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A strong mixing condition for second-order
stationary random fields

by

RAYMOND CHENG (Louisville, KY)

Abestract.. Let {Xmn} be a second-order stationary random field on Z2. Let M(L)
be the linear span of {Xpmn : m <0, n € I}, and M(Rp) the linear span of {Xmn :
m > N, n €Z}. Spectral criteria, are given for the condition Bmpy., oo ey =0, where ep
is the cosine of the angle between M(L) and M(Ry).

L. Introduction. Suppose that {X,}52__ is a stationary process
on the probabilily space (£2,B,v). A classical (linear) prediction problem
is to estimate X, n > 1, based on the past of the process; that is, to
find X in the linear span P of {...,X_2,X_1,Xp} for which the mean
error (f|X — X,|? dv)'/? is a minimum (see [4], [5], [17]). A variation on
this idea is to replace X, by the span F, of {X,,, Xp41, Xnt2,- .-}, and to
investigate the linear dependence between the subspaces P and F,. This
class of problems is addressed in, for instance, [6], [8]-[11], [16], [18], [20].
These concerns, in turn, admit a multitude of generalizations.

In this article, we consider prediction problems in which the process is
replaced by a random field, {X,n}z2. For any subset S of Z2, we define
M(5) to be the linear span of { Xy, : (m,n) € §7; such spaces play roles
analogous to P and F,. Now the issue is to understand the dependence
between AM(S) and M(S5;). In particular, we seek descriptions of those
fields for which the dependence tends to zero as the distance between the
generating sels 5y and 57 increases to infinity in some way—a sort of “strong
mixing” condition. As in tle case of processes on Z, we pass to the spectral
domain and apply techniques from function theory. This yields spectral
criteria Tor strong mixing to occur.
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Related results in the prediction theory of stationary random fields can
be found in [7], [12], [14], [15], and [19].

2. Preliminaries. Let {X,.,}z2 be a complex-valued, zero-mean,
wide-sense stationary random field on Z%. Its spectral measure p is a fi-
nite nonnegative Borel measure on the torus T?. We now identify the
space M(S) with its spectral isomorph, the span in L*(p) of the func-
tions {e™*+int : (m n) € §}. As the measure of linear dependence he-
tween M(S5)) and M(5;), we take the cosine ¢(51,52) of the angle between
them:

(51, 52) = swp {| [ 1Tadu] : £ € M(S)), IEN <1}
Among natural choices of generating sets are the left halfplane
L={(mn)eZ?:m<0}
and the right halfplanes '
By ={(mmn)eZ :m > N}.

The goal is to describe those g for which limpy—o ¢(L, RN) = 0, a pro-
gram generalizing that of Helson and Sarason in [8). In the analysis that
follows, the principal tools include function theory on the unit circle T, and
on the unit disc D. (Duren [3] served as the reference.) It will be conve-
nient to identify a function f(¢®) on T with its harmonic extension f(z)
into D, and likewise a function g(z) on I with its radial limit g(¢*®), when-
ever these make sense. Normalized Lebesgue measure on T will be denoted
by o.

3. Principal results. In [8] (along with [20]) it was shown that the
cosine of the angle between the past and future of a stationary process
tends to zero if and only if the spectral measure of the process is of the form
| P(e*9)|? exp (€' do(ei?), where P is a polynomial and ¢ is a real function
of vanishing mean oscillation on T. This turns out to have a close analogue
in the random field picture. '

The axial alignment of L and Ry in Z? allows a “separation of variables”
technique. That is, with Z? parametrized by (m,n), and T? by (e'?, et),
the shifting occurs only in the m-direction; hence the variable e**—which is
coupled with m—is the important one in determining the mixing behavior.
Thus, one might expect the condition ¢(L, Ryx) — 0 to occur exactly when
p is sufficiently well-behaved in the variable **, uniformly (in some sense)
in e, This is, in fact, the case. '

The search for a precise statement enjoys a first reduction via an exten-
sion of Szegd’s alternative. Here, ys is the second marginal of p.
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3.1. THEOREM. The space M=o M(R¥) is trivial if and only if
W< o Xy, and

(3-1) Tf logld/d(o x p2)l(e™, €)Y do (%) > ~c0,  a.c. [dua(e™)].

