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Translation invariant projections in Sobolev spaces on tori
in the L' and uniform norms*

by
M. WOJCTECHOWSKI (Warszawa)

Abstract. The idempotent multipliers on Sobolev spaces on the torus in the L!
and uniform norme are characterized in terms of the coset ring of the dual group of the
torus. This result iv deduced from a more general theorem concetning certain translation
invariant subspaces of veclor-valued function spaces on tori.

Introduction. The classical result of Cohen [C] (cf. also [G-McG], p. 2)
on idempotent measures can be restated as a characterization of translation
invariant projections acting either on the space of all continuous scalar-
valued functions or on the space of absolutely integrable functions (with
respect Lo the Ilaar measure) on a locally compact abelian group. It says
that the family of the supports of the multipliers of translation invariant pro-
Jections coincides with the coset ring of the dual group, i.e. with the boolean
ring generated by the cosets of all closed subgroups of the dual group. The
purpose of the present paper is to show that for finite-dimensional tori the
same characierization holds for translation invariant projections acting on
the spaces of k times continuously differentiable functions and on the corre-
sponding Sobolev spaces in L' norm (Corollaries 2 and 3). In fact, the same
characterization holds for every Sobolev spaces determined by a smoothness
(= a nonempty set of partial derivatives) with elliptic fundamental poly-
nomial (Theorem 3). Our results in particular imply that Sobolev spaces
with elliptic fundamental polynomials have no infinite-dimensional trans-
lation invariant complomented subspaces isomorphic to Hilbert spaces (cf.
[P-W] for details). Our resulls for Sobolev spaces are consequences of more
general results which characlerize (in terms of the coset ring of the dual
group of the d-dimensional torus) translation invariant projections on cer-
tain translation invariant subspaces of the spaces C(T4, E)and L'(T4, E) of

1991 Mathematics Subject Clasaification: 421315, 481535, 46E40,
* This is a part of the author's Ph.D, thesis written under the supervision of
Prof. A. Peleayfiski., B '



150 M. Wojciechowski

functions on the d-dimensional torus T with values in a finite-dimensional
complex Hilbert space E. The considered subspaces X have the property
that for every character  on T¢ the subspace X, = {¢ € E : ex € X} is
one-dimensional. It is well known that one can identify Sobolev spaces deter-
mined by smoothnesses with such translation invariant function spaces (cf.
[K-P], [P-S], [P]). Assuming “regular behaviour” at infinity of the function
x — X (called a bundle) we show that the translation invariant projections
on X are characterized by the coset ring of the dual group of T2

The paper consists of 4 sections. Sections 1 contains preliminaries. We
introduce there the concepts of stable and asymptotically symmetric bun-
dles which are the regularity conditions we need, The case of translation
invariant subspaces of L}(T¢, E) is treated in Section 2 and the case of trans-
lation invariant subspaces of C(T% E) in Section 3. The main results are
Theorems 1 and 2. Section 4 is devoted to applications to Sobolev spaces.

Acknowledgement. The author wishes to express his sincere grati-
tude to Professor A. Pelczyniski for inspiration, stimulating discussions and
relevant remarks at all stages of work on this paper.

1. Preliminaries. The symbols { , ) and | | denote the standard
scalar product and Hilbert norm in RY; 2(9) denotes the jth coordinate
of an z € RY. A linear manifold in R? of codimension one is called a
(d —1)-dimensional hyperplane, shortly a hyperplane. A hyperplane is called
rational if it is perpendicular to a nonzero vector with integral coordinates.
Z%is the sublattice of points in R? with integral coordinates. The ball
centred at z € R? with radius r is denoted by B{z,r). T? denotes the d-
dimensional torus. The dual group of T¢ can be identified with Z¢. The
coset ring of Z¢ is the smallest ring of subsets of Z¢ which contains all cosets
of all subgroups of Z%.

A set A C Z%is called essentially periodic with essential period p € 14,
oU) # 0 for j = 1,...,d, and ezceptional family Hy,..., Hy of (d — 1)-
dimensional hyperplanes if there exists B C Z¢ such that

k
A+BC|JH;
F=1

where B is a periodic set of period p = (9("))?=1, ie.
B +(0,...,0,090,...,00=B forj=1,....d.

FacT 1. If A belongs to the coset ring of Z% then A is essentially peri-
odic. :

For the proof observe that each coset of each subgroup of Z¢ i& an essen-
tially periodic set and the essentially periodic sets form a ring. =
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CoRrOLLARY L. If A belongs to the coset ring of ¢ and A is contained
in some halfspace of R%, say AC {z € R : (z,e) > 1} for some a € R¥ and
t € R, then there exist M > 0 and o € Z? such that

Ac{rez*:|{y,a) < M}.

