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Unigueness of complete norms for
quotients of Banach function algebras

by
W. (4. BADE (Beleley, Calil.) and H, G. DALES (Leeds)

Absgtract. We prove that every quotient algebra of a unital Banach function algebra
A has s unigue complete norm if 4 s a Ditkin algebra. The theorem applies, for example,
to the algehra A(I") of Fourier transforms of the group algebra LY@ of a locally compact
abelian group (with identity adjoined if I' is not compact). In such algebras non-semisimple
quetionts AN /J{EY arise from closed subsets B of I' which are sets of non-synthesis.
Examples are given to show that the condition of Ditkin cannot be relaxed. We congtruct
a vartety of mutually nonsequivalent norms for quotients of the Mirkil algebra M, which
Fails Ditkin’s condition at only one point of $pr.

1. Let (] - ||) be a Banach algebra. Then 2 has a unique complete
norm if any algebra norm with respect to which 2 is a Banach algebra is
equivalent to the given norm || - ||. Tt is well-known that each semisimple
Banach algebra has a unique complete norm: this is Johnson’s uniqueness
of norm theorem ([5], [2], [7]). In this note we wish to investigate when a
quotient of a Banach function algebra has a unique complete norm.

Let A he an algebra. Then the set of characters, or non-zero multiplica-
tive linear functionals, on 4 is denoted by & 4. In the case where A is a unital
Banach algebra, $ 4 is & compact space with respect to the wealk *-topology.
Now lel A be a semisimple, comimutative, unital Banach algebra. Then we
regard A as a Bauach function algebra on $4. We first recall some standard
definitions. Let f ¢ A. Tho zero set of fis Z(f) = {@ € $4: flo) = 0},
und the bl of an ideal 7 in A is h(I) = N{Z(f) : f € I}. For a closed set
B by, et

JU) = {f € A Z(f) s a neighbourhood of E},

)= {f € A: ECZ(f)}
The sot F is a seb of synthesis for A if I(B) is the only closed ideal in A
whose hull is /. The algebra A is regular if, for each closed set Eind, and
each v € €4\ F, there exists f € I(E) with flp) =1
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Let A be a regular Banach function algebra on @ 4, and let I be a closed
ideal in A with hull &, say. Then J(B) C I C I(E), and E is a set of synthesis
if and only if J(E) = I{E). Set 2 = A/I. Then 2 is a commutative Banach
algebra, (with respect to the quotient norm), and the radical of 2 1w 1(15)/1.
Thus 2 is semisimple in the case where I = I{E), but non-semisimple
quotients arise when E is not a set of synthesis and I # I(£). We shall
enquire when these quotients have a unique complete norm.

Let A be a unital Banach Function algebra on @4, and take @ € @ 4.
We write J,, for J({}) and M, for the maximal ideal / ({p}) = ker. The
algebra A is strongly regular if J, = M, (p € $4), Lo, il cach singleton
is a set of synthesis. A strongly regular algebra is necessarily regular.

In §3, we shall first give an easy example which shows that, for a regular
Banach function algebra A which is not strongly regular, it may be that a
quotient M,/ jq, is both infinite-dimensional and has zero multiplication; for
such an algebra, each Banach space norm on M,/ J, is a Banach algebra
norm, and so there are complete algebra norms on 4/J, which are not equiv-
alent to the quotient norm. Thus we shall concentrate on the question of the
uniqueness of norm for quotients A/T in the case where 4 is strongly regular.

In fact, & condition a little stronger than strong regularity is required to
obtain a positive result. Let A be a unital Banach function algebra on € 4.
Then A satisfies Ditkin's condition at @ € @4 if, for each [ € M, there is a
sequence (fz) in J,, such that ffy ~ fin M,, and A is a Ditkin algebro if
it satisfies Ditkin’s condition at each ¢ € $ 4. We shall show in §2 thak, for
a Ditkin algebra A, each quotient A/I does have a unigue complete norm;
an example in §3 will show that this is not necessarily the case if A only
satisfies the weaker condition of being strongly regular. For this algebra we
shall comstruct a varlety of complete algebra norms not equivalent to the
guotient norm.

