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Cluster sets of analytic multivalued functions
by

5. R. HARBOTTLE (Newcastle upon Tyne)

Abstract. Classical theorems about the cluster sets of holomorphic functions on the
unit disc are extended to the more general setting of analytic multivalued functions, and
examples are given to show that these extensions cannot be improved.

1. Introduction. In this paper we give analogues for a.m.v. functions
of some classical theorems on the cluster sets of analytic and subharmonic
functions.

Let k(C) denote the non-empty compact setsin C. A function K : U —
&(C) on a domain U C C is said to be enalytic multivalued (a.m.v.) if it is
upper semicontinuous and if, for every open set Uy C U and every function
i which is plurisubharmonic en a neighbourhood of the graph of K|y, , we
have that ¢ is subharmonic on I7;, where ¢ is defined by

p(A) = sup{P{A,2) : z € K(A)}.
In the case where (), z) = log | 7|, we shall denote the subharmonic function
exp ¢ by g, so
o(X) = sup{|z| : z € K(A)}.

The two simplest examples of a.m.v. functions are

Ky ={f(A)},
where f is a single-valued holomorphic function on U, and, writing A(w, r)
for the open disc with centre w and radius r, .
K()) = A(0,expu(r)),
where u is a subharmonic function on U. This latter assertion is proved in
Proposition 4.5 of [9].
Other examples include the spectrum of a ho]omorp}uc function f : U —

A, where A is a Banach algebra. This was shown to be a.m.v. by Slodkowski
in [11], a paper that gave rise to the modern interest in a.m.v. functions.
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Stodkowski also applied results for a.m.v. functions to the theory of uniform
algebras.

In the construction of various counter-examples we shall draw upon the
fact that an u.s.c. function K is a.m.v. if it has local holomorphic selections.
This means that for every Ay € U and every z € 0K (Ap) there exist an
open neighbourhood Uy of Ag in U and a holomorphic function f on U7 such
that f(X) = 2 and f(A) € K(}) for all A € U;. We shall also construct,
from a.m.v. functions K and L on U, new functions KU L and K+ L, where
K + 1 is defined by

(K+ L) (A ={2+w:z€ K(Q), we L{))}.

The analyticity of the former function is clear from the definition, and the
latter function is a.m.v. according to a theorem of Slodkowski in [11].

Many theorems of complex analysis, for example the Open Mapping
Theorem, the Picard theorems and Rouché’s theorem, have analogues for
a.m.v. functions (see [9] and [10]); applying these versions to singleton-
valued a.m.v. functions brings us back to the original theorems, and this
will also be the case with several of the theorems proved here.

NoTaTION. We abbreviate A(0,1) to A, and write C* for CuU{oc}. Let
K : A — k(C), and suppose that G C A and € € &7,

The cluster set of K at e with respect to &, which we shall write as
K%(e'?), is then the set of z € C™ such that there exist a sequence (A,) in
G with A, — ¢* and a sequence (z,) such that z, € K(A,) for each n and
zy ~— z. Equivalently,

K%)= N U K(\).
>0 [Ar—elffgr AMEG
When K is a single-valued function, say K(A)={f(M)}for X € A, we write
FE(€%) for the set KG(e'?),

We also define Kg(e'®) to be the set of 2 € C® such that for every
sequence (A,) in @ with A, — e there exists a sequence (2.) such that
Zn € K(Ay) for each n and z, — 2.

Thus, if K(A) = {f(A)} is a single-valued function then the set Kg(e*),
which we shall write as fg(e®), is non-empty if and only if

. '
,\f—»}-!gl,l,\'eG F)
exists, and if this happens then fg(e*) = fG(eif).