For the proof use Fact 1, induction with respect to d and the following
observation: if A is in the coset ring of Z* and H is a rational hyperplane
then AN H is a translate of some set from the coset ring of a subgroup of
Z¢ isometric to Z9-1, m

Let E denote an arbitrary finite-dimensional complex Hilbert space with
the norm | + |g. Then B(E) stands for the ring of linear operators on E
and L'(T9, E) denotes the space of equivalence classes of E-valued functions
absolutely summable with respect to the Haar measure of T4 with the norm

IAl= [ |£(¢)l .
Td

By G(E, 1) we denote the Grassmannian of one-dimensional subspaces of
E and by d( , ) the usual metric on G(F,1), i.e. d(X,Y) = the Hausdorfl
distance of the sets XNBg(0,1) and YNBE(0,1). A one-dimensional bundle
is a function ¢ : Z% - G(E,1). By L}, = L, (T%, E) we denote the closed
linear subspace of L'(T9, E) generated by the set {ze?"i"t) .y £ 2¢, o €
¥(7)}. By Lip(T4, E) we denote the subspace of L'(T%, E) consisting of
those functions whose Fourier transform vanishes outside a subset F of Z%;
we put Ll p = Ly N L?F(Td,E). If dim E = 1 we write L'(T¥) instead
of L(T¢, E). By C(T%, E) we denote the space of all E-valued continuous
functions with the norm '

Ifllec = sup |f(t)&-
teTH

Given a bundle 4 : Z¢ — G(E, 1) the symbol Cy, denotes the closed linear
subspace of (T4, E) generated by the set {ze*™ (" 1y € Z%, 2 € ()}

The concepts of translation invariant operators and the corresponding
multipliers acting on translation invariant function spaces on a fixed group
have the usual meaning (¢f. [P-5], [K-P)). In particular, if T': L'(T4, E) —
L'(T%, E) 1s n translation invariant operator, then the corresponding multi-
plier T is a function from Z¢ into B(E) defined by T(7) = the restriction of
T to the space {xe*™ (1) ; z ¢ E}. We write supp T = {y € % : T(y) # 0}
KT L}, — L), is translation invariant then

T(1/)(7)c“"('f")) c 1,)(7)621:6(1,1) ]
Thus T(*y) = Tjy(y)edritra} can be identified with a linear operator on the
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one-dimensjonal space (), hence it can be identified with a complex num-
ber. Thus T can be identified with a complex-valued function on Z%, If
P : LY(T4E) - LL(T4 E) is a translation invariant projection, then
P:7¢ - {0,1}.

In the present paper we consider a class of bundles ¥ which are stable
and asymptotically symmetric.

DEFINITION. A set F' C Z%is called ¢-stable for the bundle 4 if d(4(7;),
Y(1)) < ¢ for any 71,72 € F.

A bundle ¢ : Z¢ — G(E, 1} is called stable if for every m > 0 and ¢ > 0
there exists M > 0 such that |y > M implies that the ball B(y,m) is e-
stable.

A bundle 4 is asymptotically symmelric if for every £ > 0 there exists
M > 0 such that if |y| > M then the set {y,—7} is e-stable.

By the Sobolev space Wi(T?) (Cs(T?)) we mean, as usual, the comple-
tion of the set of all trigonometric polynomials equipped with the norm

ilwy = [ (S 10sr)" ae

T Des

(Mfllos = sup (37 1D7P) ™" respectively)
teT “pes

where S denotes a (d-dimensional) smoothness, i.e. an arbitrary finite set

of partial derivatives (in d variables) containing the identity operator. For

D € § we denote by D the symbol of D, i.e. if D = 8% ...054 then D(¢) =

l(if(l))"l o+ (309)¢, Given a smoothness S the Jundamental polynomial Q 5

is

Qs(6)=>_ D).

, DeS
A smoothness § is called elliptic provided there exists C' > 0 such that

1@s(6)] 2 CJé1**69s  for ¢ ¢ R,
With a d-dimensional smoothness S we assocjate the bundle g = 4 :

Z¢ - G(B,1) defined as follows. E is the complex Hilbert space Coard §

and ¥s(7) = span{z,} where 2, = (B(1)/(Qs(1))"/*)pes € E for 7 €
Zl. Ti]e Sobolev space WE(T?) is “canonically” isometrically isomorphic to
Ly(T%, E) (cf. [K-P]) via an operator H : W§ — LY, defined by

(HDNT) = FaX@s() P2,  for ye 2¢.

Clearly H is a translation invariant isometric isomorphism. Indeed, for any
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trigonometric polynomial f one has

vy = [ (3 10reyr)"” a

T4 Des

[ (X |p( X Fersiona) ) a

T4 DES  yexd

o ; 2y 1/2

[ (2] % Benfmersen )
T4 DES ~erd
| 3 Fr@stny Paerion)| = it sy
T y€IXd
Notice that a similar argumeni shows the existence of a translation invariant
isometric isomorphism from Cg(T%) onto Cy(T4, E).