A unital Banach function algebra A is a strong Ditkin algebre if eaclh
maximal ideal M, of A has a bounded approximate identity in J,. For
example, let I' be a locally compact abelian group, and let A(1") be the
algebra of Fourier transforms of the group algebra L'(G), where (¢ iy tho
dual group of I". Then A(I'} (with identity adioined in the case where I’
is not compact) is a strong Ditkin algebra; the algebras A(J") have non-
semisimple quotients whenever I' is not discrete, and the theorewm of 62 will
apply to these examples. '

The class of Ditkin algebras is strictly larger than the class of strong

Ditkin algebras. For example, take o with 0 < cv < 1. Then L! (R™) consists
of the measurable functions f on R" such that

1flle = f 1F6)](2+ [6)* dt < o0,
B
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where [t] = (8 +... + 2312 for t = (t;,...,t,) € R It is standard that
(L) (R, 11| B8 & commutative Banach algebra with respect to convolution
wultiplication ([4], [B]). Denote by 4, (R™) the algebra of Fourier transforms
of elements of 1.2 (R"}, Then A, (R") is a Banach function algebra on $4, =
R”, and the algebra A, (R™)# formed by adjoining an identity to A.(R™)
iv u Ditkin algebra (J8, VL.3.3]), but it is not a strong Ditkin algebra. It is
proved in (8, JL7.3] that the sphere S, in R™ is a set of non-synthesis for
Ay (87%) whenover 2 2 3, and that the circle §) in R? iy a set of non-synthesis
for An (%) if and only if o 2 1/2. Thus the algebras AL (R™) may have
non-semisimple guotients. Fach of these algebras has discontinuous point
derivalions ab each charactor, but nevertheless the theorem of §2 implies
thal quoticnts of these algebrag always have a unique complete norm.

2, Lot A he a Ditkin algebra. We shall prove in this section that each
quotient A/T has a unique complete norm.

We start from a standard result about regular algebras. Let A be a
pnital Banach fimetion algebra on & 4, and let I be a closed ideal in A. A
function f on @4 belongs locally to I ot ¢ € $4 if there exists g € I such
that f - g € Jg, and £ belongs locally to I on @4 if f belongs locally to
I at each point @ € ®4. In the case where A is a unital, regular Banach
function algebra, each function which belongs locally to a closed ideal [
already belongs to 1 (8, 2.1.3]); this is the localization lemma.

Let I, and Ty be closed ideals in a unital Banach function algebra A.
Then Iy belongs locally to Iy at p € $4 if there is a neighbourhood U, of
@ such that, for each [ € In, there exists g € Iy with Z(f — g) > Uy. The
following lemma is proved in [8, 2.6.4]. |

91, LEMMA. Let A be a Ditkin algebra on @ 4, and let It and Iy be closed
ideals in A with Iy G Iy ond such that h{ly) = h(l3). Set

P{l,13) = {¢ € Pa : Iy does not belong locally to I) at @}.
Then P(1, Iy) 46 o non-emply, perfect subset of the boundary of h(I). =

The theoron will also use the {ollowing glandard stability lemma of au-
tomatie continuily theory; we state the result for epimorphisms between Ba-
nach algebras, but the vesult applies mote generally (e.g., [9, Lemma 1'.6]).
Let 96 and B bho Banach algebray, and let 6 : B — U be a homomorphism.
Thon the separating spaee S(0) of 0 18 defined by _

S(0) = {a € U : there exists (by) in B guch that b, — 0 and 8(bn) — a} -

9.9, LuMMA. Let 2 and B be Banach algebras, and let §:58 — 2 be an
epimorphism, Then &(0) s o closed ideal in % and, for cach sequence (ax)
in A, there emists ng € N such that

GG ©(0) = ay . .. 0O (0)

(n=ng). m
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9.3, THEOREM. Let A be a unital Ditkin algebra on $4, and let T be o
closed ideal in A. Then each epimorphism from a Banach algebra onto A/
is autornatically continuous.

Proof. Set % = A/I, and let § : B — 2 be an epimorphism from a
Banach algebra % onto %, Set E = h(I), so that J(E) C I < I(F), and the
radical of A is B = I(E)/I. Certainly () C R.

We first claim that, for each closed ideal K in A with h(L) == J and

I ¢ K, there exists f € A with
{1) ICFE+IGCK.

