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On asymptotic cyclicity of doubly stochastic operators

by Wojciech Bartoszek (Pretoria)

Abstract. It is proved that a doubly stochastic operator P is weakly asymptotically
cyclic if it almost overlaps supports. If moreover P is Frobenius–Perron or Harris then it
is strongly asymptotically cyclic.

1. Introduction. Let (X,A, µ) be a (complete) σ-finite measure space.
The Banach lattice of real A-measurable functions f such that |f |p is µ-
integrable (resp. ess sup |f | < ∞) is denoted by Lp(µ) (resp. L∞(µ)).
‖ · ‖p stands for the relevant norm. Functions equal µ-almost everywhere
are identified. A linear operator P : L1(µ) → L1(µ) is called Markov if
Pf ≥ 0 and ‖Pf‖1 = ‖f‖1 for all f ≥ 0, f ∈ L1(µ). By D = D(X,A, µ) we
denote the set of all (normalized) densities on X, that is,

D = {f ∈ L1(µ) : f ≥ 0, ‖f‖1 = 1}.

We say that f∗ ∈ D is stationary if Pf∗ = f∗. If (X,A, µ) is a probability
space and P1 = 1 then a Markov operator P is called doubly stochastic

(or doubly markovian). An important basic property of doubly stochastic
operators is that together with their adjoints, they are positive linear con-
tractions on each Lp(µ), where 1 ≤ p ≤ ∞ (see Proposition 1.1 in [Br] for
the details). In particular, instead of studying the convergence on L1 we
may pass to L2 if necessary. It is a routine trick to identify a Markov oper-
ator P possessing a stationary, strictly positive density f∗ with its rescaled
version Pf = P (ff∗)/f∗, which is defined on L1(f∗dµ). Clearly P is doubly
stochastic. Therefore our results are formulated only for doubly stochastic
operators. Their generalizations to Markov operators with strictly positive
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stationary densities are obvious. The strict positivity assumption may be
removed if P is a Frobenius–Perron operator (see [Z]).

Let S : X → X be a nonsingular (i.e. µ(S−1(A)) = 0 if µ(A) = 0)
measurable transformation of (X,A, µ). Recall that the corresponding Fro-

benius–Perron operator PS : L1(µ) → L1(µ) is defined by
T
A

PSf dµ =T
S−1(A)

f dµ. Clearly PS is a Markov operator and its adjoint P ∗
S : L∞(µ) →

L∞(µ) is the composition operator P ∗
Sh = h ◦ S and is called the Koopman

operator . If S preserves µ then the Koopman operator P ∗
S is isometric on

each Lp(µ), noninvertible in general.

Definition 1. A Markov operator P : L1(µ) → L1(µ) is called strongly

asymptotically cyclic if there exist a finite family of densities g1, . . . , gr and
linear functionals Λ1, . . . , Λr such that

(1) lim
n→∞

∥

∥

∥
Pnf −

r
∑

j=1

Λj(f)g(j+n) mod r

∥

∥

∥

1
= 0

for all f ∈ D. If r = 1 then P is called asymptotically stable. We also say
that P is weakly asymptotically cyclic (w.a.c.) if the convergence (1) holds
for the weak topology only.

Asymptotic properties of iterates of doubly stochastic operators have
been extensively studied (see [B1], [B2], [B3], [BB], [K1], [K2], [R1], [R2],
[Z]). For a comprehensive review of the subject and many examples the
reader is referred to the monograph [LM].

It has been proved in [BB] (see also [R1]) that if P is Harris or Frobenius–
Perron then asymptotic stability holds whenever P overlaps supports (i.e.
Pnf1∧Pnf2 6= 0 for all densities f1, f2 and n large enough). In this paper the
concept of overlapping is generalized. We discuss how asymptotic properties
of iterates are affected. We introduce the following:

Definition 2. We say that a Markov operator P : L1(µ) → L1(µ)
almost overlaps supports (a.o.s. for abbreviation) if there exists d ≥ 0 such
that for all densities f1, f2 ∈ D there exist n = n(f1, f2) and m = m(f1, f2)
such that |n−m| ≤ d and Pnf1∧Pmf2 6= 0, where ∧ stands for the ordinary
minimum in L1(µ).