A smoothness 5 is called siable (resp. asymplotically symmetric) if ¥s
is stable (resp. asymptotically symmetric),

It

tH

#

2. Characterization of translation invariant projections on
L},,(T“,E) for stable and asymptoiically symmetric bundles. Our
main result is

THEOREM 1. If 9 is a slable and asymplotically symmetric bundle and
P L}J: — L},, i8 a translation invariant projection then supp P belongs to
the coset ring of 74,

In order to prove Theorem 1 we need several lemmas,

LEMMA 1. If F C Z¢ is an n-element set which is 1/(3n)-stable for the
bundle 4 then there exists @ translation invariant isomorphism H : L?F —

Lyyp with [|H] - | HY)) < 2.

Proof. Since I is 1/(3n)-stable for ¢, there exist y € E with [y|g = 1
and a system of vectors (zy)yer With 2,y € () satislying |ey — ylm <
1/(3n). Let

H (¥ = g™ for y € F.

Then for arbitrary scalars (ay)yep we have

”H( 2 aweﬂwi(w,t)) “ - Z a,y:z,,e“"("")]|
VeF vER :
= }: ayyet ™ 4 z oy (B — y)ezﬂ('y,t)”
~EF VEF
< E a,,,e“"h"t)ll‘l + Z |aqllzy — ylm
eFf - nEF
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. 1
<[ S o] - e maen
NEF !

3n veF
sl gl
because |a,| < || 2, e aye?™ {8}, for v € F. Similarly
" H( E a‘vezm‘(‘v.t)) " = ” Z a,yet i) | Z (2 ~ y)emh.o"
yeF yeF vEF

2| 3 a0 = 3 laslies ~ sl
! veF

vEF

2[5 0], <o gl
T 1

In qeF
Hhee

Thus [[H]] - |HY|| < 2. =

LI;M MA 2. Let v be a stable and asymptotically symmetric bundle and let
P : Ly — L}, be a translation invariant projection. Then eack unbounded
sequence (a:l)‘,i,”:l C Z?¢ contains an unbounded subsequence {on)32y such
that im0 P(y + @) exists for each ¥ € 2% and the formula -

(1) R(y) = Jim P(y+ean) foryezd
determines a iranslation invariant projection R : L' (T7) - L1(T4),
Proof. Given a cube
Q=Qah)={reZ*: |V ~a<hfori=1,...,d}
we put
d €)
fo(t) = elrifont) H Z (1 — --———wlk ’ l) amiki)
F=1 [kt )<h ntl

for t = Ft(j))f=1 € RY Let F, : LV(T?) — Li5(T*) be the operator of

cc;;wolut]on by fq. Siplce fq is a translate of a d-dimensional Fejér kernel,

Eth” = 1. }‘?et }Ig ﬁ LlQ(T“) - L}MQ be any translation invariant isomor-
sm, i.e. Hq is defined by a sequence (z.,),eq with i

is _ v)veq With 0 # x € ¥(7) via the

formula Hg(e?™i"1)) = .21, Having chosen Hg we Jeﬁne(S(); by the
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commutative diagram
Fy H,
LINTY) = Ljg(T) = Ly
I I
LTy oy B
i g
i.e. we put
(2) Sq = JooHz'oPgo Hgo Fg

where Pq : {J}MQ — ﬁPIQ is the restriction of P and Jg : Ljo(T4) — L'(T¥)
is the inclusion. Finally, we put
(3) Rq =[-a]oSqo(a]

where, for 7 € 29, [y] denotes the operator of multiplication by the function
1+ e300 Clearly Rq and Sq are translation invariant operators acting
on L}(T"). Moreover, we have

(@) Re(r)=8q(r +a) = Fa(y + )} Pe(7 + a) = Fa—a(7)P(7 + o)
for v € Z¢ and
(5) i Rgll = ISl < 1P - 1 7qll - 1HZ-

Now assume that we are given an unbounded sequence (af)%%, € Z4.
Then using the stability of ¥ we can extract from it an unbounded subse-
quence {@,)2%, such that each cube @, = Q(an,n) forn = 1,2,... (which
has (2n + 1)? elements) is 1/(3(2n -+ 1)4)-stable for the bundle . Hence,
by Lemma 1, there exists an isomorphism H, = Hg, with

(6) |l - 1 < 2.

Let $, = 8g, and R, = Rq, be defined by (2) and (3) for the above choice

of H, (n = 1,2,...). Note that |Rq(7)] < 1for all ¥ € Z¢ and all cubes
Q C Z°%. Thus, passing if necessary again to a subsequence, we can also
assume

(N Jim Ra(y) existsfor y € 7°.

It follows from (5) and (6) that

(8) IRl < 2||P| form=1,2,...

