>¢ with domain D(A). As is well known, the
space D = [\ ; D(A™) is dense in E and D is a core for A, that is, the
closure of the restriction of A to D coincides with A ([D, Theorem 1.43]).
It is easy to see that A(D) C D and S(¢)(D) C D for each t > 0. More-
over, D is a Fréchet space under the topology determined by the family of

psendonorms {py : k € N} defined inductively by
po(@) = lzll, ..y pea(e) = pe(e) +plds) (B=0,1...).
As a consequence of Theorems 3.3 and 4.5, and the fact that, for each
£ 0, A and S(¢) commute on D, we obtain the following
TuroreM 5.1, Jf B is a Banach space end (S(t))i>0 45 a strongly con-
tinuoug semigroup in E, then the mapping R 3 t — S(t) € Q(D, D) is C°°
and, for eachn & N,
d™S(t)
din ‘
Note that formally the above formula is the same as formula 1.24 in [D].

= A"S(t) = S(t)A™.
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5.2. Von Neumann algebras. We recall that a von Neumann algebra on a
Hilbert space I is a *-subalgebra of B(H ) closed in one (and then in all} of
the following six topologies: weak operator topology, o-weak operator topol-
Ogy, strong operator tapology, o-strong operator topology, strong® operator
topology, o-strong* operator topology (see [B-R]). In quantumn mechanics,
statistical mechanics, and quantum fleld theory, strongly continuous uni-
tary one-parameter groups with values in a von Neumann algebra play a
vital role. If M is a von Neumann algebra contained in B(Il), then, unless
H is finite-dimensional, the composition of elements of M is continnous
under none of the above topologies on M. Moreover, unless H is finite-
dimensional, there exists no reasonable topology on M under which the
composition of elements of M is continuous. Thus, in general, one cannot
regard one-parameter groups with values in M as continuous homomor-
phisms of topological algebras. It turns out, however, that any strongly con-
tinuous unitary one-parameter group with values in M is continuous and
the composition of elements of M is continuous under the pseudotopology
Q(H,H) in M. The first statement follows from Proposition 4.5, and the
second from Theorem 4.5.

Moreover, we have the following characterization of von Newmann alge-
bras among *-subalgebras of B(H), where H is a Hilbert space, in terms of
Q(H, H).

THEOREM 5.2. Let H be a Hilbert space and M be a *-subalgebra of
B(H). Then M is a von Neumann algebra if and only if M is closed in
Q(H, H).

Proof Let M be a von Neumann algebra. Then AA is cloged in the
strong operator topology and consequently it is closed in the pseudotopology

Now suppose that M is closed in Q(H, H) and let A be the closure of
M in the strong operator topology. To prove that A" = M, it suffices to
show that, for sach A & N, there exists a filter ¥ on A such that ¥ is
convergent to 4 in Q(H, H). By the Xaplansky theorem (cf. [B-R, 2.4.16]),
for each A € A and each neighbourhood I7 of A in the strong operator
topology, the set Ay = {BeMnNU : | B| < |4} is not empty. Thus the
family

B = {Ay : U a neighbourhood of A in the strong operator topology}

is a filter bagis on M, the filter [B] converges strongly to A and, by Propo-
sition 4.1, is quasi-bounded in B(H ). a

5.3. Representations of Lie groups and Lie algebras. Let G be a finite-
dimensional real Lie group and g be its Lie algebra. Given z € G, let T, G be
the tangent space of G at z. We identily g with T,G, where e is the neutral
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element of G For each £ € g, Jet R 3 ¢ — e* ¢ G be the homomorphism of
Rin & whoese differential at 0 evaluated at 1is €. Giveny € G and £ ¢ T, G
(z € G), denote by y¢ the differential of the mapping G 3 = — yz at =
evaluated at £, and by £y the differential of the mapping G 3 © — zy at
z evaluated at . For each € G and each ¢ € g, the element (x€)z " of
g coincides with z(£z7') and is customarily denoted as z€z~!. Note that
w€x ! coincides with the differential of the mapping G 3y — zyz~' ¢ G at
e evaluated at £ and is then also denoted by Ad z€. Given &,7 € g, let [£,7)
denote the Lie bracket of £ and 7, that is, the differential of the mapping
Gz Adxy € g at e evaluated at £,

Let M be a pseudotopological algebra, that is, an algebra whose under-
lying vector space is a PVS such that the multiplication is continuous in the
corresponding pseudotopology. Let g be a twice differentiable representation
of G in M,

Differentiating both sides of the equality

(5.1} o(zyz ™) = olz)oly)o(z™) (z,ye @)
with respect to y at e gives, for each £ € g,
(5.2) o(z)de(e; €)o(z™") = dele; ptx™").

