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order k + 1 is preserved by the operators B and E. Therefore the function
rDAJ f also Hes in T7. The same argument then shows that »DUy is in 77
and the proof is complete.
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Pointwise inequalities for Sobolev functions
and some applications

by

BOGDAN BOJARSKI and PIOTR HAJELASZ (Warszawa)

Abstract. We get a class of pointwise inequalities for Sobolev functions. As a corollary
we ubtain a short proof of Michael-Ziemer’s theorem which states that Sobolev functions
can be approximated by C™ functions both in norm and capacity.

1. Introduction. In this paper, we prove some pointwise inequalities for
Sobolev functions, i.e. functions in the Sobolev classes W™ ({2}, where m is
an integer, p = 1, and §2 is an open subset of R™. For simplicity we restrict
the discussion to the case 2 = R" and mp < n. The generalized derivatives
Daf, |a] € m, are defined as equivalence clagses of measurable functions.
For our pointwise estimates, presented in a form valid for each point of the
domain 2, it is essential to select a representative in each class which is
s Borel function, i.e. a function well defined at each point of its domain,
essentially by an everywhere convergent limiting process of sequences of
continuous or continnously differentiable real-valued functions. This is best
illustrated by the well known procedure of selecting a Borel function f(z)
for the class of real-valued Lebesgue spaces Lf (R™) using the formula

Flz) = limsup JC fly)dy = Iimsgp fr(z), r>0,
() Blz,r) —
where f,(2) are tho Steklov means of the Lebesgue function . Nc?te that the
above limiting process is rather delicate and should be applied with extreme

o~

care; in particular, it is not additive, and in general f(a:.) # —(.— f )(z).
An important remark is that our main pointwise inequalities for the
Borel function f(z) may be formulated in terms of the averaged Steklov type
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functions f.(z), with the right hand side of these estimates independent of
the averaging parameter r. The pointwise estimates of this paper may be
obtained from those inequalities for the averages f.(z) by the pointwise
limiting process as » — 0. A systematic exposition of this rather crucial, in
our opinion, point of view is deferred to a subsequent paper.

We have used the Borel functions of type f(:ﬂ) since this makes the expo-
sition much shorter, allowing more direct references to the existing literature.
Let us remark also that our pointwise estimates for functions in W™ are
rather sharp. In particular, after local integration, for p > 1, they imply
the local Sobolev imbedding inequalities in the most general and precise
form.

This is the first of a serles of papers on the local geometric theory of
Sobolev spaces. The analogues of the above results for Sobolev spaces of
fractional order W™?, m real, p > 1, and the related theory of the Sobolev
trace operator on submanifolds will be discussed in subsequent publica-
tions.

Theorem 1 of Section 2 generalizes the classical result. We prove that
the inequalities in Theorem 1 hold everywhere. In the literature the first
inequality was proved to hold almost everywhere (a.e.), but the second one
seerns to be missing even in the a.e. form.

In the rest of Section 2 we give the pointwise estimate of the remainder
in the formal Taylor formula for a Sobolev function (Theorem 2). This result
will be used in Section 5 to give a short proof of Michael and Ziemer’s version
of the Calderén-Zygmund theorem ([MZ)).

In Section 3 we deal with an integral representation of Sobolev functions.
The results of this section are somehow paralle! to (but independent of ) the
results of Section 2. In Section 4, included here for completeness’ sake, and
for the convenience of the reader, we recall some necessary results concerning
the Bessel capacity estimates for the Lebesgue points of a Sobolev function.

Theorems 4 and 5 are well known. Theorem 7 is due to Ziemer ([Z1] and
(22]).

Basic notations. By |A| we denote the Lebesgue measure of the set A.