Proof. See [13, Theorem 3]. m
3.2. LEMMA. In order that ¢
that (3220 M(Ry) = (0).

Pl':'oof. Fix ¢ > 0 and M € Z,. Suppose that M., = Niv=e M(RN)
contains a nonzero vector f. There exists a finite trig(mometric_sum p for
which ||f—p|| < &. Choose an integer m such that e p(e*, e'") is in M(L).
Note that '™ f(e'?, e} is in M, and hence in M(RBpr). And now

e(L, RM) > ”eim-’f”-l ”eimapll-l |(eimsf, eimsp)i

2 WA+ €U - iy = =

(L, Rp) < 1 for some M, it is necessary

This forces ¢(L, Ry) = 1. m

Accordingly, we can assume that the restrictions on pin (3-1) hold. With
that, we define

: 1 pe' o ;
(3-2) h(z,€') = exp 3 f -zﬁmf—z]og w(e’, ) da(e'®),

where w = [dp/d(o X y12)]. The radial limit fanction h(e®*, e) is outer in e
for ig-almost every e, and |A|* = w a.e. [ X i3] on the torus. This provides
the needed spectral factorization for passing to the Lebesgue space, as has
been done so successfully in the univariate problem. For, suppose LP(S5) is
the span in LP(o X pg) of {e™s+int : (m n) e 5Y.

3.3. LEMMA. If h exists, then h=' € M(Ryp), and RM(Ry) = L2(Ry).
Proof. This is the content of [1, 2.2 and 2.3]. =

The next assertion, a consequence of the spectral factorization and some
duality theory, effects the separation of variables. As such, it makes use of
the univariate cosine

on(e") = sup { [ f(e*)ale (e, ) do(e) : ()},
f € L*(w(e, e™) do(e'*)) — span{e’™ :m > N},
g € L¥(w(e™, e') do(e™®)) — span{ei™® : m < 0},
(*) J‘ £(e*)Pu(et, e't) do(e) =1,
ot tuets ) doe) =1,
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and a dual extremal guantity

. h(e™, &) ino1)s
s e e, o)’

:Aeﬁ“’(Ro)}.

A(e“‘, eit) _

L (a x uz)

3.4. THEOREM. If (3-1) holds, then C(L,RN) =Ky= ”QN(EH)“L(“(M) .

Proof. First, note that gx(e't) is bounded by 1. Moreover, it is mea-
surable, since the set {e* : pn(€") < a} can be expressed as the countable

intersection
ﬂ {e“ Pa> | f f(e")gle™w(e®, e't) do(e)
J U Pwlet, ) do(e) <1, [ lo(e)Pule, ) do(e) < 1,
and f and g are polynomials with complex rational

coefficients in M({Ry) and M(L), respectively} ;

H

Hence gn(e™) € L%(p).
Now for ¥ € M(Ry) and G € M(L),

IFIHIGI| f FOwd(o x )
< f {QN(E“) . [ f IF(ei:c,eit)lZw(eim’ eit) do(eix)

]1/2

x [ 16, ePu(e, e) dote) - I GI ) dua(e®)

< llew (2o -
Taking a supremum over F and G gives
e(L, RN) < flow (e} Lo () -
Next, let £ > 0, and choose A in L%°{ Ry) satisfying
A —BR~te V108 < Ky £
For j13-almost every e, A(:, e*) lies in H*°(T). It follows that

inf{ ia € H”(T)}
<Kn+e, aelu(eh).