When G = A we write K*(¢”) and K,(e') for KS(e#) and Ka(e'?),
and when G is a curve v ending at *® we shall write K7(e*) and K, (e').
In particular, we write K*(e%®) and K (') for the radial limit sets, when ¥
is the radius of A ending at e*.
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Fatou’s theorem (see {5]) implies that a function f € H* has radial
limits almost everywhere. We begin this paper with an analogous result for
a.m.v. fanctions, although we shall see that it is necessarily stated in terms
of the polynomial hulls of the limit sets. Using this theorem and with some
extra hypotheses, we proceed to prove a form of maximum principle for
a.m.v. functions which links the values inside the disc with the radial limits
of the function. We then look at two other famous theorems in this area, due
to Lindeldf, and in Theorem 3 and the following examples we show to what
extent these can be generalized to the set-valued case. Finally, we consider
Bagemihl’s theorem on the ambiguous points of a function defined on the
unit disc, and we show that the same theorem holds true for a set-valued
function.

2. Radial limit sets of an a.m.v, function. Littlewood in [7] proved
that certain subharmonic functions on the unit disc resemble bounded an-
alytic functions in having radial limits almost everywhere. The condition
corresponding to boundedness becomes

L

;1"13@1 5[ u(re’?) df < oo

for the subharmonic function u.
Our first theorem is proved by applying this result to certain subhar-
monic functions obtained from XK.

THEOREM 1. Let K : A — k(C) be an a.m.v. function for which

2

. + i8
(1) | 11_1:5 af]og o(e'’)df < oo,

Then there is a set A C T of measure 2r such that, for all ¢ € A,
(K (PN = [Ke(e)]",
where the hats denote polynomially convex hulls.

Proof. Suppose that p(z) = Zn]";;l a4y, 2™ i a polynomial, and for
A € A define

u(A) = sup{logt |p(z)| : z € K(N)}.
Then u is subkarmeonic on A, since K is a.m.v. there. Furthermore,

M
log* [p(2)| < }_ (log™ am| + mlog* |2]) + log M

m=1

M
=log* 2| Z m + const,

m=1
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s, for all A € A,

w(A) < b( sup logt|z|)+ ¢ for some constants b and ¢
z€K(A)

= blogt p(A) + .
Hence

2x am
lim 5]‘ u(re?) df < lim ﬁf (blog* o(re?) +¢) df < oo

by (1), and so, by Littlewood’s theorem, u has radial limits a.e. on T.
Let {p, : n € N} be the set of all polynomials with coeflicients whose

real and imaginary parts are rational, and for each n define the subharmonic
function u,, as above. Put

An={e?eT: lim un(re'?) exists},
T —

‘and define A = [, A,, 50 A has measure 27. Fix ¢ € A. Then, in
particular, -

lim sup{log™ || : z € K(re')}
exists, so we can find d > 0 and R < 1 such that K(re¥) ¢ A(0,d) for
r> R
Step 1. Let F be a polynomially conver set such that there exists a
sequence (rm) — 1 with K (rme®) C F for allm. Then K'(e¥) C F.

Proof of Step 1. Suppose that, on the contrary, there exists (€
K r(fsl“g)\ F. In this case we can find a polynomial p which is one of the p,
and is such that |p({)| > [p|F > 1. Let

n=[p(Q)i — lplF,
son > 0. Sir}ce ¢ € K*(e'%), by definition there exist s; — 1 and a sequence
(z5) converging to { such that z; € K(s;¢*) for each j. We have [p(2;)| >
IP(O) = 37 = Ipl# + 37 and so
u(s;e") = sup{log™ [p(2)| : z € K(s;e')} > log*(|p|F + )

for 7 sufficiently large. Hence

(@) lim sup u(re’’) > log*(|p|r + 1n) .

1

Now, for all m, we have K(rn,e') C F, so0 [p(2)] < |p|F for all z € K (rme),
and so u(rme’®) <log* |p|p. Thus, '

(3) lim inf u(re*?) < log* [p|p.
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Inequalities (2) and (3) together imply that v has no radial limit at e*°. But
e'? € A and p is p,, for some n, so u has a radial limit at e*; this gives the
necessary contradiction.

Step 2. Let U7 be an open set such that K*(¢®) C U. Then there exists
Ry < 1 such that K(re*®) C U for allr > Ry.

Proof of Step 2. Suppose, if possible, that there exist r; — 1 and a
sequence (z;) such that for each § we have z; € K(rje’?) and 2; ¢ U. For
r > R we have K (re®) C A(0, d), so, for j sufficiently large, z; € A(0, d)\U.
Therefore (z;) has a convergent subsequence, say z; — 2. But then z €
K'(e'?), and z ¢ U, which is a contradiction.