By Lemma 2.1, the set P(I, K) is a non-empty, perfect subset of 5. Chooso
@, € P(I,K) with ¢ # 1, and choose f € A such that fil/, = 1 and
f|Uy = 0 for neighbourhoods U, and Uy of ¢ and 4, respectively; this is
possible because A is regular, and hence normal. We have TE # K becanse
each function of fK is zero on Uy, and this is not true of each funciion in
K because h(K)=FE and Uy ¢ E.

To obtain a contradiction, assume that J = fK+I. Then I = fK + I,
and, for each g € K, there exists h € I with Z{g - h) D U,. Thus K
belongs locally to I at i, a contradiction of the fact that ¢ & P(JI, K), and
sol##fK+1.

Choose h &€ A such that AV, = 1 for a neighbourhood V;; of 4 and
such that A|(@4\U,) = 0. Now, to obtain a contradiction, assume that
FE+ 1=K, and take g € K. Then there exist sequences (f,) o K and
(hy) in I such that ff, + h, — g in A. We have ff,h + hyh — gh in A
But fh =0 and {h, : n € N} C I and so gh € I. Since Z{g - gh) 2 Vi,
we have shown that K belongs locally to I at 4, a contradiction of the fact
that ¥ € P(I,K). Thus fK + I # K.

Let m : A — 2 be the quotient map, and set K = 7~1(&(#)), so that
K is a closed ideal in A with T € K C I(E), and A(K) = B. Assume that
I # K. By induction from (1}, we obtain a sequence (f,) in A such that

fioo K+ ICH . fK+T (neN).
Since f1... faE + T 2 I, we have

‘ﬂ'(fl...an-FI)———7l'(f1..~.].tnK-+I) (’HGN),

and so

a1...ﬂ,n+16(9) gal...a,nﬁ(t‘)) (’."?,E N),

where a; = 7(f;) (j € N). But this contradicts the stability lemma,
Lemma 2.2,

We conclude that I = K, that G(6) = {0}, and that § is continuous, as
required. m :
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2.4, COROLLARY. Let A be a unital Ditkin algebra, and let I be a closed
sdeal e A, Then AJ1 has a undgue complete norm. m

3. Tn this section, we first give an example of a regular, unital Banach
function algebra A such that A/J, fails to have a unique complete norm for
some @ ¢ P, and second an example of a strongly regular, unital Banach
function algebra A with a closed ideal T' such that A/I does not have a
unique complete nor,

35, T ARORIEM. There 48 o regulor, unital Banach function algebra A on
D with @ ¢ Pa sueh that AfJ, does not have a unique complete norm.

Proofl Tor o= (o) € C" and n & N, set

J_ 4b
Pr(ce) = p kZﬂ’“WM—i ~ o,

al sel

M = { € ¢y suppy{a) < oo}
For ev & M, st plar) == sup p, () and [|e]| = sup |evn | +p(e). Then it is easily
checked that (A7, ]| - ||) is a self-adjoint Banach function algebra on N (with
respect 1o the pointwise product). Set A = M#, so that we may regard
A as a unital, self-adjoint Banach function algebra on N, the one-point
compactification of IN.

Take f € A with f(x) # 0 (2 € Nog), say 6 = inf | f(z)|- Then p(1/f) <
p(f)/6%, and so f is invertible in A. It follows that the character space of A
is N

Clearly Al contains coy, the space of sequences which are eventually zero,
and so A is regular,

For k,n € N, we write &y = (601 J € N). and e, = 3 vy Ok .
Take o = (cy,) aud § = (Bn) in M, and take g > 0. Then there exists
g € N such that [oe,| - 4] <& (n 2 ng). For n 2 ng, we have

vt~ eyl < ele +pla} +p(A)),
anid 80 ceffey, <+ coff in M oas 1 - 0o, Thus M? ¢ Joo = &on, and the algebra
M/ b zero multiplication,
We now show that M/ J i infinite-dimensional. In fact, we shall show
that M is non-separable, which implies the result, For each § C N, set

L(8) = | {l2", 2" nN:n € 5},

and set
w _ (=1)F

(ke l(s), off =0 (keMIS)).
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Clearly each o(f) = (oz,(cs) : k € N) belongs to ¢p, and
Hlof?h —ep”i <2 (keN),

and so a!®) belongs to M with [[al®)]| < 3. Now let § and T be distinet
subsets of N, and set 8 = a®) — ol”). Choose m € (S\I) U (I"\S). For
ke {2m, .. .,2m+ — 2} we have