Thus (7) and (8) yield the existence of a unique translation invariant op-
erator R : LY(T4) — L'(T%) such that R(y) = lim R,(y) and moreover
Rl < 2] Pl

Put F, = Fg,—ans fn = fQu-a, forn =1,2,... The cubes @, —~ ay,
satisfy: Q1 — o C Qs — a3 € ... lilpeoo(Q@n — @n) = Z%. Thus, by the
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well known property of the Fejér kernels,
lim Fo(7)= lim fu(y)=1 foryeZ.
Hence, by (4),
R(7)= lim Ru(7)= lim Ply+on) foryeZ?,

This proves (1). Clearly (1) implies that E(7y) equals either 0 or 1 for all
v € Z¢ because 1'1 being a multiplier induced by a projection has the same
property. Thus R(y) = (R(y))* for all v € Z%. Hence R is a translation
invariant projection. m

We shall also need the following technical

LEMMA 3. Let Q : Ly, — L}, be a translation invariant projection (¢ :
2% — G(E,1) stable). Assume that Q satisfies either

(i) there ezist My > 0, a sequence (z;)$2, C R* with |ty = 1 for
k=1,2,... and a sequence of balls (B(ak,rs))32, with (a)3, C 2¢ and
limr; = co such that for k=1,2,...

o € suppé N Ble, ri) - {2:{z—ap, zx) < Mo},
or

(i) there ezist sequences of balls (Bla,s£))32; with lims, = oo,
(ax)i2, C RY and (ap)R, C Z% with oy — ay| = sy for k = 1,2,... such
that for k =1,2,...

Qi) =1 and suppQ N Blay, ) = .

Then there exist M > 0, z € 2¢ and a subsequence (81)32., of (ax)52, such
that for k=1,2,..,

B € supp @ N B(Bk, k) C {2 : [{z — fi, 2)| < M}

’ Proof. (i) Passing to a subsequence if necessary, we can assume that
im z; = y and (by Lemma 2) that there exists a translation invariant pro-
jection R : LY(T%) — L'(T%) satislying

R(y)= lm Q(v+ax) foryezt.
If (v,y) > Mo then (v,24) = {(ak + 1) ~ g, k) > My for large k. Hence,

by (i), G(ck + 7) = 0. Thus if {(7,¥) > My then R(y) = 0. Therefore, by
Corollary 1, there exist M > 0 and z € Z4 such that

(9} R(y)=0 foryezd satisfying |{y,z)| > M .

Since for all v € Z% the sequence (Q(y + o)), s integer-valued and
tends to. R(y), there is ky > 0 such that Q(y + a;) = R(v) for every
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k > ky. Putling ky = max{ky : 7 € B(0,m)} we infer that if k > k, and
v € B(0,m) then Qv + ax) = R(y). Thus, by (9),
supp § N Bag,m) C {z: {{z o, )| S MY} Afork 2 kn .

On the other hand, by (i), P(ax) = 1. We put fm = ay,, for m = 1,2,. ..

(i) Let g = (ar — og)/|ag — x| and ry = /Zsg for k= 1,2,... Then

Blog,re) C{z:{z = ag, 2k} < 1} C Blan,sn).

Hence, by (i), we get (i) with Mp = 1. w |

Prool of Theorem 1. We use induction with respect to the dimen-
sion d. The case d = 0 is trivial. Assume the validity of the assertion of
Theorem 1 for all integers ' with 0 £ d' < d—1 a.I'l(l for all stable and
asymptotically symmetric bundles parametrized by Z7.

First observe that the inductive hypothesia implies:

(x)  For cvery stable and asymptolically symmetric bundle v parametrized
by Z#, for every translation invariant projection P : L}b — L}, and
Jor cvery (d—1)-dimensional hyperplane H of R the set supp Pnil
belongs o the coset ring of 24,

Indeed, for every (d —~ 1)-dimensional hyperplane ' C R for which HnZ¢ is
nonempty, there exist o & Z¢ and lincarly independent vectors gy, ..., B €
7¢ for some integer d' with 0 < d’ € d— 1 such that
Ifﬁldm{a+n1ﬁl+...+ndaﬂd; imjedforl<Jj< d'}.
Consider the bundle ' : Z¢' — G(E, 1) defined by
Pngy oo ng) = Pla+nf+ ..+ ne o).
One can easily verify that 1/ is asymptotically symometric and stable. Define
an isomorphistn G ; LZJ,, — prmnza as follows., Put
G(weﬂwi((m,...,nd:),x}) = mchi((a+mﬂ1+-u+ndn;ﬁ..u)gl)

and extend (@ linearly to E-valued trigonometric polynomials whose coefli-
cients belong to the bundle 4. For any such polynomial, say f, we have

161 = M1z,

where ¢ = square root of the Gram determinant of the vectors fy, ..., Bar.
Thus ¢ uniquely extends to an isomorphism from L}, onto 1?1‘,,E wnza- Define
Pe =G0 Pod. Then Pg is a translation invariant projection on Lj,.
Hence, by the inductive hypothesis, supp Py belongs to the coset ring of Z¢.