But this Lh.s. is just gx(e'), by [8, Theorem 3]. This yields

h(e’s, ') GHN-1)s

a(e“) - h(e“, E'it)

Lo (o)

llon (™) |Leo () < K-

Finally, observe that K is the norm of heilN-1)s /h, as a bounded linear
functional on £1(R;}, the subspace of L'(o x p5) annihilated by £(Ry).
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That is,
Ky = sup {} f Hﬁh”e"w"l)’d(a X ,uz)! tHe Ry, A < 1}.
For such K, define
ity 1 ew “+ z i . B
(2,6} = exp ) f E};f_—;log [H(e™, ') do(e'),
b= {2,

Note that [¢]* = | i), a.e. [0 X po); |8 = 1, ace. [ X pal; (-, € is outer
. [po]; and e~ H (2, eity s in HY(T) in e'*, ace. [#2]. Therefore,

K y=sup {) f (rh/:)z/:?{h"le‘w")"d(ax,u,z)l : 9 =H € LY(Ry), ”3”151}
< sup { f (%e“‘") (%e“”k”’) ()2 d(or x guz)
*,vE LB(R1)7 f{ulz d(a X ,Ltz) <1, f l'vlz d(a X -“‘2) < 1} .

By 3.3, (ue™*/h)~ € M(L) and (ve"™=13/1) € M(Rx). We conclude
that

Ky < e(L,Ry),
completing a chain of inequalities which establishes 34.

This provides a way to relate the present problem to the univariate
version. We adapt the solution of the latter to obtain, through 3.4, structural
information about those p satisfying limy_ o c(Z, Ry) = 0.

The following constructs will be needed. Let Go be the collection of poly-
nomials in e** with coefficients in L%(pa(e')). Next, if f(-, €®t) is integrable
a.e. [uz(e’)], let J be the conjugate of f with respect to the first variable.
Take Wy to be the collection of nonnegative, [0 X yz]-measurable functions
wo(e™, ') which satisfy the condition:

(3-3)  TFor any ¢ > 0, there exist real functions e and S, in L™(o X p2)
With ||7e]|ce + || Selleo < €, and a polynomial @, in €' with [ (e't)]-
measurable coefficients, such that Q.(z, ') is nonvanishing for z in
the closed disc, a.e. [uy{e!)], and

wo = Q) exp(r, + 5c), a0 x p].
3.5. TuporEM. The strong mizing condition
1}1-1»20 e(L, By) =0
holds if and only if
(2) 1 € o X iy
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(b) [logw(e™, et} do(e) > o0, ae. [uz(e)] and
(c) w = | P|*wy for some P € Go and wo € W

where w = [du/d{o X pa)].

Thus, in aceord with the univariate case, strong mixing occurs exactly
when the spectral measure is continuous in the appropriate variable, its
density is logarithmically integrable in that variable, the zero sei of that
density is removable by a type of polynomial, and the remaining factor
satisfies a smoothness condition. FEfforts here to express the smoothness
condition in terms of VMO, as was done in [20], have been unsuccessful.
The principal obstacle is that the smoothness condition needs to be uniform
in the variable e, in a sense which js difficult to comtrol with norms. The
example in 4.3 shows that without this uniformity, nonmixing can occur
even if w(-, €t is analytic for almost every fixed €.

Proof of 3.5. Suppose that (a), (b) and (c) hold. Fixe, 0 <& < 7/8,
and let Qg, r. and S be the functions associated with wg through (3-3).
Put

. . . 1 Qr (Z eit)
ity ity . NIASE A .
Ns(e ) = deng(z,e ) = p]anlo It !z|[p Qc(z7 e"t) dz;
A(e™, e) = exp[—r.(e', ") — iT.(¢,e")]; and
B(ei“, eit) — exp[iNg(eit)]Qs(ei’, 6“)/@:(6"3, eit) .
Observe that A is bounded, and A(z, e!) is analytic in z € D. Also, B(z,¢'t)
is a Blaschke product in z with &N ,_.(e”) factors. Moreover, its zeros are the

reciprocal complex conjugates of those of Q.(z,e"). To see this, compare
the expression for B with the equation

with [z| = 1 and |a| > 1.
From the definition of Wy, we see that log wy(-, %) is integrable,
a.e. [oa(e')]. Hence we can define