2k +1
1 - = >1,
blBrea ~ Bl = T2
and so . ]
o (B) 2 ST @2m—1) > 4_1

Thus [jo!® — o) > 1/4 whenever § and T are distinct subsets of N, Since
the power set of N is uncountable, M is non-separable.
The result follows. m

Before giving our second example, we prove two general results.
Let 2l be an algebra, and take ¢ € & 4. A point derivation at ¢ 1s a linear
functional ¢ en 2l such that

d(ab) = d(a)p(b} + d(b)p(a) (a,b € ).
Clearly, a linear functional d on % is a point derivation at ¢ if and only if
d|(ker ¢)? = 0 and d(e) = 0, where e is the identity of 2, and so theve are

discontinuous point derivations at ¢ in the case where (ker)? has infinite
codimension in ker p.

3.2. PROPOSITION. Let (A, ||-||) be & commutative, unital Banach algebra
with radical R. Suppose that there exists p € Py and oy € B such thot
R = Cag, and there exists a discontinuous point derivation d af ¢ with
d(ag) = 0. Then the formula

llalll = llo + d(a)aol|  (a &)

defines o complete algebra norm [j| - ||| on A which is not equivalent to the
GEVEn NoT.

Proof. We have aay = p(ajag (o € A), The map 0 : a v a - d(a)ag,
A — 2, is an endomorphism on . Suppose that 6(a) = 0. Then o € Cag,
and hence d(a} = 0 and o = 0. Now, for a € 2, sot b = a — d(a)ag. Then
#(b) = a, again because d(ag) = 0, Thus # is an automorphism of 8. Tt
follows that ||| - ||| is & complete algebra norm on %; it is not equivalent to
It - || because d is discontinuous. m

A Banach algebra % has a Wedderburn decomposition if there exists a
subalgebra B of & such that A = BGN (as a semi-direct product), where R

is the radical of %; the decomposition is a strong Wedderburn decomposition
if B is a closed subalgebra of 2.
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3.3, PROVOSIVION, Let (U, -|]) be a unitel Banach algebra with rodi-
cal M. Suppose that B2 = {0} and that A has o Wedderburn decomposition
A = B R owhich is not o strong Wedderburn decomposition. Then the
formula

el = b+ R +|ir]] (a=b+recBaR)
defines a complete algebra norm on 4 which is not eguivalent to the given
norm.

Proof, We have B 2 9%/R, aud 80 a # |ja+R] = ||b+0R] is a complete
algebra norm on B, Thus ||} - {l] is a Banach space norm on the linear space
B R,

Talee 4y
have

Narazlll = i + R by + R -+ jlbaral| + [Ir1bz]]
= [|by A+ R} 1bg + R+ [[(bL + s1)rell + (b2 + s2)l]

because B == {0}, and so
wras] ([0 4 R b2 + R+ by + R lIra]| + B2 + R {7

s By by and ay o= by oy in B G M. For cach s, 53 € R, we

< Hell llfealll.
Thus ||| - ||} i an algebra norm on 2L .
The norw. ||| - ||| is not equivalent to | - || on 2 because B is closed in

G010, Tt B is not closed in (24, || - ||) by hypothesis. =

We now present an example of a Banach function algebra which origi-
nates with Mirkil ([6]) and which was considered further by Atzmon (f1h
and iu [4, Example 3.6]. o .

We start with the Banach space (L2(T), || - ||2), identifying T with the
interval [~m, 7], and we sot § = [~/ 2,7/2)].

