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A remark on disjointnoess results for stable processes
by

ALEKSANDER WERON (Wroctaw)

In a recent paper M. Herndndes and C. Houdré [3] bave applied the
Fourler analysis methods (o prove disjointness results for some classes of
stable stochastic processes, However, these methods forced the authors to
restrict the range of the index of stability to 1 < @ < 2, instead of 0 < v < 2.

In this note we would like to show how the disjointness results, going
back to the pioneering work of K. Urbanik [3], can be easily understood
in the more general setup of symmetric infinitely divisible (ID) stationary
processes, including stationary symimetric a-stable (SaS) processes for all
0 < e < 2. Here we will employ some basic facts concerning the hierarchy
of ergodic properties for stationary II2 processes [2]. In the Gaussian case
the moving averages form a subclass of harmonizable processes; however,
for nou-Craussian L) processes we have

PROPOSITION. In the class of symmeiric non-Gaussion ID stationary
processes a nondegenerate moving average process is never harmonizable.

Proof. All symmetric D) moving averages are stationary and mixing {2].
Therefore they arve ergoclic. Harmonizable processes, i.e., the Fourier trans-
forms of independently scattered random measures are stationary iff the
random measure is rotation invariant, In sharp contrast with the Gaussian
case, symmetric now-Gaussian [D harmonizable processes are not ergodic
{cf. {4] and [1] for the Sced case). Tt follows that both classes are disjoint.
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Weak invertibility and strong spectrum
by

MICHAEL J. MEYER (Atlanta, Ga.)

Absgtract. A notion of weak invertibility in a unital associative algebra A and a cor-
responding notion of strong specirum of an element of A is defined. Tt is shown that many
relationshipy Detween the Jacchson radical, the group of invertibles and the spectrum
have analogued relating the strong radical, the set of weakly invertible elements and the
strong spectrum, The nonunital case is also discussed. A characterization is given of all
{submultiplicasive} norms on A in which every modular maximal ideal M C A is closed.

1. Introduction. Let A he a nnital agsociative algebra over the field of
complex numbers and let &, 8 = A\ &, and Rad(A4) denote the group of
invertibles, the set of singular elemnents of A and the Jacobson radical of A
respectively, For an element a € A, let Sp(n) denote the spectrum of o in
A, that is, the set of scalars X such that A —a € § and let p{a) = sup{|}|:
A € Sp(a)} be the spectral radius of a in the algebra A.

For a subset £ C A, let P(F) denote the perturbation class of F in A4,
that is, the set of all elements a € A guch that a + F C I

In reasonable algebras (such ag for example all Banach algebras) the
Jacobson radical admits several characterizations in terms of invertibility
and spectrum [3, Theorem 2.5] and [4]:

(a) Radd{A) is the perturbation class of the group (7 of invertibles.

{b) Rad(A) = {r € A: Spla+r) = Sp(a), for all @ € A}.

(c) Rad(A) is the largest ideal in A on which the spectral radius is
identically wero,

If the algebra A carries a submultiplicative norm, then all primitive
ideals fu A, and hence the Jacobson radical of A, are closed, whenever
the group ¢ of invertibles of A is open in this norm. We will henceforth
assume all norms nnder consideration to be submultiplicative. Following {4]
we call a norm on A spectral if the group of invertibles of A is open in
the corresponding topology. The term Q-norm is also employed by several
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