Definition 3. We say that a Markov operator P : L1(µ) → L1(µ)
individually almost overlaps supports (i.a.o.s. for abbreviation) if there exists
d ≥ 1 such that for every density f ∈ D there exist n = n(f) < m = m(f) ≤
n + d such that Pnf ∧ Pmf 6= 0.

If for every f ∈ L1(X,A, µ) the iterates Pnf have a norm convergent
subsequence (i.e. ω1(f) = {g : ‖Pnkf−g‖1 → 0 for some nk → ∞} 6= ∅) and
if P a.o.s. then P is asymptotically cyclic (see [B3]). Similar results were ob-
tained in [B1] for kernel Markov operators (i.e. Pf(x) =

T
k(x, y)f(y) dµ(y)



Asymptotic cyclicity of doubly stochastic operators 147

for suitable k(x, y)). In this case ω1(f) 6= ∅ is compact due to Krasnosel’skĭı’s
theorem (see [L] for a self-contained proof). Our current approach differs
from [BB] and is based on ideas of [F], where most of our notation and
terminology come from. We briefly recall the necessary ones. A Markov op-
erator P : L1(µ) → L1(µ) is said to be conservative if for some (equivalently,
all) strictly positive f ∈ L1(µ) we have

∑∞
n=0 Pnf(x) = ∞ µ-a.e. It is well

known that if P ∗h ≤ h for some h ∈ L∞(µ) then P ∗h = h whenever P is
conservative. Clearly each Markov operator with strictly positive stationary
density is conservative. Let us recall that conservative Markov operators P
(in particular all doubly stochastic operators) are nondisappearing , i.e. if
P ∗f = 0 for some f ≥ 0 then f = 0. Hence (see Lemma 0 in [KL] for the
details) if P ∗g = 1A with 0 ≤ g ≤ 1 then there exists a unique E ∈ A such
that g = 1E . The family of all A ∈ A such that for every n there exists
An ∈ A such that P ∗n

1A = 1An
is denoted by Σd(P ). Clearly Σd(P ) is a

sub-σ-algebra if P is doubly stochastic, and it is then called a deterministic

σ-algebra. By Σ1(P ) we denote the sub-σ-algebra of Σd(P ) consisting of all
A such that for every natural n we have P ∗nPn

1A = PnP ∗n
1A = 1A (see

[F] for the details). By symmetry Σ1(P ) = Σ1(P
∗).

We start with the following:

Proposition 1. Let P be a doubly stochastic operator on L1(X,A, µ).
If P i.a.o.s. then there exists r ≤ d! such that P r

1A = 1A for all A ∈
Σd(P ∗) = Σ1(P ), where d comes from Definition 3. Moreover for every

f ∈ Lp(X,A, µ), weak limn→∞ P rnf exists and belongs to Lp(X,Σd(P ∗), µ).
If P a.o.s. then Σd(P ∗) = Σ1(P ) is finite (atomic) and consists of at most

d + 1 atoms.

P r o o f. Given A ∈ Σd(P ∗) we consider the maximal natural rA for
which there exists Σd(P ∗) ∋ B ⊆ A such that

1B , P1B = 1B1
, . . . , P r−1

1B = 1Br−1

are pairwise orthogonal. We notice that always rA≤d. In fact, by the i.a.o.s.
assumption we can choose n < m with m− n ≤ d such that Pm

1B ∧ Pn
1B

6= 0. Then

0 6= P ∗nPm
1B ∧ P ∗nPn

1B = Pm−n
1B ∧ 1B ,

and rA ≤ d follows.
If P rA1B 6= 1B then we define D = B \ BrA

6= ∅. Clearly D ⊆ A and

1D, P1D = 1D1
, . . . , P rA1D = 1DrA

are pairwise orthogonal, contradicting the maximality of rA. Hence P rA1B

= 1B .
Now let

CA = {B ∈ Σd(P ∗) : B ⊆ A, and P r
1B = 1B for some 1 ≤ r ≤ d}.
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It is not hard to see that A =
⋃d

j=1 Bj , where P j
1Bj

= 1Bj
for ev-

ery j (some Bj may be empty). Finally, define RA = LCM{j : Bj 6=
∅} ≤ d!. Then PRA1B = 1B for every B ∈ Σd(P ∗) ∩ A. Substituting
X = A we get P r