By @ we denote a cube in R™. fp = fo = Q| fQ F is used to denote the
mean value of f on Q. Moreover,

Tiu) = Y 0u@ P2 T8y = f Thuy)d.
le| <k ) Q

If [ =1 then we set

Tou(y) = [ Truly) p(z)ds.
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By V™ f we denote the vector with components Df, la| = m. If f is a
locally integrable function, then we define f at every point by the formula

(1) f(.r) = lim sup f Sy dy.
0 Bar)

Note that ,F(m) = f{). In what follows, as a rule, we identify f with f and
omit the tilde sign.
We day that @ is o Lebesgue point of fif
lim o 1f()~ fl@)ldy =0
Bar)

(f(x) is defined by (1)). Some variants of the Hardy-Littlewood maximal
functions are used:

Mpf(x)=swp § |f(y)ldy, Mf=Mxof,
r<h plar

M () = sup £ 1) - Fla)dy, MVf=Dky.
Ul T

Note that for all @,
M} f(2) < 2Mpf(z) < 2Mf(z).
We use the following definition of the Sobolev space:
W) ={f e D'(2): D*f &€ LP(N), || £ m},
I Flimp = Z 1D flls -

lalSm

where || - ||, denotes the LP-norm. Analogously we define the corresponding

W . , 1y L " P n
local space WP, Qbviously W™» ¢ Wik®. By €' we denote the general
congtant; it way vary even in the same proof.

2. Pointwise inequalities. Let @ ¢ R™ be a cube and let f € CHQ).
The following inequality is well known to be true for all @ € Q-

@ @)~ Tl O [ L
Q

dy
{see e.g. [GT], Lemma 7.16).

Now we show, by extending the method used in [B1] (see also [R}), how
to obtain the stronger inequality involving the derivatives of any order m.
Even for m = 1 this inequality will be more sophisticated than (2).
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Let f & C™(Q) and let a = (aa)lafﬂ,t be a family of real numbers. Let

elyiz) = »_ DS oul Y (@ wu}w

|l Lm—1 |ee]=m
Obviously w(z;z) = f(z) and
3 x z -y (x
2 (e Y Dog ) S af‘wlﬁ__ﬁl_i
' fr|j=m—1 |er|=ma--1 "

where §; = (0,...,1,...,0) (the ith component is equal to 1).
Directly from the definition we have

15/ = f eyzydy+ f > (D°f (3) - 0y =L )” dy.

Q Q lal=m
Hence, applying (2) to the function ¢, we get

|7(2) = TG f(e)| < [e(z) — pol +C § V™ f(y) — al |z~ y™ dy

Q
;¢ )~
<0 f Ty

Q

where (V™ f(y) — a) = (D*f(y) — Ga)|ajm=m 18 treated as a vector.
Thus we have

LeMMA 1. If f € C™(Q) and a = (@) ja)=m then

F(e) - TG 1f(ao|<cf I'V T,

In ™ *

and

3) /@)~ T5 f(a r<cf'—-————-7—‘i'dy;

Ix yEn ™

in particulor, substituting a = V™ f (a:) we have

1F(z) ~ T3 f(z)| € C f |V”f(y) Vi),

y!n-— n R

where the constants C depend on n and m only.

Remark. As far as we know, the second inequality is missing in the
literature.

P roof of Lemma 1. We have proved the second inequality. The first

Pointwise incqualitics for Soboley functions 81
follows easily from the second by taking a = 0. Indeed,

Fy =T )| S 1f() = T f@)+ ¢ f (9™ F(9)] |2 — y|™ dy
Q
- V" iy
A e

fek
7},|n ~4h

Now we will deal with the Sobolev functions. If f € Wf;(’ , then we
et choose natural Borel representatives of this function and its derivatives

defined at every point by the formula
(4) DX fla) = limsup f D% fy) dy
retl]

Blw,r)

{compare {1)).
Now we prove the following extension of Lemma 1.