Now suppose that w € d([K*(¢)]*). We shall prove that w € K;(e*?)
by showing that, given a sequence (r;) converging to 1 and some ¢ > 0, we
can find J such that for j > J there exist z; € K(r;e?) with |27 — w| < &.
This will be achieved by constructing sets F and U with U\ F C A(w, €),
and applying Steps 1 and 2 to show that, for r sufficiently large,

K(ré®yg¢ F but K(re')C U,
and so, since r; — 1, that there is some J such that

K(r;é®) ¢ F but K(rjef)cU
for j > J. This last statement implies that for 7 > J there is some z; €
K(r;e) with z; € A(w,¢) as required. ‘

So suppose that r; — 1 and £ > 0 are given. Since w € H([K"(e*)]"),
we can, taking a smaller value of ¢ if necessary, find a ¢ [K*(e'?)]* with
|a—w| = e. The set C\[K"(e'*)]" is connected, so there is a curve o mapping
the interval [0, 1] into it such that a(0) = a, [e(1)] = d. As C\[K"(e¥)]" is
open, there is a connected open neighbourhood V of a([0,1]) such that V.
does not intersect [K™(e®)]*. Put :

F=20,d\(VUA®w,e), U=Aa0,d\V.
Then C\ F is connected (since z ¢ F = 7 € VU A(w, ) or |z| > d), so F
is polynomially convex and U is open. Also,
ZEU\F = |z|<dand z¢V and z € VU A(w,¢)
+ 2€AWwe),
so U\ F € A(w,¢) as required. _

Now w ¢ F, so [K*(e"®)]* ¢ F, and hence K*(¢') ¢ F. Therefore, by
Step 1, there exists Ry < 1 such that K(re'’) ¢ F for all r > Ro. Also,
z € K'(e') implies that |z| < d and z ¢ V, so K*(e'’) C U. Thus, by
Step 2, there is an R; < 1 such that if r > Ry then K(réf®) c U. Soif
7 > max(Rq, R1) then K(re®) ¢ F and K(re'?) C U, and by our previous
remarks we deduce that w € K,(e*). :



258 S. R. Harbottle

We have thus shown that 9([K*(e*)]") C K.(e*), and combining this
with the obvious inclusion K (e} C K*(ei) gives [K™(e)]* = [K,(e?)"
for ' € A, which proves the theorem. m

We showed in this proof that &([K"(¢*®)]"} C K,(e') except possibly

on & set of measure zero; however, it need not be the case-that K (e®) C
K.(€') almost everywhere, as we shall see in the following example.

ExaMPLE. Bagemihl and Seidel in [2] construct a holomorphic function
g on A whose radial cluster set g(e'®) is the unit circle T for almost every
e € T. Let K : A — (C) be defined by

2T A}l for lg(A 2,
K= {2TU{9( » for fﬂfﬁﬁz

Then K is a.m.v. on A, since it is u.s.c. and has local holomorphic selections,
and it is bounded. However, for almost every ¢/ € T,

K'(e®)=2TUT, but K(e)=2T.

We next prove our maximum principle for a.m.v. functions on the unit
disc, and we shall see that, in fact, the essential range of X is sufficient to
determine the values of K(}) for A € A.

We begin by defining the essential range of a function I : T — K(C):

essrange(L) = C*\ U{open Vem({A: LNV # 0)) =0},
where m is Lebesgue measure on T,
In the proof of Theorem 2 we shall want to apply the inequality
(4) - u(A) £ Pllimsup u(re'®)](X) for all [A| < 1
]

when u is a subharmonic function of the type used in the proof of Theorem 1,
and this will mean that we have to strengthen the hypothesis on log® ¢ of
Theorem 1 (here, for a function f such that Ft € LY(T), we denote the
Poisson integral of f by P[f]). Dahlberg in [4] proves that the following

three conditions on a subharmonic function w defined in A are sufficient for
inequality (4) to hold:

(5) limsup u(re) < 0o for all e’ € T;

T—Pl
(6) thereis a g € L'(T) such that lifpn_gxf w(re'?) < g(e') ae. on T
("N max{u(re’?): 6 € [0,2r)} = of(1~7)"] asr—1.