Write I'(€) for do(e; £). Differentiating both sides of (5.2) with respect to =
at e vields, for each £ € g and each n € g,

(5.3) rE)rm - rnrE) =IdEn)-

An important problem is to determine conditions under which a given
linear mapping I" : g — M satisfying (5.3) can be identified with the
mapping & — do(e; £) for some twice differentiable representation g of & in
M. In contributing to solution of this problem, we establish a result similar
to a result of [T-W)]. The latter was proved for the so-called b-structures,
and hence was not directly applicable to strongly continuous representations
in Banach spaces or Hilbert spaces.

We start with the following

DEFINFHION 5.1. Let M be a pseudotopological algebra, Ay be the
set of all invertible elements in M, and I' be a linear mapping from g into
a psendotopological algebra M with identity, satisfying (5.3). We say that
a manifold M © & containing e is integrable if there exists a differentiable
mapping @ : M — Ay such that
(5.4) o(e) =1d,

(5.5) p{e)I()o(x)™" = I'(Adw¢) foreachzeMandeach € g,
(5.6) do(z;€) = I'(¢a " V)e(z) foreachz cM and each £ € g.
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PROPOSITION 5.1. Let I' be a linear mapping from g inlo pseudotopo-
logical algebra M with identity, satisfying (5.3), and M be a integrable
manifold of mazimal dimension. Then T.M is o subolgebro of g and if N
is integrable, then ToN C T M.

Sketch of the proof. The proofis divided into a numbet of steps.

a) Let M and N be two integrable submanifolds with corresponding
mappings g, and g, satisfying (5.4)~(5.6), respectively, such that the map-
ping M x N 3 (z,9) — sy € MN is regular at (&,&), where, clearly,
MN={zeG:z==2y, 2 €M, y € N}. Then M is a locally integrable
submanifold of G. Setting p(xy) = g, (z)os(y) for x € M and y € N we
infer that M N is integrable.

b) Let M be an integrable manifold with a corresponding mapping ¢
satisfying (5.4)-(5.6). Then, for each z € M, zMx™" is an integrable man-
ifold. Indeed, if we set o (zyz~1) = o(z)e{y)e(z)™" for y € M, then g,
satisfies (5.4)-(5.6) with respect to zMz~".

¢) Let M be an integrable manifold of maximal dimension and let N
be an integrable manifold. Then T.N C T.M, for otherwise there Is a one-
dimensional submanifold P of N such that e € P and TP N T.M = {0},
and so, by a), PM is an integrable manifold of dimeusion greater than the
dimension of M, a contradiction,

d) Let M be an integrable manifold of maximal dimension. By b) and c),
for each z € M, T.{zMz™") = 2(T.M)z"" is contained in T\, M, and so, for
each 7 € To M, Adzn is in T, M. Thus, for any &,7 € T, M, the differential
[£,7m] of the mapping G 2 z — Adzn € g at e evaluated at £ is also in TeM.
Hence T.M is a subalgebraof g. w

As a simple consequence of Proposition 5.1, we obtain

ProrosiTiON 5.2. Let I' be a linear mapping from g inte o pseudo-
topological algebra A with identity, satisfying (5.4) und § be a subsel of
¢ Lie algebraically generating g such thet, for each n ¢ 8, there emisls @
differentichle group (Ult, n)ien in My such that

(5.7) @%’ﬂl = I'(mUt,n) for eachs e 9,

(5.8) U, (~t,n) = D((Ade'™E)  for each £,n e S,
Then there exists o differentiable local representation g of G such that
(5.9) dole;&)=1TI(&) foreachéeg.

