icm

206 F. Hofbauer

(8] F.Hofbauer, Housdorff dimension and pressure for piecewise monotonic magps of
the interval, J London Math. Soc., to appear,

9] P. Raith, Hausdorff dimension far pieceurise monotonic maps, Studia Magh. 94
(1989), 17-33.

[10] P. Walters, An Introduction to Ergodic Theory, Springer, 1982,

INSTITUT FUR MATHEMATIK
UNIVERSITAT WIEN
STRUDLHOFPGASSE 4

A-1090 WIEN, AUSTRIA

Received October 1, 1991 (2847)

STUDIA MATHEMATICA 103 (2) (1992)
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Abstract. Characterizations of Hy, BMO and VMO martingale spaces generated by
bounded Vilenkin systems via conjugate martingale transforms are studied.

1. Introduction. A theory of H), spaces of conjugate harmonic functions
on Euclidean spaces was developed by Stein [22]. In particular, H:(R") can
be characterized via the Riesz transforms:

(+) Hi={feL :Rjfel, j=1,...,m}.

Chao and Taibleson (see [6]~[10], [23]) have extended this theory to local
fieids. Moreover, for martingale spaces, Janson and Chao ([15], (8], [5]} stud-
ted transforms with matrix operators acting on the values of the difference
sequences of g-martingales,

In this paper conjugate martingale transforms with matrix operators
acting on the generalized Rademacher series of the difference sequences are
investigated. These transforms were first introduced by Gundy [13]. Con-
trary to the statement in [13] Gundy only proved (%) in the case when all
matrices and martingales are real. This theorem is here extended to the
complex case. More exactly, a necessary and sufficient condition for the
transforms is given such that (*) holds whenever the martingale H space
iy generated by a bounded Vilenkin system. Note that this space is slightly
more general than the Hy space of g-martingales. We shall prove a version of
F. and M. Riesz theorem, In the simplest case when all matrices are diagonal
the transforrs used in this paper are called multiplier transforms. Simon’s
question [20] whether Hy can be characterized via a single multiplier trans-
form if the multiplier has two values: —1 and 1, is answered. Moreover, a
necessary and sufficient condition for (+) to hold for multiplier transforms
iy also given. A family of integrable functions for which || filg, ~ | £z, is
obtained. Similarly o [4] we also introduce a transform in the dyadic case.
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208 F. Weisz

In Section 5 a necessary and sufficient condition is given for BMO =
Lo + Y T Lo and VMO = Cw + o7 TiCw where Cy denotes the
contintous functions on a Vilenkin group. The first result was known for
g-martingales but for other type of transforms (see [15]). For BMO(T%)} and
VMO(T) both results can be found in [11] and [16].

2. Preliminaries and notations. In this paper £2 = [0,1), A is the
o-algebra of Borel sets and P is Lebesgue measure. Let (pnyn € N) be a
sequence of natural numbers with 2 < py < N for a fixed N. Introduce
notations Fy = 1 and

n
P’FH—]. = Hpic (HEN)
k=0

Every point z € [0,1) can be uniquely written in the following way:
[ n]
e=Y =k 0<ay <pp ok €N;
= Pt

if there are two different forms, choose the one for which limg—co Z = 0.

"The functions
27i%y

Dn :
are called generalized Rademacher functions. The product system gener-

ated by the generalized Rademacher functions is called a Vilenkin system
(see [26]):

ra(®) = exp

o0
wy () = H r(z)"*
k=0
where n =3 4o nePr, 0 < ng < py and ng € N,

It is well known that each Vilenkin system is a complete orthonormal
system. If p, = 2 for every n then the Vilenkin system is said to be the
Walsh system.

Let F, be the o-algebra generated by {rg,..., n-1}. It can easily be
proved that

Fo=o{kPy, (k+ P 0L k< Po}
where o{3) denotes the s-algebra generated by B.

The conditional expectation operator with respect to F,, will be denoted
by E,. We write L, and || - ||, for the space L,(£2, A, P} and its norm;
moreover, for f € L we set By f = 0.