To simplify the notation of this theorem, the a.m.v. function K, defined-
on the open gnit disc, i§ extended to be n.s.c. on the closure of the disc by
writing K*(e'?) as K(e'*) for ¢'? € T. :
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THEOREM 2. Suppose that K : A — k(C) is a.m.v., and that log* o
satisfies conditions (5)~(7) above. Then

[K(A)]* = [esstange( K, )]".
Proof. We need only prove that if A C T has measure 2 then
— 1A
k@[ U K]
Pl EA

since clearly [K(A)]" D [ess range( K, )]*. Accordingly, suppose that AD T
has measure 2x. Then

[ U &) = [ U ']

eifg A eif A
A )
=[ U & (ey]
el c A/
- F‘ » Bay,

where A’ C A also has measure 21, by Theorem 1.
Suppose that { & F, so there is some polynomial p such that

(p(O)| > lplr > 1.

For any e*® € A’ and any open set U O 1?', there exists ry < 1 such that
r > rp implies that K(re®) C U. So, given & > 0 such that ¢ < [p(¢)| — |p|F
and € € A’, we can find ry such that for every r > 7y we have [p(2)] <
Ip(¢)] — € for all z € K(re'®). Define the subharmonic function u by

u(A) = sup{log™ |p(z)| : z € K(N)}.
Then, for r > o, u(re'®) < log¥(|p(¢)| - €), so
lim sup u(re*) < log*([p(¢) —¢) -
r—l .
Note that, since log? o fulfils conditions (5)—(7) of Dahlberg’s theorem, so
does u, by virtue of the relationship u(}) < blog™ o{A)+c for some constants

b and ¢, which we obtained in Theorem 1. Thus for any se'® € A, writing
P(se*®,e'?) for the Poisson kernel, we have

. o . df
u(se'¥) < f P(se“",e‘”)hxfjilp u(re') 5

T
., . df
= f P(s€"%, &%) lim sup u(re') 5 <logt(Ip(Q)] ~ ).
r—1 T
A' .

Therefore, for all €* € T,
lim sup u(A) < log* |p(¢)],

At
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so |p(2)| < |p(¢)] for all z € K(T), and thus, by the maximum principle
applied to u, |p(2)| < [p(¢)| for all z € K(A). We conclude that { ¢
[K(A)]", and the theorem js proved. w

3. Analogues of Lindelof’s theorems. Our objective in this section
is to prove extensions of Lindel6f’s theorems (see [6]) to bounded a.m.v,
functions, using a method suggested by Nevanlinna’s proof in [8]. We sup-
pose that a domain @ in A is given and is such that G N T = {e’} for some
e'? € T, and that G = a; U oz, where o and @y are Jordan arcs meeting
at e*®. Theorems L1 and L2 are both due to Lindelof.

THEOREM L1. Suppose f is bounded and analytic on A, that the domain
G is as above, and thai

lim flA)=a and m  f(A)=b.

A—ef? AEor A-+veif Aoy

Then a = b and lim;_, e yeq f{A) = a.

THEOREM L2. Suppose that f is a bounded analytic function on A, that
G is as above, and that limy_.s rea, f(A) ezists. Then lim,_q f(re')
exists and takes the same value.

In Theorem 3 and in the examples following it, we abuse our previous
notation by writing K* for K5(e®), where § is any set in A such that
'’ € 5; this will cause no confusion, since e is fixed.

THEOREM 3. Let K : A — £(C) be a.m.v. and bounded on a neighbour-
hood N of G in A, and let A= K*1 U K%, Then:

(i) for each component C' of A we have G N K% #0 forj=1,2;
(ii) the inclusion K€ C A holds;
(iii) for each component B of A\ A, either B C K€ or BA K® = 0.