1B = 1B for all B ∈ Σd(P ∗), where r = RX . In
particular P r = Id on Lp(X,Σd(P ∗), µ) ⊇ Lp(X,Σ1(P ), µ). Choose f ∈
L2(X,Σd(P ∗), µ) ⊖ L2(X,Σ1(P ), µ). By Theorem A on page 85 in [F] we
have weak limn→∞ Pnf = 0. On the other hand P rnf = f for every n.
Therefore f = 0. This proves that Σd(P ∗) = Σ1(P

∗) ⊆ Σd(P ).

Now assume that P a.o.s. and as before let rX stand for the length of
the longest orthogonal sequence 1A, P1A, . . . , P rX−1

1A ,where A ∈ Σd(P ∗).
We have already noticed that P rX1A = 1A and rX ≤ d.

Suppose that A is not an atom. Choose an arbitrary Σd(P ∗) ∋ B  A.
The functions 1B , P1B , . . . , P r−1

1B are also pairwise orthogonal. If P rX1B

= 1B then the sequences 1B , P1B , . . . , P r−1
1B , . . . and 1A\B , P1A\B , . . .

. . . , P r−1
1A\B , . . . are disjoint. This contradicts the a.o.s. assumption. On

the other hand if P rX1B 6= 1B we may produce a set D = B \ BrX
with

rD > rX , contradicting the maximality of rX . We conclude that A is an
atom. Because of a.o.s. we have A ∪ A1 ∪ . . . ∪ ArX−1 = X. Clearly all Aj ,
where 0 ≤ j ≤ r − 1, are atoms as well. In particular Σd(P ∗) is finite and
atomic. We easily get Pn

1B = P s
1B , where s = n mod r and r = rX = RX

for simplicity.

The following corollary follows directly from Proposition 1 and Theo-
rem A on page 85 in [F].

Corollary 1. A doubly stochastic operator P with the a.o.s. property

is weakly asymptotically cyclic. In particular for every f ∈ L1(X,A, µ) we

have

weak lim
n→∞

(

Pnf − β

r−1
∑

j=0

( \
Aj

f dµ
)

1A(j+n)mod r

)

= 0,

where A0, A1, . . . , Ar−1 are the atoms of Σd(P ∗) and β = 1/µ(A0).

The next result is a generalization of Theorem 2 which was originally
proved in [B3] using different methods. The present version has an “individ-
ual” character. In [B3] we assume that ω1(f) 6= ∅ for all f ∈ D.

Theorem 1. Let P be an a.o.s. doubly stochastic operator. If f ∈ L1(X,
A, µ) is such that ω1(f) 6= ∅ then

lim
n→∞

∥

∥

∥
Pnf − β

r−1
∑

j=0

( \
Aj

f dµ
)

1A(j+n)mod r

∥

∥

∥

1
= 0,

where A0, A1, . . . , Ar−1 are the atoms of Σd(P ∗) and β = 1/µ(A0).
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P r o o f. Let nk → ∞ be such that Pnkf converges in L1 norm to some g.
Since r is finite there exists a subsequence nkj

= const = d mod r. By

Corollary 1 we have g = β
∑r−1

j=0(
T
Aj

f dµ)1A(j+d)mod r
. Clearly g is P r-in-

variant. The convergence of P rnf to g along some subsequence implies the
convergence of the whole sequence P rnf as P is a contraction. We get

lim
n→∞

‖P rn+df − g‖1 = 0.

After a slight reformulation we obtain the strong asymptotic cyclicity of
Pnf as all sequences Pnk+jf are norm convergent to P jg.