Let P : L},, ~4 J,:,, be a translation invariant projection for some stable
and asymptotically symimetric bundle % : 7% — G(B,1). Assume to the
contrary :
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(A) supp P does not belong to the coset ring of 7°.
We shall show in several steps that (A} will lead to a contradiction.
Step 1. (A)=>(B) where

(B) there exists a translation invariant projection Q : L}, — L}, such that

supp @ does not belong to the coset ring of I% and for some sequence

of balls B, with unbounded sequence of radii, suppQ N B,, = § for

n=12...

Proof. Given P satisfying (A) and any unbounded sequence («},} C Z¢
we construct a translation invariant projection R : L'(T%) — L'(T9) and a
subsequence (ay,)3%y of (af,)%2, as in Lemma 2. Then supp & belongs to
the coset ring of Z% (by the idempotent measure theorem; cf. [G-McG], p. 2).
Hence, in view of Fact 1, supp K is essentially periodic with an essential pe-
riod p and exceptional rational hyperplanes Hy, ..., Hi. Replacing ()52,
by a subsequence if necessary, one can assume that there exists o € Z< such
that forn =1,2,...
o, =« modyg,
ie. o) = o) mod o for j = Lo.odo
Put R, = [a]o Ro[—a]. Then By(7) = R(y — a) for y € Z%. Let RY =
[a} o RY o [~a] : L}, — L}, where R¥ is the translation invariant projection
with supp B¥ = supp R (RY is the restriction to L}, of the projection § :
L(T4, E) — LY(T4, E) such that §(y) = Idg for ¥ € supp R and §(y) = 0
otherwise). Put
PO =RV _PoRY, PH=P_PoR’.
Then P(1 and P(?) are translation invariant projections of L:b (because P
and RY commute). Clearly
P = P _ p(2) +Rg,’.

Thus either supp PO or supp P(?) does not belong to the coset ring of Z¢
because supp P does not belong, while supp RY = supp R, does. Assume
that supp P(!) belongs to the coset ring of Z¢ (the argument for P is

similar). Arguing as in the proof of Lemma 3 we infer that for every m =
1,2,... there exists k,, > 0 such that if n > k,, then

P(7+as) = R(y) for vy € B(0,m).
Hence for n > k,,
POy +an) = (RE - P o RNy + aa)
= Riy+an—a)=P(y+ &) R(y + ap — @)
= E(ﬁ' +a, —a)— ﬁ(*y)ﬁ('y + ap — a).
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Now fix n > k. Since ¥ + oy — & = 7 mod p and ¢ is an essential period
for supp R, we infer that P (y 4 ay) = 0 whenever

k k
yeA=BOm\(J#HYJU;-anta).

#=1 j=1
Since A is the difference of a ball of radius m and the union of 2k hyper-

planes, a simple argument involving comparison of volumes shows that A
contains a ball of radius C'm where C' depends on & and d only, m

It follows from the observation (¥) that one can assume without loss of
generality
(%) supp () is not conlained in a union of finitely many (d ~ 1)-dimen-
sional hyperplanes.
Step 2. If Q satisfies (x+) then (B)=+(C) where
(€) Jforn=1,2,..., there exist a ball Cyy = B(an,n) with a, € R? and
a point o, € 24 with |ay — an| = n such that supp @ N Cp = 0 and
Q(an) = 1. Moreover, (yx, &n — i) = 0 Jor i,k <n where (yx)52,
is any enumeration of the set {y/|y|: v € %\ {0}}.
Proof. Take for Cy the ball of maximal radius with the same centre as
By and contained in R* \ supp ¢J; take for a; any point in the (obviously
nonempty) intersection supp ¢ N closure of Cy.

Fix n > 1. Assume that we have constructed €y, and ¢, for 1 <m < n.
Denote by R, the family of hyperplanes

(v (1, 9m) = (@i ¥m)}
We have to show that
(10)  there exist a ball C = Blayn) and o € 7¢ such that |a — a| = n,
supp G N C = B, §(e) = 1 and dist(x, URn) > n.
Let A be the family of all components of R?\ |JRy which are not con-
tained in any strip determined by twa parallel rational hyperplanes.
For any nonempty A G R? and r > 0 we put
A" = {z € A: B(x,r) C A}.
First we prove the implication (11)=+(10) where
(11)  there ezist A € A, b € A and § € AP N Z¢ such that supp § N
B(b,n) =0 and Q(§) = 1.
Indeed, put B, = B(s6 + (1~ )b, n) for 0 < s < 1. Clearly suppG N B =0
and supp§ N By # 0. Put 8 = supp{s : supp @ N B, = 8}. Since By, 18

fori,m<n.
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open, supp § N B,, = . Since supp ) is a discrete subset of R¢, there exists
an a € supp Q such that e ~ (806 + (1 — 5)b)| = n.