The Vilenkin-Fourier series of an integrable function f is given by

o~

flz) ~ chwk(m) where ¢ 1= f(k) = E{f@wy).
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Let f,, be its Poth partial sum. It is easy to see ([19]) that

Po—1
fale)= 3 cuwn(@) =P [ f=Eof(a)
Iﬁ=0. I (2}

where I, (x) denotes the atom of the o-algebra F,, for which z € I,(x)
(ne N, zel01)),that is to say, (fn,n & N) is the martingale obtained from
J. Moreover, a sequence of integrable and adapted (L.e. fy, is Fp-measurable)
functions f = (fp,n € N) is a martingale if and only if there exist complex
nurmbers ¢, such that

Pn—1

fo = Z Crplilp .
k=0

For a martingale f it is always assumed that fo = 0.
The martingale difference sequence is given by

Pn-l-l_l
d'n.«}-lf == fn-}-]. - fn = Z CrWk, dOf =0,
k=P,
This can be rewritten as
pu“l
(1) drg1f = Z Uv(zj)T}’L
i=1

where every 1)5,;" Y is F.-meagurable.

The following notations will be used for a martingale f = (fn,n € N):

i 1/2
f* L S’;’-P‘f’n% S(f) = (Z‘dﬂfiz) '
1
n=0
‘ o 1/2
.Q(f) = ( Z Entd'ri.-l-lflz) .
jpeal)
Since
(2) Bu(rd) =0,  Bu(rirh) =8(i~1), |rhl=1,
W C‘)]’)'hk\‘il‘l
oo pn—l . 1/2
()= (3 3 kPR)
na =1

It can easily be shown that the stochastic basis F := (Fa,n € N} is
regulor (see Garsia [12], p. 96), i.e.

fn-l—l S N.fn (n € N)
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for every nonnegative martingale. (Recall that the sequence (pn,m & N)
is bounded by N.) Note that this definition is equivalent to the one in
Gundy [13] (p. 273) (see Neveu [17], p. 72).

Let us introduce martingale Hardy spaces for 0 < p < oco. Denote by H,),
H and Hy, the spaces of martingales for which

£l == IS, < o,
il = s, < 0

and

£, = 15, < o0,
respectively. In martingale theory it is well known that if f ¢ H, then f,
converges a.e. and in LP norm as n — oo (for p = 1; see [17]). Therefore, Hi,
can be identified with a certain subspace of L, (p = 1). Moreover, a sharper
assertion can be shown (see (2], [12], [18], [28]):

THEOREM A. For every 0 < p < oo one has H, ~ Hy ~ HT and 1, ~
L, forp > 1 where ~ denotes the equality of sets and the equivalence of
NOTMS.

Tt is proved in [12] and in [28] that the dual of Hy is BMO and the
bounded linear functionals are given by
Is(f) = B(f¢) (f€La)

where ¢ € BMO ig arbitrary and BMO denotes those functions ¢ & Ly for
which

ligllemo = S‘ip |(Enlp — Eﬂ¢lg)1/2||oo <00

3. The transform. The transform introduced by Gundy [13] will be
used. Let A:= (4,,n € N) be a sequence of matrices such that

Ap i Pl o Pt

If the differences of a martingale are written in the form (1) then the differ-
ences of the martingale transform are defined by

P 1
1 (Tf) 1= Z (Anvn)97d
g=1
where v, = (vﬁf'))’?;—l. Define (Tf)n = 3 pey de(TF). It is obvious that

(T fin = Tfn,n € N} is a martingale.

The advantage of this transform is that if the matrices are diagonal then
we obtain a multiplier transform. Gther martingale transforms with matrix
operators are investigated by Janson and Chao ([15], [8]). Our theorems are
similar to those in [15] and [8].
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We assume that the (euclidean) norms of A, (n € N) are bounded.

ProOPOSITION 1. T is a bounded linear operator on BMO, on each H,
(0 < p < o0) and, consequently, on each L, (1 < p < o).