The proof of Proposition 1 shows that P r = Id on L2(X,Σd(P ∗), µ)
whenever P i.a.o.s. However in this case Σd(P ∗) is not necessarily finite
(atomic). By [F], for f ∈ L2(X,A, µ), weak limn→∞ P rnf = E(f |Σd(P ∗)).
In particular all weak limits of Pnf are P r-invariant. We obtain another
generalization of [B3]:

Proposition 2. Let P be an i.a.o.s. doubly stochastic operator. Then

there exists r ≤ d! such that for every f ∈ Lp(X,A, µ) with ωp(f) 6= ∅,
where 1 ≤ p < ∞, we have

lim
n→∞

‖P rnf − E(f |Σd(P ∗))‖p = 0,

where E(· |Σd(P ∗)) stands for the conditional expectation operator with re-

spect to the σ-algebra Σd(P ∗).

P r o o f. Without loss of generality we may confine our proof to
L2(X,A, µ) only. As in the proof of Theorem 1 we show that P rnf converges
in L2 norm to some g. Given f ∈ L2(X,A, µ) let f = f1 + f2, where f1 ∈
L2(X,Σd(P ∗), µ) and f2 ⊥ L2(X,Σd(P ∗), µ). Since weak limn→∞ P rnf2 =
0 we have g = f1 as f1 is P r-invariant. Clearly f1 = E(f |Σd(P ∗)) and the
proof is complete.

If Σd(P ∗) is fully atomic (for instance when P is Harris or simply
kernel), then X may be decomposed into disjoint cycles. Namely X =
⋃

k=1

⋃rk−1
j=0 Ak,j and Pn

1Ak,j
= 1Ak,(j+n)mod rk

. This in conjunction with
Corollary 1 gives

Corollary 2. Let P be an i.a.o.s. doubly stochastic operator on

L1(X,A, µ). If Σd(P ∗) is atomic with atoms Ak,j described as above then

for every f we have

(2) weak lim
n→∞

(

Pnf −
∑

k=1

rk−1
∑

j=0

βk

( \
Ak,j

f dµ
)

1Ak,(j+n)mod rk

)

= 0,

where βk = 1/µ(Ak,j). If moreover ω1(f) 6= ∅ then the convergence (2) is in

norm.
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If P is a Frobenius–Perron operator then a.o.s. implies strong asymptotic
cyclicity because P r restricted to the spaces L1(Aj ,A ∩ Aj , µ(· ∩ Aj)) is
asymptotically stable. This is because the tail σ-algebras of all P r|Aj

are
trivial. The same result is obtained in [BB] using functional arguments. We
recall that limn→∞ P ∗nPn = Q exists in the L2 strong operator topology.
Obviously Q is doubly stochastic. It has been noticed in [BB] that Q is a
projection (Q2 = Q) if P is Frobenius–Perron. Clearly Q is a projection if
P is strongly asymptotically cyclic. Here we adapt some elements of [BB]
to show:

Theorem 2. Let P be an a.o.s. doubly stochastic operator on L1(X,A, µ).
Then the following conditions are equivalent :

(i) P is strongly asymptotically cyclic,
(ii) Q and P commute,
(iii) Q is a projection.

P r o o f. (i)⇒(ii). Let f ∈ L2(µ). It follows from Theorem 1 that

lim
n→∞

P rnf =
r−1
∑

j=0

1

µ(Aj)

( \
Aj

f dµ
)

1Aj
= E(f)

in L2 norm (we may switch from L1 to L2 because all Lp strong operator
topologies, where 1 ≤ p < ∞, coincide on the set of doubly stochastic
operators; see [Br] for the details). Since P ∗rP r = Id on L2(X,Σd(P ∗), µ)
and P ∗ is an L2 contraction we get

P ∗rE(f) = P ∗r lim
n→∞

P rnf = P ∗rP r lim
n→∞

P r(n−1)f = E(f).

We have
‖Qf − E(f)‖2 = lim

n→∞
‖P ∗rnP rnf − E(f)‖2

= lim
n→∞

‖P ∗rn(P rnf − E(f))‖2

≤ lim
n→∞

‖P rnf − E(f)‖2 = 0.