Proof of the implication (B)={11). Given 4; € A (j = 1,2)
we write A; ~ A, provided there exist a versor z normal to one of the
hyperplanes of R,, ¢ > 0 and a sequence of balls (B(a},r))52, such that
lim ri = oo and

B(a;nrk)n {y: ('y— ﬂi,,.T) > C} C A ’
B(ak, re) N {y: {y — a}, ) < —¢} € A,
Note

(12)  Any two members of A, say A and B, can be joined by a chain
Ag,y..., An of members of A such that A;~Ajpq forj=1,...,m~1
and Ay = A, A,, = B.

(13)  Z#\UJ A is contained in a finite union of rational hyperplanes,

The proof of (12) is given in the appendix. We leave to the reader the
routine proof of (13).

Observe that if A; ~ Az then there exists another sequence of balls
(D)2 such that Dy = B(ag, k) and

Din{y:{y— ap,z) < —c} C A",

It follows from (B) that there exists a ball C of radius n such that supp @ n
C # @ and C C A}" for some 4; € A. Now if (11) were false, then §(y) = 0
for every 7 € A" NZ% Pick A; € A so that Ay ~ A;. Then, by (14), we
have Q(y) =0fory € Z4N Dy n{y : (y~as,z) > ¢} (k = 1,2,...). Now, by
Lemnla 3(i) (applied to the constant sequence 2y = z and M, = ¢) we infer
that Q(y) = 0 for some M >0 and vy € Z4N DN {y: |(y— ag, )| > M} for
k=1,2,... For large k the set D N {v:(y— ax, &} > —M} contains a ball
of radius n which is contained in A3". Thus, assuming that (11) is Talse, we
get Q(v) = 0 for y € AJ"NZ%. Hence, by (12), supp § C 7¢ \UA. This, by
(13), contradicts (¥+). Thus we have shown that (B) and (*+) imply (10)
which completes the induction.

Step 3. If Q satisfies (++) .then (C)=(D) where

(D)  there exist a sequence (a,)2; C 7%, a vectorz € RY and M > 0
such that forn=1,2,...

1

(15) Qlan) =1,
(16) supp @ N Blon,n) N {y : [{y — a},z)| > M} =9,
(17) the sequence ({ag,, 7)), is unbounded.
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Proof. Apply Lemma 3(il) for 8, = n (n = 1,2,...). Since z € Z9,
z/|#] = yx for some k € N. Thus, by the “moreover” part of (C) we obtain
(17). m

Step 4. The assumption (D) leads to a contradiction.

Proof. Let n = 3™. Passing to a subsequence of ()32 if necessary,
we may assume that after appropriate renumbering of coordinates

(18) a&l)»»oo gk — 00,

o0
(19) |J (B (o, k) U B(~ax,k)) is 1/(3n)-stable for 3.

LE
Next we pick inductively an m-element subsequence (y;)7, of (ex)32,; and
balle (B(7;,n;))7e1 such that

(20) 7 >0 (G=1,...0m),
i-1

(21) n3>2|7k|+M (j=1,...,1ﬂ),
k=1
joi

(22) |(‘””Yj)|>2["{k|+M (G=1..,m)
kel

where z and M are the same ag in (16) and (17).
Next we consider the “Riesz product”

kidd iy ) o, p2mi{~vi et} m
g(t)*—-H(l+e Tt -):H(stmf))-

2 i=1

j=1 |
Using (21) and the standard properties of Riesz products (cf. [G-McG]) we
infer that

(23)  all the vectors 377, aj7; are distinct where o is cither 0 or 1 or —1
for j==1,2,...

Hence
(24) lglh = [ la®)ldt= [ gwdt=50)=1,
. ooy "’l‘
(25) Gy =1/2 forj=1,2...
Farthermore, (21) implies
o0
(26) suppd € {0} U | J(Blrsn) U B(-"rj,"_{'))-

J=1 .
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Now, using (22) weget for j=1,...,m

(27) supp§ N B(y;, ;) N {y : [{y — 75, 2)| < M} = {;}.
Define the trigonometric polynomial f: T% — C by
(29) f) = {5(7)3(7) for 7 € 24\ {0},
0 for 4 = 0.
It follows from (26), (27), (15) and (16) that
(29) suppfn B(7jsnj)={7i} forj=1,...,m.
Now we show that
(30) £l = Clogm.