Define
and define

I 1/2 £
I T PR \/};(f 1f(0)\'*’d0) +1fle (f e M)

Then (M, -]} 18 a conunutative Banach slgebra with respect to cgnvolution
wtiplieation on T, aud the trigonowetric polynomials are dense in M ([6])
Wo now identify A7 with its algebra of Fourier transforms on Z; following
(6], we note that
(2) M* c M),
The algebra A = M # formed by adjoining an identity to M is 8 Banach
function algebra on Zee, the one-point compactification of Z. The ideal Joo



296 W. G. Bade and . G. Dales

corresponds to the set of trigonometric polynomials in M, and so Joo = M
and A is a strongly regular Banach function algebra with @4 = = Pros e
The map

Fe (£ £18), M- LX) ecs),
is an isometric linear isomorphism when the Banach space L*(T) & C{(¥)
has the norm |j(f,g)| = lifll2 + 9|5, and so each element of the dual space
M’ can be represented by a measure on T of the form

(3) y:...*gdﬁ-{-y,,

where g € L(T), p € M(S), the space of measures on 5, and [[v|| =
max{||g}2, H,u”} The action of v is given by

) =5 ff

Define 27 == {Qn :n € Z} and E' = 27 U {oa}, a closed subset of Zae.
It was proved by Atzmon ([1]) that E is a set of non-synthesis for A; the
following result extends this cbservation.

3.4. PROPOSITION. The closed ideal J{E) has codimension one in [(F).
Proof Define gg on T by setting

9@ =1 (0]<7/2), g0(0)=-1 (r/2<|f]<n)
Then gg € M, and the Fourler transform Gy of gq is given by

w2 2 . [kn
k) = p Df go(#) cos k@ dff = Tosin (T‘Zm) (k € Z\{0})
with §o(0) = 0. Thus go|E = 0, and so go € I(E).
Set po = &rpp + 6_nz (where §; is the point mass at ), so that
o € M(S). Let Z be the function 8 — e on T. As was proved in [1],
(7%, oy = P12 4 ehT/2 = 9 g (%TE) (ke Z),

and so (Z*, up) =0 for k & Z\2Z. Thus ug|J(E) = 0. However,
(g0, o) = go(m/2) + go(~m/2) = 2,

9(8) db + ff di(8) (feM, ved).

and so g & J(E).
Now take v € M’ with v|J(E) = 0. For k € 27, we have et*(f~7) u olht
(|61 < m), and, if k € Z\2Z, we have (Z¥,v) = 0 becanse Z* & J(E), and so
<Sm-f,l'/>:(f,1}> (fEJoc),
where (8x f)(8) = f(0 — 7). It follows that (S, f,v)
and so, regarding v as a measure on T, we have

(4) (T + ) = v(T)

= (f,v) for all f € M,
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for every Borel set T € T. Let v = gdf + p, as in (3). Then u/(—7/2,7/2)
hag the form hdf for some h € L*(S), and so, in fact, v has the form

v =gdf + b, o+ Fb_rs2
for some g € L2(T) and some a, 8 € C. Clearly, by (4) again, we have 8 = a,
and g0 v = gdf + oyug for some g € L*(T) and e € C.

We have
[» ]

(fv) =S Fglk) + o, pa)

k=00

For k: € %\QZ IleCESSchll G(k) = 0 because {Z%,v) = (Z% po) = 0, and so
{(fiv) = alf, (f € I(E)). This shows that v{I(E) = auoll{E), and so
dim(I(E)/J{ )) = 1. Thus J(E) has codimension one in I{Z). m

3.5. PROPOSITION. The ideal M? + 1(E) has infinile codimension in M.

Proof. Write L = M?* + I(E).
For n € N, set #, = (L +27")n/2, and define g, on T by

gvz{'g) =1 (lﬂl < On)s gn(9) =0 (971 < w] < 77/2)-
Then Gn € Af and

(feM).

Gu(k) = - sin(ba) (k€ Z\{0)).

with 7, (0) = 0.
We cloim that {gq, + L :n & N} is linearly independent in M /L. Indeed,
suppose that o, ..., € C, that f € M?, and that h € I{E) with

245458 "l'»--+o~’mgm:f+h-

Set k. = (2r +1)2™ (r € N). It follows from (2) that, for each ¢ > 0,
there exists r € N such that |F(k.)| < &/k-. We have h{k,) = 0 because
ke € 27. Also k(1 + 27"} € 2Z + 1, and s0 |Gn (k7| = 1/k.m, whereas,
for no== 1,...,m— 1, k(L +27") € 2Z, and so Gn(kr) = 0. It follows
that |oe,| < me. Heneo on, = 0, and, successively, pey = ... = 1 = 0,
establishing the claim,

The result lollowa ~

= rad % = J(E)/J(E) in the
a.bovo um .:11mn

The following proposition is contained in [4, Example 3.6], and corrects
an unfortunate misprint in the statement of that result.