Proof Givent € R and n € &, let Iy and J} be the Lie algehra
representations of g in A4 given by
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V&) = U, mLEU(-t,9) (feg),
Ip(€) =T'(Ade) (feq).

Since I and Iy coincide on S and S Lie algebraically generates g, it follows
that 1y and I coincide everywhere. Hence (5.8) holds for each £ € g and all
the one-dimensional submanifolds {e* : ¢ € R} (n € §) are integrable. Let
M be an integrable manifold of maximal dimension with a corresponding
mapping ¢ satisfying (5.4)-(5.6). By Proposition 5.1, T, M contains § and
is a subalgebra of g, whence T, M = g. Hence, in particular, M contains an
open neighbourhood of e in G. Since the mapping M x M 3 (z,y) — zy €
MM is regular at (e, e}, we infer, reasoning as in step a) of the proof of
Proposition 5.1, that o(xy) = e(z)o(y) for any =,y € M, showing that g is
a local representation of G. =

As a consequence of Proposition 5.2, we obtain the following theorem
which in one form or another appears in many papers on integration of Lie
algebra representations (cf, [K], [J-M], and [R]).

THEOREM 5.3. Let I" be a Lie algebra represeniation of g in a locally
conver space E, D be a dense lineor subset of B such that I'(§)}(D) € D
for each £ € g, and S be o subset of g Lie olgebraically generating g such
that, for each n € S, the restriction of I'(n) to D is a pregenerator of a
strongly continuous group (U(t,m))ser of continuous operators satisfying the
following conditions:

(5.10) Ut,n)(D)yC D for each t € R and each 1 € 5§,
(5.11) Ut D(EU(—t,m)f = D((Ade™E) f
for each t € R, each §,n € S, and each f € D.

Then there exists a strongly conbinuous local representation @ of G of con-
tinuous operators such that do(e; §)f = I(&)f for each f € D.

Proof, Arguing as in the proof of Proposition 5.2, we first prove that
(5.11) holds for each £ € g. Let &1,...,¢n be a basis of g, {pi : ¢ € I} be
a family of pseudonorms determining the topology of E, and {p;» : @ €
I, n=0,1,...} be the family of pseudonorms defined inductively by

N
pig =iy oor Piori() = Pin(f) + Y mia(TE) )
j=1
(iel, n=0,1,...).

Equip D with the topology determined by the latter family. Using Theorem
5.1 and (5.11) for ¢ running over the whole of g, it is easy to sho?v th_at the
mapping R 3 t — U(t,n) € Q(D,D) s C* and that I' as mapping from g
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into Q(D, D) satisfies (5.3), (5.7) and (5.8). Now the theorem follows upon
applying Proposition 5.2.
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On the representation of uncountable symmetric
basic sets and its applications

by

TRANCISCO L. HERNANDEZ (Madrid) and
STANIMIR L. TROYANSKI (Sofia)

Abstract. It is shown that every uncountable symmetric basic set in an F-space
with a symmetric basis is equivalent to a basic set generated by one vector. ‘We apply
this result to investigate the structure of yncountable symmetric basic sets in Orlicz and
Lorentz spaces.

1. Introduction. There are three results about Banach spaces with an
uncountable symmetric basis having some relevance to the subject of this
paper. Firstly, it was shown by renorming arguments in [T,] that if X is a
Banach space with a symmetric basis {€,}aga Which contains a subspace
isomorphic to cp(I") (resp. to £1(I")) for an uncountable set I' then X itself
is isomorphic to ¢o(A) (resp. to £'(A}). Later, nsing this result and combina-
torial considerations, Drewnowski [D;] proved that for nonseparable Banach
spaces with a symmetric basis, all uncountable symmetric bases are equiva-
lent. Recently, in the special context of Orlicz spaces, Rodriguez-Salinas [R]
has given necessary and sufficient conditions for isomorphic embeddings of
Orlicz spaces hy(I7) into a space hy(A) for uncountable sets rcA

Qur aim in the present paper is to analyze the above results in a general
framework, that is, to generalize them to F-spaces, i.e. complete metric
linear spaces, to determine the context of validity of possible connected
extensions, and finally, to give some new applications.

For example, we prove that for the class of F-spaces the above mentioned
result of [T|] on spaces containing an isomorphic copy of ¢o(I") can be
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