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Spectral radius formula for commuting
Hilbert space operators

by

VLADIMIR MULLER  (Praha)
and ANDRZES SOLTYSTAK § (Poznan)

Abstract. A formula is given for the (joint) spectral radius of an n-tuple of mutu-
ally commuting Hilbert space operators analogous to that for one operator. This gives a
pusitive answer to a conjecture raised by J. W. Bunce in [1].

Let H he o Hilbert space. Denote by B(H) the algebra of all bounded lin-
ear operators on [, Let T = (T%,...,T) € B(H)" be an n-tuple of pairwise
commuting operators on H, The gymbol o(17) will stand for the Harte spec-
trum of T, Le. (A1, .., An) € o(T") if there exist operators Uy,...,U, and
Viyeooo Vi in B(I ) such that 37 Uy(Ty—Ay) = Tand 30 (Ty~A)V; =1
(here we write for simplicity 7y - A, instead of T; — A; ). We shall also need
the approzimate point specirum of T', Le. the set

o (1) = {()\1, coa ) €T
inf{z {T5 = Aj)x|l + 2 € H, ||zl = 1} — D}.
P

The apectrol radius of T is defined to be the number
r(T) = max{|Al : A € o(T)}

whaote

n. 1/2
A= el = (0 P)
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As was shown in [2] (cf. also [6)), #(T") does not depend upon the choice
of a joint spectrum of 7, in particular one can replace o(T) by (T} in
the above formula without changing the value of r(T'). Further, define the
operator My : B(H) — B(H) by the formula

= iT;’XTj.

j=1

This operator plays an important role in the study of commuting Hilbert
space operators (see [5] and [7}). It is easy to see¢ that

M(X)y= >

QEEY |o|=s

! .
51“*“){:{’“ (6=1,2,...)

where Z" is the set of all multiindices & = (a1,...,0m), @; =2 0 (f =

1,...,n), and, as usual, i = 22;1 aj, ol = ol e, T = fﬁ“‘ N
and T* = (IF,..., 7).

THEOREM 1. Let T = (T4, ..
Hilbert space operators. Then

. Ty) be a mutually commuting n-tuple of

1/(2s)
r(T) = r(Mp)? = 111f

|
E _S_‘_Tuw o
ol

agZy,lo|=s

Proof. By [4], Theorem 3.4 (cf also [3], Theorem 1), we have
o(Mr) C {i,\m (s A) € (T and (i, ... ) € d(T)}.
=
Thus for every v € o(Mr) we get
i = IE | < (Z ou (Z )" <oy,

since obviously »(T*) = r(T"). Hence we obtain

r(T) 2 r(Mz)'? = inf || Ad3| M/

1/(2u)
> i;}f | M5 (D)) = inf
&

Z _f_lif[wru e

o
xR |au|ms

On the other hand, if A = (Ai,...,A\n) € 0x(T), there exists a sequence
(z) in H such that {zg|| = 1 for all k and (Tj — A)zs ~— 0 as k - oo
(=1,...,n). Thus we have

icm
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Z ‘;Z-!IT*“TD& > < Z

rue}%a‘_‘ Jee|m=a a(_—'Z“_’F_,\M:s

- >

aGEY|al=s

8!
D DR IE¥ e M

3cy Sl

= () =

gl

s!
-(_ZE—'-T*QT&:C’N $k>

5!
=T

This implies

5!
Z ___I_TmTa
LT |t ==s o
for every A @ o (1) and so, as max{|A| : A € o (T)} = r(T) by [2], the left
hand sice in the above formula is no smaller than r(T"). This concludes the
proof.

inf
8

Rewmarks. 1. For one operator the formula given in Theorem 1 coin-
cides with the usual formula for the spectral radius of an operator.

2. It is easy to see that Ma(J) = 3 sep(ony Tf T where F(s,n) isthe
set of all functions from {1,..., s} to {1,...,n} and Tf = Tf(l Ty(qy for
f & F(s,n). Thus, for a cammuting n-tuple T = (Ty,..., ), we have

1/(2s)
(1) = 1nEH Z Tfoll
FEP(s,n)
which gives a positive answer to a conjecture of J. W, Bunce (see [1], p. 30).

Iy order to have s complete analogy to a single operator case let us
introdoce the following notation:
Tor I' = (Ty,. .., Ty) € B(H)" define the norm

. 1/2
] = sup{ (L Izal?) " i e

i.e. |7 is the norm of the opem.tor T H — @] H defined by Ta =
(Tyg, ..., Tox), Burther, for Ts=(Ty, ... Tn) € B(H)” and §=(S1,...,5m)
¢ B(H )m st

T8 = (1S4, s ToSm 1351, -+ TaSma -+ TnSim
and define inductively T#* = T T (s =1,2,...).

H, |¢| = 1} .
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Then the previous spectral radius formula can be expresged in the famnil-
iar way:

THEOREM 2. Let T = (Ty,...,T},) be an n-tuple of pairwise commating
operators on o Hilbert space H. Then

e s l/e ms||l/e
r(T) =inf [T*|/* = L [T/

Proof As
Z ':‘il‘l'T*(uf[“(M iy 0
aEZQ,,lrﬂmﬁ ’

we have

Z _S_I_TmTa
!
aEZS‘_,Ia[:s &
sl .
= sup{< Z —!I*“T““a:,w> re € H, e e .l}

2% |ol=s

5!
= sup{ Z f—{l”Toz:r;

@EZE |al=g

|r)®.

I*:ze H, ||| = ]} 7
Therefore r(T) = inf, [|T%]|Y/5.

Further,
Z _S_E_T*(xr]wm
al” 7

agZl,|al=s

17°)1* = = |Mp(D)| <

| M7

/¢ exists and is equal to r(My) = r(T)2. We
1/ exists and is equal to r(T).

and the limit lim,_,q, || M
conclude that lime_,o |77
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Added in proof. We have been notified by Jerzy Trzeciak that the formula from
Theorem 1 was proved in the paper: M. Cho and T. Huruya, On the joint spectral radius,
Proc. Roy Irish Acad. Sect. A 91 (1901), 3944, in the case of fnite-dimensional Hilbert
space operators.