TuroneM 1. There ceists a constant Cy, ., such that if f € W™(Q) 4s
defined at every poind by (4) (with o = 0) and a = {aa)|a|=m 5 on arbitrary
famnily of real numbers, then, at ecach x € @,

® 160~ T 0 < O [ e
(6) U-(d" e f-LN<Cm,n f %.}r’:ﬁgldy

Remarks. 1) It seems to be a new axld very important fact (as our
applications show) that inequalities (5) and (6) hold everywhere, and not
only a.e. 2) We prove this theorem with the constants Cy, p, larger than their
cownterparts in Lenima 1. 3) This proof extends the method used ir [H2].
See also [B2).

Proof of Theorem 1. The same argument as in the proof of
Lemma | shows that the first inequality follows from the second, so it suf-
fices to prove (he lotter, A standard approximation argument implies that
(1) bolds awe for f & WHQ). Integrating both sides of that ineguality
over o ball we have

- h V™f(z)—a

m | f fwa - f wIwa|so I.7 l]j;’{]'l—"l' dyds .
Li{a,y) F(m,)

We can estimate the right hand side of this mequahw by Lemma 2 below. To

our ktlc)wleclgo the estimates of Lemma 2 have been first used by O. Frost-

man [Fr] (see also [La]). Here we present the simple proofs of Lemma 2 as

well as of Lemina 3 for the sake of completeness.
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LEMMA 2. If @ > 0, then there exisis a constant Oy . such that for all
z,z € R™ and all r > 0,

fly—z*"dy <

{C’a,n|$——zl°‘”"‘ ifo<n,
B{a,r)

Copnlr+lz—z))"" fazn.

Proof. We can assume that z = 0. If r < %|z|, then $lx| < |y} <
%|z|, hence |y|*~" < Cumlz|*™", and the lemma follows. If r > jz| then
B(zx,r) C B(0,3r) and hence

Flrrayormn [ jyeray =0
Blx,r) B(0,3r)

If & < n, then r* ™ < 2% %|g|*", This ends the proof of the lemma.

As we have already mentioned, Lemma 2 leads to an estimate of the right
hand side of (7), and hence, by passing to the limit, the theorem follows.

In the sequel we need the following lemma of Hedberg [He|:

LEMMaA 3. If o > 0, then there exists a constant Ch,a such that for all
we LHQ) and all 2 € Q,
[w(y)]

f Ty dy < C o{diam @) Miam g | (2) .
Q@

Proof. We can break the integral into the sum of the integrals over the
“rings” @ N (B(x, diam Q/2%) \ B(z, diam Q/2%*1)). In each ring, we have
|z — y}*™" ~ (diam Q/2%)*~™. Now we estimate the integral over the ring
by the integral over the ball B(z, diam @/2%) and the lemma follows easily.

Let f < H/l?’c’i(R”) and its derivatives be defined at every point by (4).

Let z,y € R™ be such that |f(y)] < co and [D*f(z)| < co for ol <m - 1.
Moreover, let @ C R™ be any cube such that z,y &€ Q.

As a direct consequence of the triangle inequality we have

@) f@) -TI Wl < f ) - T8 £ ()

. ¥ Y T
+ De (',U o ‘m) . (y - ‘E) e ko] gy o,
u|<Zm~-1 (=) ! o! T D i)
T 1 (y - 117)('" 1| - | s
+rTQ f(y)~| <E ]TTQ “lD‘ J(.’It) )
a|<m—1

The last term is identically zero since it is the difference of two equal poly-

nomials. Indeed, the first polynomial is T&”_l () and the second is Taylor’s
expansion of the first one.
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The remaining terms on the right hand side of (8) can be estimated by
Theorem 1. This leads to the following

TusorEM 2. Let f € Wi (R™) and its derivatives be defined at every

point by (4), and let x,y € R™ be such that |f(y)|,|D*f(z)! < oo, o] <
mo- Lo If ey € Q, then for some eonstent C' = C{n,m),

sl
) 1 )] < TRV ) + D (diom Q)T (9™ )(@)) ,

where 15 () (@) = fQ e y¥" g(y) dy is the local Riesz potential of order k.
If wo now apply Lewima 3, we obtain
() 1Fy) - T )]
< CUM i @[V (1) + Maiam @| V™ () (diam Q)™ .