3.6. PROPOSITION, The algebra 2 has a Wedderburn decomposition
[ = B DM which is such thal M2 B. Further, 2 has no strong Wedder-
burn decomposition.
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Proof. As in [4, Example 3.6], M* N = {0}. Let X he a lincar sub-
space of I such that M = Mg RO %, and set B = (M? & X)#. Then
A =B @R is a Wedderburn decomposition with m? ¢ B, It is noted in
4, Example 3.6] that 2l does not have any strong Wedderburn decomposi-
tion. m

We can now establish the following theorem.

3.7. THEOREM. There is a strongly regular Banach function algebra A
on $4 and a closed subset E of &4 which is of non-synthesis for A such
that the quotient algebra A/J(E) has o complete algebra norm_which is

not equivalent to the quotient norm. Purther, the radical of AJJ(E) has
dimension one.

The Banach function algebra A is the algebra M7 described above,
and E is the subset 2Z U {co} of 4 = Z U {co}. Certainly, £ is of non-
synthesis and the radical of A = A/J(F) has dimension one. We shall
complete the proof of the theorem by describing three families of complete
algebra norms on 2 such that each member of each family is not equiva-
lent to the quotient norm. Further, any two members of two distinct fam-
ilies are mutually inequivalent. Set R = I(E)/J(F), as before, and define
ap = go -+ J(E) & M\{0}, so that R = Cay.

First, let o be the character on 2l whose kernel is M = M/J(E). Cer-
tainly aag = 0 (a € M) because MJ(E) < J(E). It follows from Propo-
sition 3.5 that 9712 has infinite codimension in 07, and so there are discon-
tinunous point derivations d on %A at p; we may suppose that day) = 0. By
Proposition 3.2, the formula

llelils = la + d(a)ao| (o€ 2A)

defines a complete algebra norm on % which is not equivalent to the quotient
norm.

Second, we note that % = {0} and that, by Proposition 3.6, 2% has a
Wedderburn decomposition % = B @R with 9 ¢ B whicli is not a strong
‘Wedderburn decomposition. By Proposition 3.3, the formula

llalllz =16+ RI+ vl (a=b+reBOMR)

defines a complete algebra norm on A which is not equivalent to the quotiont
norm. Note that || - ||l2 depends on the choice of the linear subspace ¥ such
that M= M @ R X.

To see that any norm of the form ||| - |1 is not equivalent to any norm
of the form | - |||z, we argue as follows. For each point derivation d on U
at @, we have d|9” = 0, and so every norm of the form ||| - |||, satisfies the
condition

ally = llall (@ €m?).
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However, since M? C 9B, every norm of the form ||| |2 satisfies the condition
lalllz = fla+ R (acM).
Since M? is dense in (I, ||+ ||), there is a sequence (a,,) in 9?2 with an, — ag,
and then [lla, |1 — [ao]l # 0 and |[janfilz — |lao + R[] = 0. Hence I~ Illy and
Il - Iz are not equivalent. Notice that we do have the relation
llalll2 < lloflly (@€ 20%).

We now show how to congtruct a third lamily of complete algebra norms
I - il on 2L, each of which is not equivalent to the quotient norm. | - |i. It
is convenient to construct the norms ||| - ||ls on the maximal ideal 20T of 2;
the norms can be extended to 2 by setting |la + ell[s = li|al|s + || in the
usual way.

Let A = B @ R be a Wedderburn decomposition of U, as before, and
set By = B NI each a € M has a unique expression a = b + @ag, where
b & By and o € C. The Gelfand map on A is denoted by G, and we have an
isomorphism

QI%D H ;.B[) —}Dﬁ/‘ﬁ
Since M = M /J(E) and R = I(E)/J(E), there is an isometric isomorphism
T MR — M/I(E)=ME).

Thus, for each & € M, there is a unique element h, € M (E) such that
hy = 7{a + M). For b € By, the correspondence b — Ay, By — M(E), is an
isomorphism. Now take f € M (so that fis regarded as a function on Zoo).
Set a = f -}—m, say @ = b -+ aag, where b € By and e € C. Now hp is a
Function on Ze, and we see that FIE = hy|E.