. 1 eig + z . . .
h(z,e't) = exp 5 f E;;:—;log wole', e'*) do(e'f).
Now, for fixed €' and computation modulo 27,

arg(ABh?eiNe?) = arg A 4 arg h? + arg(Be'Ne?)
= arg A + (log wy) + arg(Be~N¢?)
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= arg A+¥F.+.5.— f Se da(e"’)-f- arg Q§+ arg(Be'iN= )
= 8s— [ Scdo(e’).
(Here, choose the branch of the argument function which vanishes at z = 1 )
It follows that ’

|larg(ABRZe~Ne5)| < 2¢
This, together with

eld ok | ABe~*Y*h/F|| = hog 4] | = Ir| <,
yields
h i(N-1)s ]
7e ~ ABei(N-N.~1)s < 2,
Lee(axps)

where IV = 14 [| No(€™)]] Lo (5 )

Let I‘“(e"‘) = min{l,[f’wo do(e®)]1}, so that I'(e')wg(e®,eit) is
[0 X pa]-integrable. Applying 3.4 to the last inequality shows that under
the measure wod(o X jiz), the cosine for L and Ry is less than 2e.
M(F}‘;nal]);, 19.1:'1 d be the degree of P as a member of Gy. Choose any f €
N+d) and g € M(L) with ||f]| < 1 and <1 j i
i e 1711 llgll < 1, as objects associated

[ fgdu= [ (IPPRI-1"By)(Twe)d(o x ).
But I'=1/2P fe=ids and I'~1/2 Pge=i4s lig in the subspaces of L?(Funpd(e X
ta)) generated by R and L, respectively. We conclude that
(L, RN+,_-;) < 2e.

This proves the sufficiency assertion.

Conve’rsely, suppose lim y_.oc ¢( L, Rnx) = 0. Then (a) and (b) must hold.
From 3.4 it follows that for each positive integer k, there exist Ay in L%(Rg)
and a positive integer N such that

L= Ake™ Dk Rl oy < 5 o275
Put ry = ~log{Ae| and S = —arg(Ahe=iNe?), so that |l +

1Skl noe (o x gy < (7/2)27F. Consider the function
u=Ah? exp(wiNks - 3‘], + ISk) .

Note that u is nonnegative on T2, and u(z, ") is analytic in z € D. As in
[8, p. 10], it follows that u(z,e'*) has an analytic continuation across |z] = 1.
And now the reflection principle asserts that for up-almost every fixed e,
u(e'?, ') is the squared modulus of a polynomial Py in e’*, of degree at
most Ni. Observe that :

|Pi(e', €)/ Pee, ) = expl(re — 75) + (§k — 55)]
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is [c(e**)]-integrable, a.e. [u3(e**)]. Therefore, the unimodular roots of each
Pi(z,€), k = 1,2,..., must coincide.
To construct P as in (c), choose any Py, and define

L1 [(2, €)
1t _ - P dz »
Ale ) Q]i.r%o Q1 {|z|'[e} Pk(z, elt)

. 1 P"(Z eit
ity 1 ._"F...__?.__._.d
Ax(e )—]‘!}1{[11 7 f Pi(z,e) ©
{}z[=e}
)

. 1 Pl(z eft
WY _ iy e hull. A Sub RS %
Ao(e ) ]';'ig i a tf} Pk(z, e:z) Z3

these give the numbers of roots of P(-,¢'*} in C, in D, and at 0, respectively.
For each e'!, factor Py into P_Pp Py, such that the roots of P_, Py and
Py lie in D, on T, and cutside T, respectively, such that Py(0,¢') = 1 and

f log | Py(e™®, et) do(e) = 0,  a.e.[pale™)].
We establish the measurability of P_, Py, and P, as follows. First let
i e’ +2 6 it i9
H(ze")=exp | s 1o |Pu(e”, €)| da(e),
J(z,e") = Pi(z,et)/H(z,e"),
R 1 R it
AL iy, —{Me")+1]
Cle )—27”: ka(z,e ! dz.
T
We find that

