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M{,,,((0,%]). From (21) we get

Miuo ) = e STy~ = (57 ) (8@
- |detA|“[”_A_1C"1] - |detAi(Mu) o A7,

which ends the proof.

Remark 3. After the change of variables R* 3 y =+ e¥ € R, Theo-
rem 3' (and hence Theorem 3) extends Theorem 1 to the case of the non-
compact set A®(In(0,¢]).
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Weighted inequalities for square and
maximal functions in the plane

by

JAVIER DUOANDIKOETXEA* and ADELA MOYUA (Bibao}

Abstract, We prove weighted inequalities for square functions of Littlewood—Paley
type defined from a decomposition of the plane into sectors of lacunary aperture and for
the maximal function over a lacunary set of directions. Some applications to multiplier
theorems are alse given, ‘

1. Introduction. Square functions are often used in Harmonic Analysis
because their action on a function gives a new one with equivalent LP-norm.
They can be viewed in some sense as a substitute of Plancherel’s theorem
in LP, p 5% 2. .

In this paper we consider two such square functions associated with a
decomposition of R? into angles of lacunary aperture. Let us take the lines
through the origin with slope £27, j € Z, and consider the angular sectors
they determine. More precisely, we set

A= {(z1,22) €R? | 277 < fanfma| < 277%}
and define the multiplier operator S; as (S;f)" = XAJ.J? {we denote by xa
the characteristic function of 4). Our first square function will be
o0 1/2
dh = 157) "

j=—os

We shall also consider a smooth decomposition defined as follows: let
; be a homogeneous function of degree zero, supported on A; U A4;,, and
such that the restriction to the unit circle S* (denoted again by ;) is C°°
and satisfles : :

|D%p;(8)] < 27 lil* (¢ independent of j).
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Denoting by §j the corresponding multiplier operator, (gj F)f = c,ojf, the
associated square function will be

i =3 &)

Closely related to these square functions is the maximal operator
M* f(z) = sup My, f ()
J

where §; is the intersection of the line with slope 2/ and 5%, and given
8 € S, the directional Hardy-Littlewood maximal function Mp is defined
as

My (2) =§1;g§1;:£ Fla—19)] dt.

Nagel, Stein and Wainger proved the boundedness in LP of M* for 1 <
p < oo {(NSW]) and it is easy to deduce that g is also bounded in L? for
1 < p < . There is a previous partial result in [CF]. The boundedness of
g can be deduced from the Marcinkiewicz multiplier theorem.

We are interested in weighted norm inequalities for g, § and M™, ie.,
in their boundedness in Lf(w) (the L? space with respect to the measure
w(z)dz, whose norm we denote by || - {[pw) for w locally integrable and
nonnegative.

As usual, Ay (resp. A; ) denotes the class of weights for which the
Hardy-Littlewood maximal function M (resp. the strong maximal function
Ms) is bounded in L?(w), 1 < p < oc, characterized by

sup(|Q|"1 f,w) (|Q|—1 fw—l/(p—l))P~1 <C
9 Q Q

where Q ranges over all squares in R? (resp. all rectangles with sides parallel
to the coordinate axes). We refer to [GR] for details concerning weights.

In Section 2 we prove the boundedness of § in L¥(w), Yw € Aj. In
Section 3 we prove the boundedness of M* for the weights which satisfy
uniform inequalities with respect to each one of the Mp;. The extrapolation
theorem provides then the weighted inequalities for g in a very simple way.
We end the paper with some results for multipliers deduced from the square
functions.

The use of dyadic decompositions is just for simplicity. The results are
still true with the obvious modifications if the decomposition of each quad-
rant is defined through an arbitrary lacunary sequence. Trivial modifications
are similarly needed when the “limif directions” of the decomposition are
not the coordinate axes.
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We are grateful to José L. Torrea for an interesting suggestion concerning
Section 4.

2. The smooth decomposition. We start with a vector-valued in-
equality for the operators S; defined above.

LeMMA 1. The vector-valued inequality

03 5™, <ol (5519,

3.:"'00 i= e

holds whenever w € A7,

Proof Define 1;(£1,&) = w;(29/26:,277/2¢;). Then 4; is homoge-
neous of degree zero, C* on S! and supported in 1/2 < |&l/161] < 2, so
that the operator T; with multiplier ¢; satisfies (see [GR], p. 411)

f Tiglfw < C f 92w  Yuwe Ay
with C' depending on w but not on j. Since y; is obtained from %; by
dilating each variable in a different way, we get
(%) [ 180wz C [ lgfw vwed;
and the lemma holds for p = 2. For other values of p the result follows by
the extrapolation theorem of Rubio de Francia (see [GRY, p. 461 or [R]). m
THEOREM 2. Let § be the square function defined above. Then