Proof Since

Pr—1 Pn—1L
Eyldny1 (T = Z (Ao )92 <O Z W2 CEyldns1f?
Jwsl j=1

one has ||s(Tf)l|, < [[s(f) ], By Theorem A we find that T' is bounded on
cach I, (0 < p < o0) and on each L, (L < p < ).
Now, f ¢ BMO implies f € Ly and T'f € Ly. We have

B Uf = Tfal? = By ( }: Ek\dkﬂ(TfHE)

ki=n

< OB Buldvss fI*) = CEalf — ful?,
k=n

thus |7 fllomo < | Fllsmo. =

For L, spaces, this proposition can be found in a slightly more general
form in [18)].

4. A characterization of Hy. Assume that A®), .., A™ are se-
quences of matrices described in Section 3 and let TY,...,T),, be the corre-
gponding martingale transforms. Proposition 1 shows that f € H; implies
that T4 f, ..., T f belong to Hy and thus to L. To prove the converse we
use the following very important lemma proved by Chao and Janson. Set

Vq:r:{mECq:iw,;mO}.

i=1

Given a martingale f we can regard dn41f on an atom of 7, as an element
of V.

Limma 1 [8]. Let W be a closed cone (ie. © € W oand t = 0 imply
e & W) congisting of clements of the form a = (2@, .., 2™} where 2 =
P, ey 6 W, sueh that if 2@ = ni(M, .., Ag) Jor some m; € C,
i 0,1, mand Ay € R, k=1,...,q, then & = (0,...,0). Then there is
a positive p < 1 such that .

s ) 1 g ; )
(3 i < -3 16 + )zl
' B
for = (@Y, € C and o = (@)L, € W, where || - || denotes the

euclidean norm.
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Returning to the martingale H) space we obtain

THEOREM 1. Assume that, for each n € N, the matrices AP AR
have no common eigenvector (71,. .., zp,—1) With Zj = 2p,—j for each j =
1,....,pn — 1 and, moreover, (fy) is a martingale such that || folli and
|Tifnlll GG = 1,...,m) are uniformly bounded. Then (fo) and (Tifn) are
martingales belonging to Hy. Furthermore,

(4) eSTINT Al < [l < €I Tl
i=()

=0
where Ty frn = fa-

Proof. We are going to apply Lemma 1. Denote by Eiginy the atoms
of F, such that

P
E”:Ua"'>";n—1 = U ‘Eiﬂa"'liﬂ b

tn=1
Set .
o = Tifu (B in) and @t = duga (T (Biginonik)

It is easy to check that in this case W is a closed cone. Regard ri as a
pr-dimensional vector. Since, by (2}, (r%)?gal is an orthogonal basis in CP»
we deduce that the real, nonzero vector (A1, ..., Ap, ) can be uniquely written

in the following way:

Pr—1

(5) (Als ve 7’\37:1) = Z Zj'F'g;’.
j==i

(Recall that 327%, A = 0.) Since v}, = rEn—J we obtain Z; = 2, -; (j =

i=

Loooypa—1). Hforevery 0 <1< m

2 = Ml A,y ’\Pn) ("70 # 0)
then by the definition and by (5) we get

Dm—1 pa—1

20 =mo 3 (AP2)Ird = " (nizy)r]
=1 i=1

and, consequently, z = (zﬂ,-)?;[l is a common eigenvector of A (0 < i< m),

which is a contradiction. Hence ng == 0 and so z = (0,...,0) in Lemma 1.
Thus the conditions of Lemma 1 are satisfied, so (3) holds. Now we apply a
usual martingale majorant argument (see e.g. [15], [8]). Set

gn = [[(Tifn)Zolf -

icm

Congugate martingele transforms 213

Then (3) Hh(?WS that ¢f < E.(¢%.,) for some p < 1, thus g2 ig a posi-
tive submartingale. From the second assumption of Theorem 1 we get for
every n &€ N

(6)

i 7
Bl =loul? < (3 1Thall)” < 0
i=(

Using the Doob inequality we conclude that SUpy, g5 € Ly, thus sup,, g, €
Ly, Since |Tifu] < gn we get Tyf € Hy. The right hand inequality of (4)
follows from _

Hfl[{r)h < lsup ngnlli = [lsup wdhllip € Cpllghllaye
and from (6). The other inequality of (4) comes trivially from Proposition 1.
The proof of Theorem 1 is complete, w
This theorem can be found in [22] (p. 221) for Hy (R™).
A finite measure v on (£2, A) defines a martingale (#,) by

f”(E":Elpu,'inwi ) = RLV(Eig,...,in_l ) -

Conversely, if {f,) is a martingale then v is a finite roeasure. Since |l <
l#|| we get the following F. and M. Riesz theorem.