C(e't) . P_(z,¢") ) Frole)
G P (aet) P

J(z, e“)z["l(?‘)—ka(e“)l -

{To see this, compare with
-—a z-e _-a z-a
ol 1-@z = |e| z-@&

for 2] = 1, 0 < |o] < 1.) Tt follows that arg(PyP,) is measurable, and
hence Py Py is measurable. Repeating this argument with Py replaced by
22(=") P(1/2, e*) shows that P_ P, is measurable, as then are P_, Py, and
Py separately.

Now Py(e'*, e't) is of the form

J
P(}(Eis, e“) - Z am(eit)eims,

m=0
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where each a,,(e) is uy-measurable. Define
P(eis’ e:'t) — A(E“)Pu(eid, eit) ,
with
. J 7=1
A =[1+ 3 lan(e)] .
m=0

Then P(z,e't) € Gy, and its roots are exactly those unimodular roots com-
mon to all the P;, 7 =1,2,... Finally, let
Pk(eiﬂ, eit)

‘ i
iy [ +Z
Qi(z,€") = exp f . zlog P(e?, ¢it)
Observe that |Qs] = [Pe/P| on T?, and Qx(z,e') is a polynomial whose

roots all lie outside T,
We have, at last, the representation

do’(eie) .

w = |P|*wy,
where

wo = |Qx|* exp(ri + 5i)
satisfies (3-3) with ¢ = (7/2)27%, k=1,2,... m

4. Further developments. The separation of variables approach,
as realized through 3.4, has other consequences as well. First, following
a course parallel to that of [8], we find spectral criteria for the condition
C(L, RN) < 1.

4.1. THEOREM. In order that (L, RN)<1, il is necessary that du(e', eft)
be of the form

P(eM)|P(e, &) explo(e®, e + 5(ei, )] dlo(e) x pa(e)]

where P € Gy is of degree less than N, r and S are real Junctions in L>°(o x
H2), | S]| < 7 /2, and I is pg-measurabdle.

Proof. If ¢(L, Ry) < 1, then the restrictions (3-1) on x hold. Hence
3.4 applies; given ¢, ¢(L, Ry) < 1 — ¢ < 1, there exists A € L®(Rg) such
that

’A - %e“”””s Sol,Ry)+e<1.
oo

(As before, & is defined through (3-2).) This implies that for some constants
K <r/2and C,

larg(AR?e™ N0 < K < x/2, ae. lua],

and
llogl|A[| £ C, ae.[p].
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Put r = —log |A], § = —arg(Ah?e~*V*) and u = AR? e)gp(—filV;s -5+
i$). As in the proof of 3.5, u turns out to be I'(eit)| P(e*, e}, x'vhere
P € Gy, deg P < N, and I'(¢'t) is a nonnegative pz-measurable function of
eit, Now, if w = |h{® = dp/d(o X p2),

w = h? - exp(~2iargh) = T|P2 A~ exp[i( NV — 1)s+ § —i§ — Ziargil]
= I'|P|texp[r + § —i§ — i arg( AhZe~ (N -19)] = I'|P|*exp[r+ 5]. m
4.2. THEOREM. Suppose that du{e®, e't) is of the form
P()|P(e, )P explr(e®, ) 4 5, )] dlo(e®) X pa(e)]

where P € Gy, deg P = N, r and S are real functions in L®(o X jig), and
I'(e") is a nonnegative jiz-measurable function of ¢ I [|r[loo and 15} oc
are sufficiently small, then ¢(L, Ry) < 1 whenever m > N.