Indeed, since supp f G supp7, it follows from (25), (26) and (29) that
1= aritm:
=3 Ze2 it L w(t)
J=1
where the trigonometric polynomial W satisfies: if v € supp W then 4 <
0. Hence, taking into account (20) for ¢ = (tV),...,#") we have

fB) =3 a;(t,..., sld))erminf e
j=1

DY

{vesuppf 10}

where la; (1@, ..., #@)| = 1/2. Thus, using the McGehee-Pigno-Smith
inequality (cf. [McG-P-S]) we get, for some ¢ > 0,

Jur@ldi= [ ... [ a® [0, @) g
T T T

T
1\* L [ai(®), ) A
> ('2";) f f E 1 UL dt® | gyl
T

T i=1 _'?

b (1D, f{D)e2min®

2 Clogm.

The set supp g has at most 3™ elements and it is 1 /(3n)-stable for 1 (this
fo]]omlrs from (19) and (26)). It follows from Lemma 1 that there exists a
t tl - » » » 'l v

ranslation invariant isomorphism, say H, from LI suppj 10 L:bl supp) with

| H||- || H=Y]| < 2. It follows from the comparison of the Fourier coeficients
of f and g that Qo H(g — 1) = Hf, Thus, by (30),

Clogm < |Ifll < || H} - ||H 7|
<A TN -1 - llg ~ 1)) < 2)lQN - 22 - | |

-
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Hence ||Q]| 2 }C’ log m, which is impossible for large m. w

Remark. In Step 4 of the above proof, the McGehee-Pigno-Smith
theorem can be replaced by an argument involving the Kolmogorov theorem
on the weak type of the Riesz projection.

3. Translation invariant projections on Cy(T% E) spaces. f ¢ isa
stable and asymptotically symmeiric bundle then the assertion of Theorem 1
is also valid if L}, is replaced by Cy(T%, E). For, observe that if X is a
translation invariant subspace of C'(T4,E) and 7 : X — X is a translation
invariant operator then T has a unique extension to a translation invariant
operator from Xy to Xy, where X; is the closure of X in LY(T4, E) (<f.
[P-W]). However, the assumption of asymptotical symmetry is superfluous.

THEOREM 2. If 4 is a stable bundle and P : Cy — Cy is o iranslation
invariant projection then supp P belongs to the coset ring of Z9.

Proof, First observe that all lemmas of Section 2 and Steps 1-3 are
true if we replace L, by Cy and || [|y by || [Joo. Then for sequences (y;)7%y
and (B(7;,n5)) 7 satisfying (20)~(22) and for any sequence (v;)JL, C C
we consider the following “Rudin-Shapiro construction”. Define
(31) yl(t) = t"ile.;”‘r“"“'qf hl(t) =1,
and, by induction, for k = 2,3,...,m
9k(t) = g () + v Dhy o (1),
ha(t) = hgp-1(t) — ve Mt g (1)

Put now g = g, Using (20)-(22) and standard properties of this construc-
tion (cf. [W]) we obtain '

(32)

™ 1/1
(33) llgtloo & C(Z |vj|’) for some C' > 0,
F=1
(34) fm)=v fok=1l..,m,
™m
(35) suppd G (J(Blrsn) \ {y: [y~ 1) < MHU {75} -
Jml

Defining now f : Z¢ — C via (28) we see from (34) and (35) that supp f =
M+ vy ¥m) and Flq5) = v; for j = 1,...,m. Hence, by lacunarity of
(11)fe1, for some constant C' > 0 we get

(36) 1flloo 2 €'Y ol

j=1
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By (33) and (36), we may assume that taking a suitable sequence (v;)7%,,
for some C,C’ > 0 we obtain

(37} llglleo < Cv/m,
(38) Ifllee 2 C'm.
By (19) and Lemma 1, there exists a translation invariant isomorphism
H: Claupps = Cylaupps
with |[Hf| - [|H || < 2. Comparing Fourier coefficients we obtain Q o Ifg =
H f. Hence, by (37} and (38),
C'm < || flloo S NE- NN NET - BRI - I - lgllos
<lQi-N&= - il - Cv/m.
Thus ||Q|[ > 2(C"/C)+/m, which is impossible for large m. m

4, Application to Sobolev spaces

THEOREM 3. If the smoothness S is elliptic then for cach translation
invariant projection P : Wi(T?) — W1(T?) the set supp P belongs to the
coset ring of 7¢. '

Proof. By Theorem 1 it is enough to prove that the bundle g cor-
responding to the smoothness §' is stable and asymptotically symmetric.
Assume that deg Qg = m and

[Qs(O] 2 ClE[™  for € € RY,

Stability. Expanding the polynomial @ at a point £ € R? in a Taylor
series with respect to h € R? we get

Qs(€+ k) = Qs(&) + Y Pal(£)h®

where P, are polynomials with deg P, < m and the sum on the right hand
side extends over all nonzero a € Z¢ with ol > 0, for j = 1,...,d, and
E?z] ol < m. In particular, lim [¢]=+00 1 Pa(E)I/{€]™ = 0. Thus the ellipti-
city of Qg yields

lim Qs(€ +h)/Qs(€) = 1.