1) < C il o € 45

Proof. Decompose the plane into dyadic rectangles (i.e., cartesian prod-
ucts of the usual one-dimensional dyadic intervals}. Denote by E; the union
of the rectangles which have nonempty intersection with the support of vy,
s0 that xz,; = @), and let f; = Fxz,. Then §;f = ;f; and by Lemma 1,
it suffices to show that

(5 k)] <o

J=—so

I -

If {e;} is an arbitrary sequence of signs &1, E;f____m £;xE; is constant on
each dyadic rectangle and its absolute value is bounded by 3. From the
weighted Littlewood~Paley inequalities in the plane (see [K]) we have

H:; it , < Ol

and the theorem follows as usual by using Rademacher functions (see B8]). w

Observation. If we consider only positive values of j (i.e., only sectors
approaching the OX; axis), inequality (x) bolds whenever w is a weight for
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the maximal function over rectangles with smaller basis than height (the
dilations in the multiplier have a factor 27#/2 in the first variable, 2//2 in
the second variable). Those weights can be characterized as the usual Ay or
A7 weights by modifying the corresponding family of rectangles.

3. Maximal function along dyadic directions. We prove first a
pointwise inequality for a fixed directional maximal function. Given # ¢ &t
and 0 < ¢ < 1 we define a function we s, homogeneous of degree zero, smooth
on §%, identically equal to 1 in a sector of width § and vanishing outside
a sector of width 28, both centered in the direction orthogonal to 8. Let
(Rosf)" = wpsf.

LeMMA 3. Let 6 € ST and 0 < § < 1. With the above notation we have

Mo f(a) < CMpsf(x) + MMp(Ro,sf) (i)

where Mg g is the mazimal function over rectangles with sides b (parallel
to 8) and &h (orthogonal to 8).

Proof. Without loss of generality we can assume § = 0 and write M,
ws and Rs. Let ¢ € C™°(R) with compact support, nonnegative and such
that [ = 1 and ¢¥(0) #.0. For f > 0 we have

1 /¢ :
40$(e) < Caup [ 10 (7)1~ o)t = Csmp g o)

where (Ny.f)"(€) = ¥(hé1)F(8).
Take an auxiliary function ¢ € C°°(R?), compactly supported and equal
to 1in |£] <1, and decompose 9 as

V(&) = B(E)B(EE) + (&)1 — BE)(1 - ws(8))
F (€L~ B(68))ws (8]

Differentiating with respect to ¢; and €2 we see that the first two terms in
this sum have Fourier transforms Ky, K; satisfying

1| *|z2|’ | Ki()| < C67148, =12,

so that they give rise to operators bounded by M4 and the same is true when
we introduce the dilation factor . The third term is clearly controlled by
MMyRs. m

Observe that if |8 ~ jx /2| < C§ for some f = 0, 1,2, 3, the rectangles in
the definition of My can be included in rectangles of comparable area and
sides parallel to the coordinate axes. Then if we consider the Mo, defined
in the introduction and take § ~ 2=/ we have

Mo, f(z) < CMs f(z) + MMy, (5_; f)(x)

icm
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where we use the notation §j because the operators become similar to those
of Section 2.

THEOREM 4. Let Wy, = {w | My, is bounded in LP(w) with constant
uniform in j}. Then
1447 Flpo € CllF lpo

Proof. The necessity is immediate. [et us prove that the condition is
also sufficient.

Notice first that also the “limit” maximal functions Mg, M, are
bounded in LF(w), Yw € Wp, so that W, C A since Msf(zx) <
MyMy 2 f(z). From the inequality above we have

M* f(z) < CMsf(z) + sup MM, (5_; f)(x).
J

if and only if weW,.

Since M and My are bounded for w € A7 it is enough to prove

sup Mo, (8—; F)llpow < Clifllpes  w € Wp.
J

Let p > 2. Then

Isup Mo, (84 5w <3 [ 1 Me, (S-sh)Pw
7 s

<o [ Yirreso [ (L) v <ol
2 i B2 i

from Theorem 2.
For p < 2 we use a method due to M. Christ (see [Ca]). For each NV we

have
| sup (M, fillpaw S BIN)Fllpw
<N

~N<i< |
where B(N) denotes the norm of the operator (i.e., the smallest constant
on the right-hand side). Then

I . | Mo, gililpw < BVl _;;l?Sngjillp,w

and also

N
| s Mgl < (30 M)
~NLFEN j=-N

$ C” (jsi_N iglj\zﬂ) l/PHp’w.
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Interpolating we obtain

_ N 1/2
sl somr|( 55 )

With g; = §_jf we get
| sup IMﬁjJtl”p,w = CB(N)l_pm“f“p,w
N<jEN

so that B{N) < CB(N)'~#/2 and B(N) is bounded uniformly in N. m

If we consider only a set of directions approaching the OXy axis for
example, the theorem remains true with some modifications in the proof,
The inclusion W, C Ay is no longer true but we can use instead the weights
described in the observation following Theorem 2 because the maximal func-

tion over rectangles with longer basis than height is controlled by My, /4
for example. :

4. The decomposition with characteristic functions. Let Py de-
note the half-plane Py = {¢ € R? | (£,6) > 0}. The multiplier operator
defined by xp, is essentially a Hilbert transform so that it is bounded in
LP(w) for the same weights as Mj.