Proof. Consider the univariate weight function ¢(-) = exp[r(-, €') +
S(-, €it)] for fixed e'. Tt has a factorization ¢ = | f[*, where f € HYT). We
can choose f = exp 3(r+ it + (. i5).

Let 0 < ¢ < 1, and assume that ||r]|e and ||
allow

oo are small enough to

[elllee sin [|:51too]? + [ellTlie cos ||STloe — 11 < (1~ ).
Then there exists A(e®) in H°°(T') such that

it = A FC, e/ F(e)ine (o) S 1 ¢,

namely A(e'%) = exp[—r(e®?, it} — i#{e'*, e™)]. (For then eIl < 4| <
ellrlies | and arg(Af?) = -7 +2-1(F—5) = —S.) It follows that for pg-almost
every e't, gny1(e™) is at most 1—e. By 3.4, this yields ¢(L, Ry41)< 1—¢. w

In the following example, 3.4 is used to calculate ¢(L, Ry) explicitly.
Tt illustrates that random fields with rational spectral densities can exhibit
nonmixing behavior. This stands in contrast to the case of processes on Z:
if such a process has a rational spectral density, then its past and N-step
future are asymptotically orthogonal.

4.3, PROPOSITION. Let dpu = |h|? do?, where
eia — eit

h(ei’,e"‘) =y

Then ¢(L,Ry) =1 forall N.

Proof. First we check that |h|? is o2-integrable. For 't # 1,

flh(ei.s eD)|? do(ei®) = 1 J‘ z— et ] 1—e iz dz
' i J 2-z—eft 2z-1-e"iz 2
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—eit (Q_E—it)-—l__eit l_e-it(g_e—{t)—l

1]

9 it 2-e—“-(2—e“)—1 ) 5 e—it
_ a—if]2
<14 2z
|2 — e—itl: —_ 1

Therefore

2 2 2'1_e—iti2 :
flhl do S!(l'}“m-l?-:—l) dcr(e t)

k.
2(2—2cost) dt
<1+ —_— . =
_{ 6—4cost -1 2n 2.

Next, note that h(-,¢*) is outer in H?(T) for €t fixed. Accordingly,

Fle) e e HYT),||F|l: < 1}

2 _gis eit

= 5Up {‘ f '2_—"'_—"—(—3—‘3__“)3{(]\;-1)’F(ei‘q) da(eis) .

—_ 6—1'3 — e—it

F(e*) € e BY(T), | Flly < 1}

= sup {

1 2 - Cit -z N-1 dz
_'f 2 z—(2—e i) (VT F(2) il

Fe B\(T),|[F|h < 1}

_ et ooty RERVE
= R N rsupy | F g_e—it)"

Fe BT, |Flh < 1} .

Put w = (2~ e )", and F(z) = (1 —@=2)~%, Then ||F; = (1 - {«|?)~?,
and
0y s [T =] (1= o)
it > lw w| .(
N2 T i)
By 3.4, ¢(L, Ry) = ||on(€")||oo = |2— €|~V = 1. This proves the claim. m

Of course, there do exist g for which e(L, Ry) — 0. The next result
exhibits a large class of examples. Here, let Ko be the collection of finite

V-1 = 19 _ g=it[1-N
= |w =[2—-e [ 7N,
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trigonometric sums in e** with coefficients in L°(c(¢™)), and let Ky be the
closure in L*°(c?) of Re Kq.