COROLLARY 1. Assume that A, ... AS™ satisfy the assumptions of
Theorem L. If v and Tiv are bounded measures then v is absolutely contin-
uous and belongs to Hy.

In a special case the converse of Theorem 1 can also be proved. That
Hioc{fely:Tif € Ly, i=1,...,m} follows from Proposition 1. If
AP AT have no common eigenvector with the property as in Theo-
rem 1, then the reverse inclusion is proved by Theorem 1.

THEOREM 2. Assume that, for each n € N, the matrices A%l), e Aﬁbm)
have a common elgenvector (Zni1, ..., Znpn~1) With Zny = Znpa—; (§ =
Lio.opn — 1) and m(f) = gl (neN, i=1,...,m) for the corresponding
eigenvalues. Then Hy # {fe Ly Tif € Ly, i=1,...,m}.

Proof. Since P~ 1
(@ngtae s Trgp,, ) 1= Z ZrggTh,
Fe=l
is a real vector we can assume that ming zpp = ~1 for all n € N.

Modifying slightly the proof of Lemma 6 in [15] we get
LEMMA 2. If (015« Ergp,. ) are real numbers such that 357, T = 0
and woing y = 1 for all n € N, then there ewists o function f € Ly such
that f & Hy and '
Arg1 f (Bigyasincs k) = Mg,y i

where Ag, . are real numbers.

vyt
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To prove Lemma 2 define
T o0 gk;
ont1(Big, i) = [+ oms), go=0, fi=) .
k=0 k=(
Similarly to the proof of Lemma 6 in [15] it can be shown that (g, n € N)
is a nonnegative martingale and f ~ Egf € Ly but f — Eof ¢ H1. m

To continue the proof of Theorem 2 take f constructed in Lemma 2.
Then obviously Tif = o® . f € L; but f ¢ Hy, which shows the theorem. n

From this it follows that if, for each fixed 4, every p, and Al (n e N)
are equal then the conditions in Theorem 1 are also necessary.

COROLLARY 2. Suppose that p, = d and B® = Agf) for every n € N
and i = 1,...,m. Then Hy = {f € Ly : Tif € Ly, i = 1,...,m} if and
only if BM, .., BU™ have no common eigenvector (z1,...,2¢-1) for which
Ej:zd_j (j: 1,...,(35"—'1).

Now we give some examples of such transforms. If the matrices 4 =
(Aff),n € N) are all diagonal then the martingale transform is called a
multiplier transform. Denote by “'S-,)k,z the elements of A, Simon asked
in {20] whether in case appy = 0 (B # 1), @ 1= G = ~1 (L € & £
((on — 1)/2D), nk = anps = 1 (((pn —1)/2] < k < pp — 1) one has
Hy = {f € Ly : Tf{ € Ly} or not. These transforms are used in [20] to
prove that the Vilenkin-Fourier series of f & L, converges to f in L, norm
(1 < p < o0). The results given below are more general and follow from
Theorem 1 and Corollary 2.

COROLLARY 3. Assume that T; (i =1,...,m) are multiplier transforms
and for each n € N and each j with 1 < j < p, — 1 there s some @ such
that aff;)J» 5 aE:;Ln_mj. Then Hy={f e L :T;fely, i=1,...,mh

From this it follows that if, for each fixed 4, every p, is odd then the
answer to Simon’s question is yes.

COROLLARY 4. Suppose that p, = d and B = AW are diagonal (n €
N). Then Hy ={f el :ifely, i=1,...,m}if and only if for cach j

with 1 < 7 <d—1 there 4s some { such thaot a,g.ﬁ) 5 f!.E:z i

If d is even then for § = d/2 we get ag-i) = aff_)n- for all 1 < i < m. Hence,
in this case, H; cannot be characterized by any finite number of multiplier
transforms. Thus the answer to Simon’s question is no.