THECREM 5. Let W, be as in Theorem 4. Then

g lpw < ClF lpw Yw € Wh.

Proof. If P; denotes the half-plane defined by B; + /2, then the char-
acteristic function of the (double) sector determined by the lines through 6,
and 651, coincides with (xp, — ij+1)2, o that

JisiPwo [ ifPw Yuew,.

Let {S;} be a smooth decomposition with Qi) =1for & € Ay, ie., §;8; =
;. Applying Theorem 2 we have for w € Wy

f Z Iijlzw < Of i lgjﬁzw < CHf”%,w :

j=—o0 =0

The result for other values of p can be obtained hy extrapolation (see [R],
p. 539). m

in Wp: let W1 = {w | M*w(z) < Cw(z) a.e.}; then w & W, if and only if
there exist wq, w1 & W1 such that w = ?.U()’U.)i_p .

A radial function w(z) = wy(|z]) where either wh € A1 (RT) or wp is
decreasing and wp € A; (R™) is a uniform weight for all M, (see [D]) so that

Following [R] we can also give a factorization theorem for the weights
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it is in Wy, For example, |z|* € Wy if ~1 < @ < 0. By using the above
factorization result we can construct weights in Wy, in particular, |z|* € W,
f-l<a<p—1.

5. Some multiplier theorems. The next thecrem gives weighted
inequalities for a homogeneous multiplier operator assuming a Hérmander
type condition on the unit circle. In the proof we use the following fact
(which can be deduced from [S], p. 73, Theorem 5). Let m be a bounded
homogeneous function of degree zero with m/ € L9(S), 1 < ¢ < oo. Then
there exist a € C and 2 € L9(8") such that (Tf)* = mF is equivalent to

Tf(z) = qf(:c) + p.v. f !T?Ef?g)f(m —y)dy
RQ

W =yly[™).

THEOREM 6. Let m be a bounded function with compact support in
(0,7 /4] such that for some g > 2

2 a0
sup m/(8)|?— < oo
sz fmorg

Then the homogeneous extension of m defines a bounded operator in LP(w),
vw E A;/q: P 2 q,‘

Proof. Take a function ¢, C° in R, ¢(t) = 1if 0 <t < w/4, ¢(t) =0
if ¢ 2 /2, and define ¢(¢) = ¢(t) — $(2¢). Then 3777 b (27t) = (t).

Decompose m as 3., m; where m; = mi{27-) and let T; be the multi-
plier operator associated with m;. The derivative of the multiplier m{277.)¢
is uniformly in L? according to the hypothesis so that it is of the type de-
scribed above. Following [D] or [Wal, it defines a bounded operator in
LP(w), YVw € Apqr, p 2 ¢'- The same dilation argument used in Theorem 2
implies that m; is bounded in LP(w), Yw € A j P2 q. Ta}ce now a
smooth decomposition as in Section 2 with ¢; = 1 on supp(27-). Then
Tf = 3700 1352 and

s S OH (i |T1'§jf2)1/'2u2,w
7=0

<o|(SErE)], <Oy Vo ds,
je=0 ’

1T

For other values of p the theorem follows by extrapolation. w



46 J. Duoandikoetxea and A, Moyua

COROLLARY 7. If m is bounded and continuous outside the origin and
jm!(8)] < C|0|71, then its homogeneous extension defines a bounded operator
in LP(w), Yw € A}, 1 <p < 0.

Under these conditions m satisfies Theorem 6 for all g < 00 s0 that we
get the weights in |, ., A, but this coincides with A (see {GR]).

We can also give weighted inequalities for multipliers corresponding to
characteristic functions of polygons with infinitely many sides like the one
considered in [CF]. Take the points A; = (2-7,4), 5 € Z, in the plane and
consider the polygonal line with sides A;4;.1. Let P be the region of the
plane above this polygonal line.

THEOREM 8. Let W, be as tn Theorem 4. Then xp definea a bounded
operator in LP(w), Yw € Wy, L <p < o0.

Proof. Let H; be the operator whose multiplier is the characteristic
function of the half-plane determined by the line through A; and A;_, and
R; given by

(R £)ME) = xpa-3 2-s+1)(61) F(E) -
Then the operator T' associated with xp is given by T'f = ch—:% R?ij.
Again the result for p = 2 is easy because the H; are uniformly bounded for
w € Wy, and for p # 2 we extrapolate. =

Tn [St] compact polygons with infinitely many sides are considered. Take
a lacunary sequence approaching 0 and consider the polygon inscribed in the
unit circle it determines. Proceeding as in the preceding theorem we can
obtain weighted inequalities. The details are left to the reader.
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