Proof. Since K is bounded on N, there is a bounded open set U such
that K(N) is relatively compact in U. We begin the proof by supposing
that V is some open, simply connected set such that A ¢ V & U, and
we show how a subharmonic function ¢, non-positive on G and depending
on V, can be constructed. We then use such a function ¢ to prove (i) and
(ii) separately, and subsequently apply (ii) to prove (iii).

So suppose that V is a set as deseribed above. Then there is an r < 1

such that 0 < [e?® — (] < r and ¢ € G imply that K({)c V. For A € G,
put '

B(A) = wa(8G N {|e? - ¢| < 7}, 1),
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the value at A of the harmonic function on G taking the values 1 on dG'N
{|e — ¢] < r} and 0 on 3G N {|e*® — (| > r}. Define v : U — [~00,00) by

o) = {dwU\V(BV,z) forz e EJ_\V,
-1 forzeV,
so v is subharmonic on U. Finally, define ¢ by
#(X) = sup{8(X) + u(z) : 2 € K(V),
50 ¢ is a subharmonic function on G. _
Suppose that ¢ € 8G\ {¢*} and |[¢ ~ €] < r. Then K({) C V, so
v = —1in K(¢), and so, since (1) £ 1 for all A,

"~ Limsup ¢(A) <0.
A—=C(,AEG

I ¢ € 8G and |[( ~ €| > r then

limsup 68(A) =0,
A+{,AEGQ

and so, since # < 0, we again have

lim sup ¢(A) <0.
A—=(,AEG

Therefore, by the {extended) maximum principle, ¢ < 0 on G.

Proof of (i). Suppose for a contradiction that there is some com-
ponent C of A such that €' N Ko = ). Then we can find an open set
V as above, and a set W = Wi U W, such that W is simply connected,
V € W C U, the sets W; and W, are open and disjoint, K1 and Wi are
disjoint, and C C Wj. Let ¢ be the function constructed as above with
this V. For any arc [ in @, define

m(l) =inf{8(A}: e}, p(h)= inf{—v(z): z € K(I)}.
Then, as #(A)+v(z) < 0for all z € K()\) and all A € [, we have m(D)+v(z) <
0 for all z € K(1), so

(8) m{) <p) < 1.

Now EoanC = 0, and C C A, so Kanc # 6, and hence, as C is
polynomially convex and cannot be a proper subset of a component of Ko,
the set K *2nC is non-empty. Therefore there exist A, — e witheach A, €
oy, such that for all n the sets K(),) and W) haw? non-empty.ix.ltcnarsection.
Choose p,, — ¢'% in oy such that for each n there is an arc I, joining An to
fn inside G, and such that m(l,) — 1. Then p(ln) — 1 by {8

There exists £ > 0 such that »(z) < —1 + ¢ implies that z € W for
n sufficiently large, p(ln) > 1—¢ so »(z) < —1 + & for all z € K(I,), and .
thus K(l,) C W. By upper semicontinuity there are open con_n?cted sets
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H, C G with [, C H,, and K(H,) C W. Since K NW, = @, we see that
K(pn) C Wy for n sufficiently large. But, by Theorem 1.6 of [9],

Kpn) CWy = KQA)CWeforall A\ e H, = K(x) Cc Wy,
which contradicts the assertion that K(X,) N W, # @ for all n.

Proof of (ii). Suppose that we are given V C U as above, with
the corresponding subharmonic function, and that W is an open simply
connected subset of U such that V & W. We can find ¢ > 0 such that
v(z) < —1+ ¢ implies that z € W. Since

i #(A) =1
J\—-»g-}gl:lAGG (A) !
we can find a corresponding § > 0 such that [A— e’ < 6 and X € G imply
that 8(A) > 1 —¢. But §(\) < —v(2) for all z € K(A) (since ¢(A) < 0), so

Q(A)>1——5:>v(z)<—1+s:>zEWforallzelf()\).

Thus we have found 6 such that |A— €| < § and A € & imply that K()\) C
W. We can do this for every W such that V' € W, and so we deduce that
KS C V. This holds for all V such that A ¢ U, 5o we deduce that K¢ C 4.