We now construct norms ||| - [i]a on 2.

Define a linear functional A on 97 as follows. For a € mM? C Wy, set

Aa) = E{faa(k:) ke E}.

Then oxtend A 10 he a linear fanctional on M= with Afag) = 0.
We claim that

(5) |A{ab)
Iirst, for functions f on Z (respectively, on E), define

, 1/2 } 1/2
1= (S UR®E ez Uflas = (SUFRP ke BY)

"Then

<3

(a, b & T0),

a -+ R b+ R

IMab)| € Baliz,ellhollze  (ab €M)
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Algo, for o € M,

Rl aemy = f{||3]l : g € M, g|E = hq}
> inf{[|Glla: g € M, g|BE = ha} = |[ha
and so, for a,b € M,

iA(ab)] < hall e liboll ey

= [a+ R [jo+ R,

giving (5).
Define

llallls = max{jla+ R, |Ma) - e}

Clearly ||| - {|lz is a Banach space norm on M. For ay = by + ajag and
aa = by + agag in M, we have ayas = by by because MR = {0}, and so

(@ =b+ way € NM).

|lla1asills = max{||a:az + R, [A(ara2)|}

< oy + Rl |z + K| using (5)
< lllallalllazlls
Thus ||| - ||[s is a complete algebra norm on 2.

To see that ||| - ||| is not equivalent to the quotient norm || - | or to
any norm of the form ||| - ||j; or ||| - {{|2, consider the functions f, on T
defined by

f (z) 1+2" =1 2 el el
n 172 —z+z2 - (-1 (zeT)

for n € N. Since f, is a trigonometric polynomial, J“; belongs to M?. Set
an, = frn+ J(E) (n € N), so that a, € By (n € N), Then

lan| < Ifall = V2+ 022 (neN).

However,

llanills 2 M@l = | S (Fa(k) - b € 22} 2 5(n~ ).

Thus [llaaflz < Jllanllls = [lan]l = O(n!/?), whereas [lau|lia 2 (n — 1)/2 for
n € N, and so |} - ||z is not equivalent to any of the norms || - ||, ||| - |1,

or [|| - {l2-

In summary, we have

llallz < Walllx = llall, lallz < lalls (a < 2m?).

However, there is no constant € such that |a|l < Cll|e]|s (a € M?).

We ﬁna,lly remark that there is an upper bound to the values |||al|| for
a € M? for each complete algebra norm ||| - || on <.
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The projective norm || - ||» is defined on m? by
n n
a]]s = inf { ST lshllesll ca =3 byeg for ba, e,
gmel i=1

3.8. ProvostrioN. Let ||| - ||| be o complete algebra norm on 2A. Then
there is a constant C' such that

llall £ Cllall

bnacla---:cn € m}

(a € M?).

Proof Let % = B®NR be the Wedderburn decomposition of 2 described
hefore, and set
=GB B — A/R = AE).
Then v is an isomorphism, with inverse
9:AE)—-BCH,

say. We regard 6 as a map from A(E) into (%, ]| - ||}, and set & = &(6), the
separating space of 8. Certainly & C R.
Suppose that & = {0}. Then # is continuous, and

llalil < 1100 lla+ 20 < 18] llall < 16l lallx (o € 7).
In the alternative case, we have & = M. Set
I(0) = {F € A(E) : 0(F)& = {0}},

s0 that Z() is the continuity ideal of 8. Clearly
I(B)::{FEAF)-H(F)eﬂ)’t}:{FeA(E):FEV(Dﬁ
and so the hull of Z(#) is {o0}.
Since A(F) is a regular Banach function algebra on E, it follows from
[3, Proposition 1.3] that there exists a constant ¢/ with
lBre|l < CIFIIGH  (F,G € M(E)).

Nouw take b, ¢ € 91, and set F' = J-{w‘ﬁ G == o+ R, regarding F and G as
clements of M (), as hefore. bince m* ¢ B, p(be) is defined in A(E), and
neload

)} = M(E),

w(be) = be kR = B
he, Thus
lbelll = ol < ClBl el
Finally, take a = 377, bje; € aM?. Then

lilalll = Z [Ibseslli < OZ 154l el

!

whonee (807 ==

and so [[la]]| € Cllaljx, as required. m
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