Assume that every p, (n € N) is even. For the eigenvalues o, and
eigenvectors 2, = (n1,..., Znip,—1) Of Simon’s matrices A, mentioned in
Theorem 2 we have on = Gpyp, 2 = 1 and 2y = 0 (k = 1,...,pp — 1,
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k # Dn/2), Znyp, 2 € R It follows from Theorem 2 that in this case H; s
{fe L, :Tf e Ly}, so the angwer to the question above is no.

If pp, is odd then let A, be the diagonal matrix given by Simon. Let
us modify this matrix for every even pn. Set ap1p, /2 = ~1, g = —1
(2 < k< Z)’FL/Q): Grgpn f2,1 = 1, Ok = 1 (P-n/2 <k <pn— 1): and else
e == 0. It iy casy to check that this matrix has no eigenvector with the
property as in Theorem 1, when p, > 2. If T denotes the corresponding
transform then I is characterized by a single transform.

COROLLARY 5. If py, > 2 for allm € N and T denotes the last transform
then Hy = {f ¢ L Tf & Li}.

The same corollary alse holds for the following modification of Simon’s
matrix Ay, for every oven ppt dngx = ~1 (1 £ & < po/2), i f2,pm—1 = 15
G = L (D0 /2 <k <P = 1), Grgp,—1,pa/2 = —1, and else angp,; = 0.

Note that, lor p, == 3, this transform is the same as the so-called Hilbert
transform Hy and for p, = 2d 4 1 it ig different from Hgayq (see [1))-

The next corollary follows easily from this.

COROLLARY 6. Suppose that f € Iy and f(k) =0y P, <k< P+
(P ~ L= [(p0 ~ 1) /2]) Py 1 (01 if P+ [(pn —1)/2] P, £ k £ Pay1 — 1) for
gsomen & N Then || flla, €Ol

Seb f o= S+ fo such that ﬁ(k) =0P, <k< P+ (pn~1~[{pp -
1)/2]) Py, — 1 and Falle) = 0 1f Py o+ [(pn — 1)/2]Pn < k € Pyt — 1 for some
n ¢ N, Thus, in case each p, (n € N) is odd, then f € H, if and only if
fre Ly and fy € Ly, namely, _

(7) e(lflin + W fall) € Wfllen £ OUFla + [ fello) -

With the help of Corollary 5 a similar result can also be obtained if not

every py s odd. (7) is analogous to a result due to Gundy and Varopoulos
(see Theorem 2 in [14] and Corollary 4 in [8]).

Note that all the resulls of this paper can also be proved in the same
way for the trigonometric model considered in [14].

If p,, == 2 for some n & N then the results above are not usable. We define
the transformus in this case similarly to (4], If py == 2 but ppet # 2, Py 7 2
then we drop py, and also fren and Fpr, and let pl,y 0= 2ppen. I pn—y # 2,

P Pt = 4. e 2 then we drop P, Puoo, . - - and also Frars Frtay - and
Fotts Fogar o oon and lot pligp = 2004281 (k = 0,1,...). In any other
case pl, = p,. Hence we get a martingale (Fp o= Jons Fny) and a new

gequence (py, ) such that p,, > 2. If Sria 18 dropped then fo, = fniz is
not dropped. Sinee | fup1] & N - Bulfasr] S N < Bn|fuy| we have

Fw % f* f:; Ns‘t:p Eﬂkwllfml‘
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It is easy to prove (see Theorem 1 in [7]) that
”SI;pEnk~1lfﬂk|“1 < NQ!IF*Hl '

This yvields that f € Hy if and only if F € H 1(Fn,). Now let us transform
F. From T,F we define T3 f by

Tifr = By(TiFn,)
for [ < ng. From Theorems 1 and 2 we obtain

THEOREM 3. Assume that p, = 2 for some n € N, {(Fy, F,,) 48 the
martingole corresponding to (fn) and the transforms Ty, . .. 2 T of (Fy) have
the same property as in Theorem 1. Then f € Hy (or, equivalently, F €
Hy(Fo)) if | Tifnlly (or, equivalently, if | TiFn/l1) are uniformly bounded
(i = 0,1,...,m). If every pn, is equal to 2 and B = Aq(,f) then the above
condition is also necessary.