[é}-+oa

Hence for § € Z% and every fixed h € Z7¢,
lim (d(4(€ +h), $(€)))?

|€]-—eo
= 1 Dg+n) D P
A 2 [@ater T ™ sty

Des
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= Jm > ﬁ(£+h)( Qs(t) )”’.,.. b |
= klmeo 5 [@sEVA\Gs(E+R))  ~ @s(e)7
. Dig4+ry - D) D(e+h) - D _
=i 2 @ | W 2| T °

(because deg(D(€+ h) ~ D(&)?* < m). This is equivalent to stability of .
Asymptotical symmelry., Consider two cases: m odd and m even. For m
even and v € Z* remembering that Qs(7) = Qs(—7) we have

Hence we abtain

ol

e 1By = By _ |D(y) — D(-1)|?
(d("/)S('Y):'I,[’S(“'Y)))g - Z QS(’)’) - dos;«;; QS(’Y)

Des

<Y 2L .
Ja|<m QS('T)

Thus 1im y[meo d(5(7), $5(~7)) = 0. . . o
For m odd the argument is similar. The only difference is that to estimate

d(s(7), Ps(—7)) we use the vectors

b(y) -B(=7) -
(W)mese¢3(7) and ((Qs('r))”’)nese%( ”)

In particular, for the classical isotropic Sobolev spaces of k times differ-
entiable functions we obtain

COROLLARY 2. Let k = 1,2,... and lel P 1 WH(T!) = Wi(T?) (resp.
P CE(TY) — CH¥T) be a iranslation invariant projection. Then supp P
belongs Lo the coset ring of 29,

For the proof apply Theorem 3 and observe that the fundamental poly-
nomial Qu(€) = 20 a1k |€7|? Is elliptic, w

Remark 1. Theorems 1-8 and Corollaries 1 and 2 can be stated as
characterizations of the translation invariant projections in terms_of t}me
coset ring. Namely, in each case, for every member of the cos.et ring, its
characteristic function colncides with the multiplier of some projection in a
coresponding Banach space. The proof is done by repeating the argument
in Step 1 of the proof of Theorem 1.
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Remark 2. A necessary and sufficient condition for the stability of a
d-dimensional smoothness § with d > 2is the following. For every nonempty
set A C {1,...,d} and every & € 2% such that % € S and ol®) £
for at least one k € A, the orthogonal projection of o on the subspace
Hi={z eR¢:20) =0 for k € A} C R? belongs to the interior of the
convex hull of the set {y € Z#: 87 € Sand y € Ha} C RN H 4.

Remark 3. A necessary condition for the asymptotical symmetry of
the smoothness § is the following. The extremal points of conv{y € Z* :
8" € S\ {0} are either all even, or all odd (y € Z¢ is even if y(!) .. .4
is even and it is odd otherwise).

Remark 4. It follows from Remarks 2 and 3 that there exist smooth-
nesses which are: stable and not asymptotically symmetric; asymptotically
symmetric and not stable; and neither stable nor asymptotically symnetric.

5. Appendix

Proof of (12). We will prove (12} for a family A defined by any family
of hyperplanes R in RY. We use induction with respect to the number of
elements of R. The statement is trivial if R is a one-element set. Fix a
family R with k > 1 elements and assume (12) for all families with less than
k elements. There are two possibilities:

1° Among the hyperplanes Hy, ..., Hy in R there are two parallel, say
Hyq||Hy. Put R' = R\ {H}} and let A’ be the family of all components of
R?\ (J R’ which are not contained in any strip determined by two parallel
rational hyperplanes. Then there exists a 1-1 map & : A — A’ such that
A C #(A) for A€ Aand A~ B if and only if $(A) ~ &(B). By the
inductive hypothesis for any A, B € A there exists a chain A4,,..., A, such
that A; = &#(A), A, = #(B) and A; ~ Ajyy for j =1,...,5— 1, Then the
chain #-1(4,),...,$71(A,) joins A and B.

2° No two hyperplanes in R are parallel. Define R’ and A’ like in case 1°,
and define & : A — A’ by

#(A) = the unique X € A’ with AC X .
The function @ has the following properties:
(i) ACH(A)for A€ A, _
(ii) #~1(X) C A consists of one or two elements for every X € A,

(i) if X ~ Y for X,Y € A’ then there exist A € ¢~1(X) and B €
$~1(Y) such that A ~ B,

(iv) if A,B € & *(X)and A# B then A~ B.
To prove (iii) and (iv) it is enough to observe that, in case 2°, A ~ B if
and only if the intersection of the closures AN B contains some (d — 1)-
dimensional halfcone, By the inductive hypothesis for any A, B € A there
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exists a chain Xy,..., X, € A’ such that X; = #(4), X3 = ¢#(B) and
X; ~ Xiga for i = 1,...58~ 1. Observe that for any i < s, by (iii), there
exist Aq, B; € A such that A; € X, B; € Xipq and A; ~ By; by (iv), either
Ai = Bi-y ot A; ~ Bi_y. Thus we have (12). w
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