4.4. PROPOSITION. Suppose that du is of the form |P[>exp(U + 17) do?,
where P € Ko, and U, V € Ky. Then ¢(L, Ry} — 0.

Proof. It suffices to show that exp(U + V) € Wo. Let ¢ > 0. There
exist real functions Uy and Vp in Ky such that

“U - UgHLoc(azz) -+ “V — V()“Lw(d-ﬂ) <£

Note that Vj is again a real function in Kp. Now exp(Us + Vo) has a se-
Ties expansion in e’* which converges in L>°{o?). In particular, it can be
expressed in the form |Qq|? exp b where Qy{e™, ') is a polynomial in e*
with no roots on the circle a.e.{o(e*)], and 4 is a bounded real function
satisfying ||¢]|peo(r2y < €. Put r=U 4o —Up, § =V ~ W, and

Qzty=exp [ ::: leog 1Q0(e®, )] dor(e®).
Then
exp(U + V) = exp(Us + Vo) exp(U ~ Up)exp(V — V)
= |Q[* exp pexp(r — ¥)exp § = |Q|* exp(r + 5).
This shows that exp(U + V) € Wy. u

The representation of AM(Rg) in 3.3 makes possible a formula for the
distance from the function 1 to the space M{Ry), an N-step prediction error
for halfplanes of a random field. For ¥ = 1, this was done in [12], and for a
process on Z, see [5], [17]. In the present situation, let du = wd(o X p } + d
be the Lebesgue decomposition of u with respect to o x 3. There is a
measurable subset A of the circle such that

f log w(e®, ™) do(e?) > ~o0
T

if and only if e € A. For such e, define h on T via (3-2).
4.5. THEOREM.
inf {1+ fla, £ € M(RN)}

N—1
— E fl fh(eia:eit)e—t'ms da’(e“) 2
m=0 A

Proof. There is a Borel subset £ of the torus such that M) =0=

dpq(e't).
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(0 X p2)(£2). Put E = (T x A) N 2%, 80 that p = p, + py, where
dte = 1pdp = 1glh2d(0 X u,),

Also, let M(y(RN) be the subspace of L%(j.)) generated by Ry. It is
known (see [12] or [13]) that

(] MoR)= @), (] M(Rn) = n My(Bm) = (1)

m=1
Fix N and suppose that P is the projection operator of L2(g) onto M(Rx).
By the above observations, 1z. € L2() € M(Rx), hence Plg. = 1g..
Now for any f in L?(y), observe that
Pf=1gPf+ 1g-Pf

is its representation with respect to My(Rn) @ L*(us). (The second term
15 Pf clearly lies in L?(u,), and the first in L2(p,); moreover, lgPf =
Pf —1g:Pf belongs to M(Rx).) In particular, (1gP1g)|L(k,) is the
projection operator of L%(p,) onto M,(Ry). To see this, let f € I? (,ua)
and check

1gPlg(1gPlef) = 1gPlEf;
and for f, g € L*(p,)
{1eP1sf,g) = (1ePlefleg)y = (pf,1pP1Eg), = {f,1EP1Eg),,
Therefore
11— P1|3a(=(1 = P1,1~ P1), = (1- PL, 1),
=((1=P)Y1g, 1), +{(1=P)1ge, 1}, ={(1~P)1g, 1g+1z:) u+0
={{1-P)1g, 1)+ {15, (1-P)1g:)u={1g—1EP1E, 1 g}, +0
=(1g — 1gP1g,1g — 15Plg),, = |l1p - 1eP1g|2,

=int { f|1+f| (A2 d(a x ia) : £ € Mo(Rn)}

....1nf{ f|h+¢[2d(0')<#z) PElp- EQ(RN)}

< Z f ‘ f (e, et) do(e) d,ug(e")
m=0 A
In the last step we took
N-1 )
q5(e'.",e"t) = h(ei’,e“t) _ E eims f h(e”,e“)e"’“" da’(e'g) ,
m=0 T
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which lies in 15 - L2(RnN)-

Tor the reverse inequality, note that

iut{ S e dlo ) 6 € £(Rx) }

v

f inf{ f |h(e', e') — B(e*)|* do(e**) : € eiNst(T)} dpa(e')
A T

N-1 .
— f (Z l f h(eis’eit)e—ims dO‘(Ew)
A

=0 T

2) d,u-z(eit) . m
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