Note that Gundy [13] proved some results similar to Theorems 1 and 2.
However, those results only hold when in (2) every r%) is real. He proved
Theorems 1 and 2 it B = A% have no common real eigenvector (p, = d).

He claims on p. 289 that for complex T1(13 ), H, would be characterized by

0o 0 10
g 0 01
-1 0 0 0
0 -1 090

(pp, = 5). This matrix has no real eigenvector, though it has an eigenvec-
tor with the property as in Corollary 2 (e.g. [1,—1,%,1]). Consequently, by
Corollary 2, H; cannot be characterized by this matrix.

5. A characterization of BMO and VMO. Denote by A% the adjoint
matrix of A, and by T* the corresponding martingale transform. It is easy
to see that E[(Tf)g| = E(fT*g). From the duality between H; and BMO
we cbtain

THEOREM 4. Assume that, for each n € N, the matrices AS, ..., A"
have no common eigenvector (21,..., 2y, ~1) With & = 2y .5 (§ = 1,...,
pn—1). Then BMO = Lo + 3 iy TiLoo and

(8) cl¢llmmo < inf sup [gilie < Cl¢llmmo

ugigsm
where ¢ = S Tigi- If pn = d and B =AY (m e N, i = 0,1,...,m)
then the above condition is also necessary.

Proof. The proof is similar to that of Corollary 2 in [15], so we ouly
sketch it. Tt can easily be proved by the Hahn-Banach theorem that the
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dual of the space {f € Ly : T f € Ly, i=1,...,m} with norm

™
AT f o T = T flh
i=0
is the space 3. Tiloo Wwith norm
ligl == inf sup lgifjoo
0<igm

S H : : :
where g = > " Tigi. The continuous linear functionals are given by

(9) SB[ T =Y BT ).
PR ) i=0

Theorem | now proves the first part of the assertion,

To prove the necessity suppose that the condition of Theorem 4 does not
hold, though BMO = 7" T L, and (8} is true. Denote by L the vector
space of Vilenkin step functions with zero mean, more exactly, the vector
space

{f [ is Fp-measurable for any n € N and Ef = 0}.
Then Lisdensein {f € LT fe Ly, i=1,...,m} because T} f,, = T f
in Ly norm as n-— oo (see [17])) and T} fy, € L forevery 1 = 0,1,...,m and
n & N. Since

™

DT fl < Cllf

1)
(see (4)) we conclude from the next lemma that Hy = {f € L : I} f € L1,
i=1,...,m}, which contradicts Corollary 2, =

This theerem was first proved by Fefferman and Stein [11] for BMO(RR™).
The following result is also interesting in its own right.

LuMmmMa 3. Suppose that M ¢ Y < X, X 4s a normed space, ¥ 45 a
Banach spuce and their ducl spaces are equivalend: X* ~ Y™, and, moreover,
M iy dense in X and also i Y. If
(10) ol|w
then X ~ Y.

Proof. For every ® € M by the Hahn-Banach theorem there exists
z ¢ ¥* such that ||z]|y+ = 1 and 2(z) = |2|/y. Thus
(11) |lx < Cllaflx
for all x € M. M is dense in X, so for every & € X there exists a sequence
, € M (n & N) which converges to z in X. By (11), (z4) is also a Cauchy
sequence in Y. From (10) it follows that the limit of (2,)inY is  as well.
Taking the limit in (11) completes the proof. w

x £ {elly

I |z(m)| ﬁ HZ X
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Let VMO be the closure of I in BMO norm. It is proved in [28] that the
dual of VMO is H; and the bounded linear functionals are given by

li(¢) = E(ef) (pel)

where f S Hl.

Let Cyy represent the collection of functions g : (0,1} = € which are
continuous at every Vilenkin irrational point (Le. at every point that cannot
be written in the form k/Py), continnous from the right on {0, 1), and have
a finite limit from the left on (0, 1], all this in the ugnal topology, There is
an jsomorphism between [0, 1) and a Vilenkin group & (see e.g. {19]). & is
compact and Cyy is isomorphic to the space of continuous iuncl.mn«.. on It
is well known that the dual of Cy is the space M of all bounded measures
on A.