Proof of (iii). Let B be a component of ;f\ A, and suppose that
a € B and a € K. Then there is some neighbourhood of @ which does not
intersect AU K%, and so the function L defined by

LA)={1/(z~a):z € K(\)}

is a.m.v. and bounded on a neighbourhood of G in A. We apply (ii) to the

function L. Since B is mapped to the unbounded component of o1 f?*;,
we deduce that the intersection of B and K'G is empty. m

Theorem 3 includes Lindeldf’s first theorem as a special case. Suppose
that K is a single-valued function, say K(A) = {f(A)} for A € A, and that
the hypotheses of Theorem L1 are satisfied. Then A = {a} U {b}, and (i)
implies that a = b, which in turn implies the second conclusion of Lindeldf’s
theorem, by (ii). However, Theorem 1.2 cannot be deduced from Theorem 3.
We shall see in Example 3 below that Theorem L2 is not generally true for
a.m.v. functions. The question of whether 4 is ever strictly larger than A
remains open, but we now give some examples to show that it is not possible
to improve certain other aspects of Theorem 3.

EXAMPLE 1. Our first example tells us that the conclusion of part (i) of
Theorem 3 cannot be extended from intersections to inclusions. We describe

a case in which A is polynomially convex and connected, but neither 4 ¢
K> nor A ¢ Ko holds. '
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Let & C A be the triangular domain bounded by
al(t):%(l'i"i'i"(l“i)t)! tE[Ou 1]1

. 1 N1-1), 0,1},
az(t)-*-{ég_lf: =0 :EEW%,

so €' = 1. _ .
Let fi : T — C be defined by fi(e'®) ;'ﬂ/m‘-, Ae [0,27r).iﬁTE|HeI; fl]‘“_,;:

discontinuous at 1: limg_,oq. fi(e?’) = 0, while limp_or— fi(e*#) = 2.

hq be the harmonic extension of fi to 4, so

i =1/2, lmMh{r)=1.
A_}1]1,?‘50‘1)5,1()\) / lim ha(r)

Similarly, defining fy : T ~ C by fg(ei_f’) = (21 — )/, and he to be the
harmonic extension of f; to A, we obtain

i N =3/2 lim ho(r)=1.
)\—~111,I§l€ot1 h2( ) / = R

Now set K(A) = A(—e'/?,eM)YUA(—e*/2, eh2lN)), 50 K is a.m.v. We have
Ko = A(-ell?, e U A(—e?,¢87),

while _
K% = K* = A(-e'/?, e ) UA(-e2, e').

ExaMPLE 2. We show that part (i) of Theorem 3 doe? not hold for Iﬁ’to,1
and K., by constructing an example in which K, and K,, are non-empty,
2 —r—
but Ko, N Ky = 0. .
Wea{et G C;;e the semicircular domain bounded by
O.’1'-={IA—1/2Iﬁ1/2, ImA <0}, C(g(t):t, 36[0,1],
s0 again e = 1 and K,, = K,. The function K will be the union of the

am.v. functions L and H defined below.
a‘mCVho::'lseaM with 64 < M < 80, and define k by wk = log(3/4). Then

e™ < M/2, and 2M > &7K/2 = M(M[64)1/% > M, as is easily checked.
Put
A1
L(A) = {exp (T:T) + 6M} )

I = {lz-6M|=e '}, Lay=0, L=L"={6M}. |
im in} = 0, lim sup,_ |9(r)| =
h € H° such that liminf,_q |¢(r)[ = O, Py
M NE::I‘; (‘ig(\)ozeg/f on A (see e.g. [3, p. 24] for a construction of such a
?

fun%i:c';ir;)é fon T by f(e'#) = Bk, and let h be the harmonic extension of

f to the disc. Then A()) = k(7 + 2arg(1 — A)); for A € o and A near

Then
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enough to 1, arg(l — A) > n/4, so A(A) > 3wk /2, while on the other hand
lim, 3 h(r) = 7k,
Define the a.m.v. fanction H : A — &(C) by
H(A) = A(g(A), ).
Then we claim that (a) H, = @, but (b) 0 € H,,.