Analogously, we can ubtain the inequality
(10) [ fl) - T F )l _

< C(Maimn lemf - aj(y) + Maiam Q‘me - b\(m))(dmm@) s
where @ = {tta)jajem: & = (a)|aj=m. We note a difference in the proof
of (10): the highest order tevms are estimated directly without the use of
Theorem | and Lemmna 3. Namely,

>-:: ‘D”.}(ﬂ") (Sf - .’1’7)"1 _ ({L' ;!y)u Tg,ﬁ]ﬂilef(m)

ol

x|
| < Cly — &™V™f(z) ~ (V™ el
< O(diam Q)™ (IV™f() ~ b + (V™ ) - bl)
< ¢ (diam Q)™ Majam V™ f — bl{(z).
Thus we have the following
TrroreM 3. If f ¢ WII(R") and its derivatives are defined at every
poind by (4), then the following inequalities ore satisfied.
O I 1] < oo and | D f ()] < oo for |ov] & m 1, then
@) T ) & C(Mpgey)| V" 1)+ MV F 1)) = 9™
2) I |f(y)] < oo, |D*f(@)} < oo for la| < m and 6 = (G )erim=ms b =
(b Yja e G taken arbitrarily, then
)~ TTF )] € (M |97 = al() + Mgy V™ f = Ol(@)|z = 91™,
where the constant ¢ depends on m and n only. _
Proof There exists a cube @ ¢ R™ such that z,y € @ and diam @ ~
|z~ y|. Now the theorem follows from (9) and (10).
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Remarks, 1) We will prove in the next section (Lemma 4) that if
MVP fi(z) < oo, then |D*f(z)} < oo for |af < k. 2) Inequalitics of the
type considered in Theorem 3 have been obtained in [H1], but the proof
presented here is a direct generalization of the method given in [B2] for the
special case of m = 1 (see also [H2]).

COROLLARY 1. If f € lelc’l and its derivalives are defined ol every poind
by (4), |D*f(z)] < co and |Df(y)| < oo for |a} < m, then

\D*f(y) — T D2 f(y)
< O]

!ﬂ"-"-'ul‘

V”“fl(y) + M{mewm.fl(-’ﬂ))lw » mm« [l i

Proof. It suffices to put o = V™ f(y), b = V™ f(z) and apply the second
inequality from Theorem 3 to Do f e W~ lebt,

lae

If we apply irequality 1) from Theorem 3 to f & VVli:;fl(R"‘) awel to all
its derivatives (in a way similar to Corollary 1), then Whitney- Glaeser’s
extension theorem (1[M]’ Th. 3.6) implies that for every £ > 0 there exists
a function h € O (R™) (€™ function with locally Lipschite (m -~ 1)-
derivatives) such that [{z : h(z) # f(2)}| < &. But as follows from another
theorem of Whitney ([F], Th. 3.1.15), for every § > 0 there exists a fuuction
g € C™(R™) such that |{z : g(x) # h(z)}} < 6. Therefore, we have proved
the theorem of Calderén and Zygmund ([CZ), Th. 13) which can be stated
as follows.

COROLLARY 2. If f € WM (R™), then for every ¢ > 0 there emists a

loc

function g € C™(R®) such that [{z : f(z) # g(x)}| < e.

In Section § we show how Corollary 1 can be used to get a short proof
of the generalization of Corollary 2—the theorem of Michael and Ziemer,

COROLLARY 3. If f € W\P(R™) where 1 < p < my, then
_ . 1/p* 1/p
(F @157 4@ d2)" < Oyl i@ (£ 197 s )
Q @

for each cube @ C B™ with the constant Chungp depending on m,n, p only.