Now we characterize the VMO space.

THEOREM 5. Assume that, for cachn € N, the matrices AL, ..., AW
have no common eigenvector (21, ..., %p,~1) With Z; = zp .y (J = 1,...,
n—1). Then VMO = Cw + Yo, TiCw and

(12) cllolvmo < mfogup gille < Cllollvamo

i<,

where g; € Cw and ¢ = 3 oo Tigs. If p == d and B = Al (ne Nyis
1,...,m) then the above condition is also necessary.

Proof. First we show that the dual of the space 3 i~ 1:Cyw with norm

il

lgll :=inf sup lgifloo (97: ECw, g= ZTiSi)
0zism =0

is
) m
{(fn) is a martingale : sup Z T Fully < cxa} ,
mEN 1

From. the Stone-Weierstrass theorem the Vilenlkin ’polvumnialq are dense
in Cyy, thus L is dense in Cy, and hence also in 300, TyChy. I a linear
fanctional { has a form similar to (9) for gy € L then { s continuous and

ki3

il < s DY 1T falls.

swU

Conversely, if [ is a continuous linear functional on 337" TiCyy then it
is bounded on Cy as well. Thus there exists » € M such tha

gy = [gdr (gel)
’ 2
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and [v]| < [[{]. So

(Tigs) = f Tig; dv = f g ;v
o] n
Consequently, ([T v || < |lI||. If (f.) is the martingale defined by » then the
proof of our statement is complete.
If the B* do have a common eigenvector as in Theorem 5 then by
Corollary 2

(Q‘z‘ € L).

Hy # {(fw is a martingale : sup Z (1T3 full < oo}
im0
hence VMO is not equivalent to Z:io T,Cw . Assume that the condition of
Theorem 5 is satisfied. Then by Theorem 1 the dual of VMO and the dual
of 30 TiCw are equivalent. Cy is a Banach space, thus the same holds
for 1 TyCw . Since T : Cyyr — VMO are bounded we obtain

m . T
lgllvmo < 3 ITigslvmo <3 l1gilleo -
i=0 i=0

Finally, from Lemma 3 we get (12), which completes the proof.

A similar result is proved in [16] for VMO(T?). Note that if B{)* have
a common eigenvector as in Theorem b then Yo TiCw cannot be closed
in BMO.

It is an open question whether these results can be extended to un-
beunded Vilenkin systems.
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Erratum to the paper
“On the reflexivity of pairs of isometries and
of tensor products of some reflexive algebras”

(Studia Math. 83 (1986), 47-55)
by

MAREEK PTAK (Krakéw)

Abstract. A gap in the proof of [4, Theorem 1] is removed.

1. Introduction. Our purpose is to remove a gap in the proof of [4,
Theorem 1]. All the notations are taken from [4]. Let us recall this theorem:

THEOREM 1. Bvery pair {Vi, Va} of doubly commuting (V, Va commute
and V1, Vy' commute) isometries on a Hilbert space H is reflexive.

The main idea of the proof was to use the Wold-type decomposition (it
exists for the above pair by [6, Theorem 3]): there are subspaces Hy,,, Hys,
Hg,, Hgs such that

(1) H = Hyy ® Hys @ Hy, © H,y, where all summands reduce Vi and Va,
(2) Vilg,, and Va|g,, are unitary operators,

(3) Vi, is a unitary operator, Vo|g,, is a shift,

(4) Vilm,, is a shift, Va|g,, is a unitary operator,

(5) Vi|u,,, Va|m,, ave shifts,

After proving the reflexivity of each component, the last step was to sum
them up. This requires some extra property for each component hesides the
reflexivity. Property C was used (for definition see [4]). The gap was in the
proof of this property for cases (3), (4), (5). For cases (3), (4), the idea
of the proof is correct but the details are not straightforward. These are
given in Section 2. In fact, to sum up reflexive components we need (see
[2, Theorem 3.8]) to prove a weaker (see [2, Proposition 2.5, (2)]) property
than C, namely property D(1) (introduced in [2] and now known as property
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