Proof of (a). Choose r, — 1 such that |g(ry)| — 0. Then h(r,) — 7k
so, for n large enough, |z| < M/2 for all z € H(r,). Choose s; — 1 such
that |g(s;)] — M. Then, if j is large enough, |z| > M/2 for all z € H(s;).

Thus we have H(r,)N H(s;) = @ for n, j large enough, and so (a) holds.

Proof of (b). Suppose A, — 1 with (Ar) C x1. Then, for n sufficiently
large, A(g(An), €™/) C H{An). Now |g(An)] < M for all n, and 37%/% >
M, s0 0 € H(A,) for n sufficiently large, and thus 0 € H,,.

We can now put K(A) = L(A) U H(A) for A € A. When r is sufficiently
large we have H(r) C A(0,2M) and

1
exp (H' )+6M| > BM,

r—1

so the sets H(r) and L(r) are disjoint and thus K; = L, = {6M}. Also,
0 € Kq,, since 0 € H,,, 50 K,, is non-empty. Lastly, |w| < 6M for all
w € qu, since Ly, is empty and |z} < M + 5M for all z € H(A). So
neither K, nor K, is empty, but KonK, =0

ExaMPLE 3. We end this section by proving that Lindeléf’s second the-
orern does not hold for subharmonic functions; the counter-example we ob-
tain can be immediately extended to give an a.m.v. function K for which
K=K, ,but KT #K,.

We first construct a subharmonic function  for which Theorem L2 fails,
taking GG to be the same domain as in Example 2.

For A € A put u(A) = log |g(A)| Vleg| f(N)| V (—M), where M

) > 0, and
g, f € H™ are such that | : ,

g(A) = kexp (i—t—%) for some k > e,
and
fl<ton A, Tlminf|f(r)|=0, lmsup|f(r)|=t
for some ¢ such that !
o ) —.ﬁl{[ <logt < log(k/e).
I — Lem

. Rad?aﬁl;riel gla“—,-(: l[ilso,]i'; 1" :1?1;;:?!1?1':1; l(i:gge],f llo\; I_;'?f))l, zo—j‘ME . lcl;go(rke{fl).x
in the interval [0, ], there exist r, — 1 such that |f(rn)f —sz. Hx>eM,
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then, for n sufficiently large, log|f(ra)| > —M, and so u(rn) = log | f(rn)l-
Thus for each z € (™M, 1] there is some sequence r, — 1 such that u(rn) —
log =, and so we have

liminf u(r)= —-M, limsupu(r)=Ilogt.
r—+1 r—1

Defining K : A — x(C) by K(\) = A(0,e“?) gives the promised
counter-example, since

Ko = Ko, = A(0,k[e),
but |
K* =74(0,1), K:.= A0, e~ M).
Furthermore, if we change the domain G by letting o be the reflection

of oy in the imaginary axis, and let K be the a.m.v. function which was
defined above, then we have Ko = K, = K®2 = Kq,, but K* # K..

4. Ambiguous points of set-valued functions. Having seen that
even for a bounded a.m.v. function we might not get very good behaviour
when a point on the boundary of the disc is approached along two different
curves, we now turn to Bagemihl's theorem and discover that all set-valued
functions are subject to some constraints on their cluster sets. We first
extend a definition made by Bagemihl for a single-valued function to the
set-valued case.

DEFINITION. A point e € T is an ambiguous point of the set-valued
function K : A — &(C) if there are curves 71, 72 ending at ¢® for which

EM(&)n K7 (e)=19.
Bagemihl in [1] proved that the set of ambiguous points of any function
f: A — Cis at most countable, and we show in the first half of our next

theorem, using his method, that this remains true for a set-valued function.
We need the following lemma, which is also due to Bagemihl.

LeMMA. Let § C A. Then there is a se ACT, with T\ A at most
countable, such that for every e’ € A, if y1, 72 are simple curves ending at
¢® then either 71, v2 both intersect S or they both intersect A\ 5.