This is the precise form of the Sobolev imbedding inequality for the
spaces W™P(R™), mp < n., Here p* = pn/(n — mp). The proof is a direct
consequence of the Hardy-Littlewood-Soboley inequality for Riesz poten-
tials [S], [Z2].

The global Sobolev imbedding inequality for the spaces WP () for a
large class of domains 2 ¢ R”, including in particular the class of so-called
John domains, which may not have a rectifiable boundary, has been obtained
in [B3], as a consequence of Corollary 3. See also [GR).
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3. Integral representations and Taylor’s formula for Sobolev
functions. If f ¢ C™(@), then, integrating the Taylor formula multiplied

Yox

by a welght ¢ € C3¥(Q), [ =1, we have
Ay Sl T8 fly)

) (. P AY ¢
T S SV Y~ &) _ pam—1
= ] L f DYl 4 (y - 2)t) o @lzydz (1 —1) dt ,
0 lel=m
or, i an eguivalent Torm,
1

(12) S TS =m [ [ (D% + (= =)t) - D* f{a))

0 Jerl=rn Q

01 e Y ]
X L‘-’mmmfil-e,o(m) doz (1 — )™ dt.

Now we prove
LiMMA 4. Let [ & WPHQ). If My

lim Jf Jz) dx
)

V™ fi{y) < oo, then the limit

HEY]
Iy

exists and s finite. If we set f{y) equal to this limit (compare (1)), then
formadas (11) and (12) hold ot y.

Proof, For notational reasons we assume that diam @ = 1. We will be
concerned only with (12). The proof in this case includes (11) as well. We
can asstime that f is defined in a neighborhood of Q. Let f. be a standard
convolution approximation of f (with a C§° kernel). First we prove that
the right hand side of (12) applied to fe converges as & — 0 to the samt;
expression but with f; replaced by f. This will be a direct consequence o
the Lebosgne Dominated Convergence Theorem if we prove that for o) = m
the integrals

[0 folw+ (v~ 2)t)|do and [ 1D ()| da
o

o
are bounded by a constant independent of & and £.

The estimate for the second integeal follows directly from

N .\ -

LEMMA 5. If ge 4% a convolution approzimation of g and E is a rmeasur

able set, then
[ lgele)do £ C [ |g(e)] de,

where £, = {x : dist {z, E) < g}
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Proof.
f]gé r)|de = f’fg(yqpsm— dy|da:<6’£ f flg )| dy dz .

B B(zeE)
This inequality follows from the observation that suppt. C B(0,g) and
[he| < Ce™™. ¥z € Fand y € B(z,¢), theny € B, and z € B(y, ). Hence,
using Fubini’s theorem, the lemma follows.

Now we estimate the first integral. We have

S 1Dfee+ vy - de= -ty [ |Dfe(2)]dz,
3 St

where J? denotes the homothety with center o and scale factor s.

If 1 —t > g, then it follows readily from Lemma 5 and M;|V™ f|(y) < o
that this integral is bounded by a constant independent of £ and ¢.

If1 -t <eg, then

(1—t)™ [ |D*fe(2)|dz

Jl tQ

<c@-n"e™ [ [ |Df(v)|dvdz
717t Blme)

<C(L—t) e ™ (2e)" f :[ | D f(v)| dv dz
T Bly,2e)

< C”  (notice that B(z,€) C Bly,2e)).

We have proved the desired convergence. Hence the left hand side of
(12} is convergent and, in consequence, f:(y) is convergent as € — 0 and
the limit is independent of the choice of the C§° convolution kernel. The
averaged integral f B (z) dz is a convolution with kernel w = | B[ty ,.
Since such a kernel can be approximated by C$° kernels, one can prove that
the formula analogous to (12) holds if we replace D f with (D% f) « w, for
la| < m in both sides of this inequality. Namely, we write (12) for f ¢,
instead of f, where 9} is a sequence of C§° kernels approximating w. Then
we pass to the limit as k — oo,

Now we can prove, just as in the smooth kernel case, that the limit of

(f*w:)(y) exists and is equal to that for smooth kernels. This ends the proof
of Lemma 4.