This means that Q = E. Now (ii) is clear as

QPf = E(Pf) = lim
n→∞

P rnPf = P lim
n→∞

P rnf = PE(f) = PQf.

(ii)⇒(iii). For every n and f ∈ L2(µ) we have Qf = P ∗nQPnf . If Q
and P commute then

Qf = P ∗nQPnf = P ∗nPnQf = lim
n→∞

P ∗nPnQf = Q2f.

Therefore Q is a projection.
(iii)⇒(i). It follows from Proposition 1 that P is weakly asymptoti-

cally cyclic. First we note that the invariant σ-algebra Σi(Q) coincides with
Σd(P ∗). This easily follows from the identity Q = P ∗nQPn. In fact, given
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A ∈ Σi(Q) we apply Lemma 0 from [KL] to obtain Pn
1A = 1An

for ev-
ery natural n. This gives A ∈ Σd(P ∗). On the other hand if Pn

1A = 1An

then obviously P ∗nPn
1A = 1A and passing with n to infinity we obtain

A ∈ Σi(Q). The equality Σi(Q) = Σd(P ∗) = Σ1(P ) is proved. We get

Qf = E(f |Σd(P ∗)) =

r−1
∑

j=0

1

µ(Aj)

( \
Aj

f dµ
)

1Aj
,

where A0, A1, . . . , Ar−1 are the atoms of Σd(P ∗). In particular we have
Qf = (1/µ(Aj))(

T
f dµ)1Aj

if f is concentrated on Aj . Repeating arguments
from [BB] for every f ∈ D which is concentrated on Aj we get
∥

∥

∥

∥

P rnf −
1

µ(Aj)
1Aj

∥

∥

∥

∥

2

2

=
\(

P rnf −
1

µ(Aj)
1Aj

)(

P rnf −
1

µ(Aj)
1Aj

)

dµ

=
\
P rnf · P rnf dµ −

1

µ(Aj)

=
\
P ∗rnP rnf · f dµ −

1

µ(Aj)
→
\
Qf · f dµ −

1

µ(Aj)

=
\ 1

µ(Aj)
· f dµ −

1

µ(Aj)
= 0.

Since Aj ’s cover the whole space X we obtain

lim
n→∞

∥

∥

∥

∥

P rnf −
r−1
∑

j=0

( \
Aj

f dµ
) 1

µ(Aj)
1Aj

∥

∥

∥

∥

2

= 0

for every f ∈ L2(µ). Clearly the convergence P rnf → E(f) in L2(µ) implies
the norm convergence in L1(µ), thus PS is strongly asymptotically cyclic.

Final remarks. It is not generally true that a doubly stochastic oper-
ator which overlaps supports is asymptotically stable. A suitable counterex-
ample was supplied by R. Rudnicki and may be found in [R2].

Let PS be a Frobenius–Perron operator with stationary density f∗. If
PS a.o.s. then it is strongly asymptotically cyclic even if supp(f∗) 6= X.
This was proved by R. Zaharopol [Z]. Roughly speaking this is because
⋃∞

n=1 S−n(supp(f∗)) = X, which easily follows from a.o.s.
On the other hand there are kernel Markov operators P with stationary

densities and overlapping supports which are not asymptotically stable. For
this consider X = N ∪ {0} with counting measure µ, and let

pi,j =







1 if i = j = 0,
1/2i if j = 0 and i 6= 0,
1 − 1/2i if j = i + 1 and i 6= 0,

be transition probabilities. In the standard way the matrix [pi,j ] defines a
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Markov operator (chain) on ℓ1(X). Namely we set Pf(j) =
∑∞

i=0 f(i)pi,j .
Clearly P overlaps supports as Pf(0) > 0 for any nonnegative nonzero f ,
and f∗ = δ0 is the only stationary density. On the other hand we have
limn→∞

T
{0}

Pnf dµ < 1 for every f ∈ D which is not entirely concentrated

on {0}. Hence P is not asymptotically stable.
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