ToEoREM 4. Let K : A — k(C) be an arbitrary set-valued function.
Then there is a set A C T, with T\ A at most countable, such that if
¢ € A and 1, 72 are simple curves ending at ' then

(i) the intersection K™ (e®) N K(e') s non-empty;
(ii) for j = 1,2 we have K., () C KM(e)N K (e,
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Proof. For each m > 0and k > 1, put

Viog = {z:]2] >k} iftm=0,

m A(Ap, 1/k) i m >0,
where {Ap, : m > 0} is the set of points with rational coordinates. Then let
{U..} be the countable collection of sets which are unions of finitely many
Vink. Define

Spn={A€eA  K\)NU, #0}.
Then for each » we can find a set 4, corresponding to S, as in the lemma,
and if welet A = [ ,; A, then T\ A is at most countable. Fix € € 4,
and let y; and 7, be simple curves ending at ef®.

Proof of (i). Suppose that K" {e'*)N K"2(e) = 0. Then, for some n,
K" (e*) C U, and K"2(e'¥) C €\ U,. Hence there exist ¢, t, such that

Kn@)clU, (t2 1), K('ﬁ(t)) cc™ \-U_n (t26).

But then {7:(f) : t > t1} C 8, and {72(t) : t > ©} C A\ S, which
contradicts the hypothesis that e*® € A.

Proof of (ii). Clearly K. () ¢ K% (e') for j = 1,2. Now sup-
pose that w € K., (e'); we shall prove that w € K72(e) by showing
that given € > 0 there exist sequences (s,,) with s, — 1 and (#m) with
Zm € K(72(8)) and |z, — w| < & for each m.

Choose a subset {U,  } of the {U,} such that w € U,,, C A(w,1/m) for
each m. Then, since w € K, ('), for each m we can find t,, such that if
t > t,, then '

Unn NE(r1(1)) #9,

or equivalently {y(t) : ¢t > t;,} C 8y,,. Since &% € A, for every m and
every I" with 0 < T' < 1 we have

{n@):t>2TIN S, #90.

Thus for each m there is a sequence (tm,) converging to 1 such that for
every ¢ we can find

Zm, € K(72(tm,)) N A(w,1/m).

Now, for each m, choose s,, = tm, for some @ in such a way that the
3m form an increasing sequence, and choose M such that 1/M < e. Then
for all m > M we have zn, € K(72(sm)) N 4(w,1/m), and so Zmgy €
E(7(sm)) N A(w,e). »

.Acknowledgements. I would like to express my gratitude to SERC
for its financial support during this research, and to Dr T. J. Ransford, my
research supervisor, for his encouragement and help.

icm

Analytic mullivalued functions 267
References

[1] F.Bagemihl, Curvilinear cluster seis of arbétrary functions, Proc, Nat. Acad. Sci.
U.S.A. 41 (1955), 379-382.

(2] F. Bagemihl and W. Seidel, Some boundary properties of analytic functions,
Math. Z. 61 (1954), 186-199,

[3] E. F. Collingwood and A. J. Lohwater, Theory of Cluster Sets, Cambridge
University Press, 1966,

[] B.E.J.Dahlberg, On the radial boundary values of subharmonic functions, Math.
Scand. 40 (1977), 801-317,

8] P.Fatou, Séries trigonoméiriques et séries de Taplor, Acta Math, 30 {1906}, 335~
400.

[6] E. Lindeldf, Sur un principe général de l'analyse et ses applications & la théorie
de la reprédsentation conforme, Acta Soc. Sci. Fenn. 46 (4) (1915), 1-36.

[7] J.E. Littlewood, On junctions subharmonic in a circle, IT, Proc. London Math.
Soc. 28 (1928), 383-394.

(8] R.Nevanlinna, Anaigtic Functions, Springer, 1970.

[9] T.J. Ransford, Open mapping, inversion and implicit function theorems for an-
alytic multivalued functions, Proc. London Math. Soc. (3) 49 (1984), 537-562.

[10) —, On the range of an enalytic multivalued function, Pacific J. Math. 123 (2) (1986),
421439,

[11} Z.Slodkowski, Anslytic set-valued functions and spectra, Math. Ann. 256 (1981),
363-386.

2, BERWICK HILL ROAD
PONTELAND
NEWCASTLE UPON TYNE
NE20 9UU ENGLAND

Received January 11, 1991 (2766)