Remark. One can prove Theorem 3 using Lemma 4 instead of Theo-
rem 1 and Lemma 3.
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Formula (11) plays a key role in the proof of the so-called integral rep-
resentation formula for Sobolev functions ([KA], p. 437, Lemma 1a; {Bul;
Ma], Th. 1.1.10).

It iy easy to show that (11) holds a.e. for a Scholevy function. We have
proved much more. Namely we have exhibited the points (probably not all)
al which this formula holds. Hence we are in a position to prove the following
stronger forn of the integral representation theorem.

Tumowem 4, Lal £2 C R be o bounded domain, starshaped with respect
toa ball B¢ 2. Let o € CF(B), [ = 1. There exists a smooth, bounded
function w, € (62 % 2) such that if f € W™P(£2) and

MUV fl(y) < o0,

then.

fly) =T ) =

f Z DS m)ln we(y, z) de

x| =m

Remark. To be more accurate, we should replace My|V™ f|(y) by
MalV™ fl(y), where d = dist(y, 812).

PProof of Theorewm 4. This follows easily from formula (11) by a
linear chauge of variables in the integral on the right hand side. The details
cant be Lound in [KA], pp. 438 439, [Buj or, in a slightly modified form, in
[Maj], Th. 1.1.10.

Remark. Following the saame ideas as in the proof of Theorem 2 we can
obtain Taylor’s formuly for Sobolev functions. Namely, we can represent
Taylor’s remainder f(y) — 701 f(y) as a potential type integral operator
involving derivatives of the highest order m only.

4. Bessel capacity and Lebesgue points. In this section we re-
call sone results concerning Bessel capacity. In the previous sections we
were concerned with the set of Lebesgue points of a Sobolev function. It
is well kuown thai alwost all points of the domain of a locally intcgrable
fanetion are Lebesgue points. Tu the case of Sobolev functions we can say
more. Namely, we prove {soe Theoren. 8 helow) Ziemer's theorem ([Z1], [52]
Th, 3.10.2 and Remark 3.10.8), which generalizes the fact that if f € Wk
then By g-shnost all points are Lebesgne points, where By, denotes Bessc,l
capacity (Corollary 4).

The results of this section (with almost the same proofs) can be found
in [Z2]. We added this section for the sake of completeness.

Lot (7, v 3 0, be the kernel of the operator (1 - Ay,

Lot LYP(RY) == [ % g1 g € LP(R™)} denote the space of Bessel poten-
tials, If f e Lo, j = (fy % g, then we define the norm of f as I Hlan = Ngllp-
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THEOREM 5. If k€ N and 1 < p < oo, then
LPP(R™) = WhP(R™).

The proof of this classical theorem can be found in [S], Chapter 5, Th. 3.
The Bessel capacity of a set F is defined by

Bap(E) = inf{|lg|}: Gaxg>1iIn E, g0},

Sets of zero B, , capacity have Hausdorff dimension less than or equal to
n — ap. Namely, one can prove the following

THEOREM 6. If ap < m, then
Hy op(E) <00 = B,,(E)=0,
Bop(E) =0 = Veso Hyopte(E}) =0,
If ap > n, then there exists a constant O > 0 such that
E#) = B.,(E)>C
(Hs denotes Hausdorff measure).

The proof can be found in [Me], Theorems 20 and 21,
In the sequel we need the following

THEOREM 7. If 1 <p < oo, a > 0, and f € L¥P(R"), then

Baal{z: Mi(z) > 1) < 2|11,

where the constant C depends on p and n only.

Proof Let f =G, +g, | f|
have

w,p = Hgllp- Let w, = JB({J:T)!leB(U.T)' We

£ 17w dy = w, # |£1(@) < wo x G x Jg|(@)
B(z,r)
= Goxwp *[g|(z) < Go* My(z).
Hence
Mf(z) < G * Mg(x).
And so, by the definition of B

@,

Bup({MF > 1)) € Bupl{Gax Mg > 1)) < [M{g/)2 < S f]1

BS gy AN

The last inequality follows from the Hardy-Littlewood maximal Function
theorem.

THEOREM 8. If 1 < p < 00, & > 0, and e L%P(R™), then for every
¢ > 0 there ewists an open set U C R™ such that Bop(U) < e and

i
af 7230
uniformily in R™ \ U.
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Remark. The maximal function M }3 [ is defined everywhere since f is
defined cverywhere by (1). :

Proof of Theovem 8 There exists g € C5°(R"™) such that

17— gllhp < et
Lot hoo= f - g We have
MY S () € Mig(e) + Mhh(z) € Mhg(z) +2Mhz).
There oxists 2= O sueh tlat
!\-'f}‘i._q(ur) <g for every @ € R™.
Henee, as follows from Theoran 7, we have
Bop{MhJ > 3e)) € Bap({2Mh > €}) < Ce.

If e, = 2 /¢ and By is taken with respect to 4, then
‘ £
Brv.w({M?aJ >ei}) < Tt
Let
Ve | M f > ed

Evidently Ba,(V) < e

Now, as is well known, there exists an open set U 2 V such that
By (17} < & (see 0.g. [£2], Lemma 2.6.6).

COROLLARY 4. If f &€ L%P, where o > 0 and 1 < p < 00, i3 defined
everywhere by (1), then Bap-olmost all points are Lebesgue points of f.

5. A new proof of Michael and Ziemer's theorem. In this section
we give a new, short proof of Michael and Ziemer’s theorem ((MZ], [Z1],
(72}, Th. 8.11.6). This theorem extends an earlier result of Calderém and
Zygmund (Corollary 2 in this paper) and of Liu [L]. In the proof we only need
Corollary 1, Theorems 7 and 8 from the previous sections and Whitney’s
extension theorent (W], M], Th. 3.2, 3.5). This proof is independ_ent of
Qoetion % aad iy based on the proof of a weaker result, given in H1] (see
also [132]). _

PriorieM 9. Lel £2 € R be an open set, 1 < p < 00, 1<m<k,mbk
inbegers, and [ € P‘/{f,{f’(ﬂ). Then, for cvery € > 0, there ewists o closed set
7 e £ and a funetion g € C™(£2) such that
(13) Bkw’m,p(” \ F) <&,

(14) DY f(z) = Dgle) forz&F and |l £ m,
(15) f-gewgt(1),
(16) 1 = glimp <&
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Remarks. 1) The derivatives D*f are defined everywhere by (4).
2) WP (12) stands for the completion of C§((2) in the W™ norm.

Proof of Theorem 9. First assume that f € WH?(R™) and f has
a compact support in %Q (the cube with the same center ag @ and with
1/10 of its side length). Let

B, = {m : mﬁ; M(D*f)(z) < q} .

Evidently |R™\ Eq|s? — 0 as 8 — oo (the maximal function belongs to LP
and this convergence follows directly from the Chebyshev inequality). Let
U'® be the set, defined as in Theorem 8, with the following properties:

i a
uniformly in R™ \ I/ for all |a| = m,
. 1
Bkmm}p(U's) < g,
and
1

&

(17) iQ N | < ‘Sm .

Inequality (17) can be guaranteed since it follows easily from the fact that
sets of zero capacity are also of zero Lebesgue measure. It also follows directly
from the more sophisticated fact that a suitable power of the Lebesgne
measure is dominated by B, , {[Me], Th. 20).

Let E, = E, N (Q\ U?). Corollary 1 implies that (D f g ) i sat-
isfies the assumptions of Whitney’s extension theorem ([W], [M], Th. 3.2)
Obvwvicusly,

(18) @\ E{s" -0 ass—o00.

Moreover,

Bromp(@\E) =0 ass— oo,
This follows easily from the definition of the B and frow Theovem 7.

Now we estimate Whitney’s norm of f on B, (see [M], Section 2.3 for
notations):

‘ ‘ _ =] pyen g
1715 = swp |D°f(a)l+ suwp D@l =T T DUy
|a|€m la]<m [T — y{""'“\”-i
=&, =, yEE]

wmky

We have |D?f| < 5 in B (because | D% f| < M({D*f)). Moreover, as follows
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from Corollary 1,

DUy - 15 D)
‘;[: i ,ylmmlml

1] < Csup MYV f|
B

< Csup2M|VTf] < O's.
2

Henee ,
£ et < Cs.

5 j iw 0 Whithey extension of a function f € E7(F), then

sup |DF (@)} S CY

ECQ)

lix] <
(see [M], The 3.5). Hence
(17} |Dfla) € C's
in Q for all [ € m. The formula which defines f (see [M], the beginning of
the proof of Th. 3.2) and the fact that supp f C %OQ implies that f(z) =10
in K"\ Q (for all suiliciently large s). Thus

levl o QB
<oty ( [ iD= fir + f |D"“f}1’) =0
[l €m Q\ B, O\BY
This convergence follows from two facts:
L fonm [DUFIP — 0, because Q\E)—0,
2. J.Q\[i,‘:' le‘]ﬁ;P’ < (Co"|Q N\ Ey| — O (see (17)).

The general case can be reduced to the case with compact support by a
standard partition of unity argument as in Meyers -Serrin’s theorem ({MS],
(Ma], Th. 1.1.5/1, [13], Th. 1).
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Balancing vectors and convex bodies

Y
WOIOIECH BANASZCZYK (Lédg)

Abstract, Let [7, V he two symmetric couvex bodies in R® and |UF], |V their n-
dimenstonal volumes, T 8 proved that there exisl vectors wy,...,un € U such that,
for vach cholce of signs £(,...,64 == %1, one has gyuy + ... + cpitn & vV where r =
(211‘02)""]/ 2472 a7/ ]V|)J/ . Hence it is deduced that if a mmetrizable locally convex space
in not unclear, then it condaing o null sequence (un) such that the series 3507 ) Entiy(yy I8
divergent for any choice of signs ey == k1 and any permutation 7 of indices.

Let 7 be a convex body in R®. The n-dimensional volume of U will be
denoted by |I7]. We say that U is symmetric if U = —U. The family of all
symmetric convex hodies in R™ will be denoted by Cy.

For each pair U, V & C,, we denote by (U, V) the smallest number »
satisfying the following condition: to cach system uy,...,u, € U there cor-
respond signs €, ..., &y = %1 such that eyuy + ... +un € 7V.

Remark 1. A standard argument based on Lemma 4 shows that to each
gystem uy, ..., Uy € U (with ¢ arbitrary) there correspond signs €1,...,84 =
41 such that g1y + ... + gatty € 28U, V) V. For details, see e.g. [17],
Lecture 1.

The quantitics A, V) for various pairs U, V were investigated in [4], [6],
I7] and [15]. Combinatorial motivations are presented exhaustively in [17];
soe alko [14]. Perhaps the most interesting open problem here is the following.
Let BY and B denote the unit balls for the Iz and I, norms on ™,
respectively; is it true that A%, BR ) is hounded as n -+ 0c? This is called
the Komlon conjecture; the best reference is [16]. For an application of the
auantities A(U, V) to rearrangement of series in infinite-dimensional spaces,
see [3], Remark 2 and 5], (10.18}. :

The aim of this paper is to prove the following result:
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Key words and phroses: balancing vectors, Steinitz constant.
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