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Completeness of the Bergman metric on non-smooth
pseudoconvex domains

by Bo-YONG CHEN (Shanghai)

Abstract. We prove that the Bergman metric on domains satisfying condition S is
complete. This implies that any bounded pseudoconvex domain with Lipschitz boundary
is complete with respect to the Bergman metric. We also show that bounded hyperconvex
domains in the plane and convex domains in C" are Bergman comlete.

1. Introduction. Let D C C" be a bounded domain and let Kp(z, w)
be the Bergman kernel. The Bergman metric on D is defined as follows:

n

0?log Kp(z,2)
2 _ ’ ‘
dsp = j kgﬂ 92,07, dz;dzy.

In [11] Kobayashi posed an interesting question:

Which bounded pseudoconvex domains in C"™ are complete with respect
to the Bergman metric?

The assumption of pseudoconvexity is necessary (cf. [4]). It is quite clear
that any bounded pseudoconvex domain with C°°-boundary is complete
w.r.t. ds?, (cf. [14]). In [13] Ohsawa has proved that the Bergman metric of
any pseudoconvex domain with C'-boundary is complete. In this article, we
first study a class of pseudoconvex domains defined as follows:

DEFINITION. We say that a domain D in C" satisfies condition S if there
exists a sequence {D,} of pseudoconvex domains with D CC D; such that

(1) Aj = sup,¢ppdp,(2) — 0 as j — oo, where dp,(2) = d(z,0D;) is
the Euclidian distance from z to 0D;;

(2) there exist reals > 1 and 0 < o < 1 such that A; < 7‘)\?‘, where
)‘j = infzeaD dD], (Z)
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We say that D satisfies condition S locally if for each z° € dD, there
exists a ball B(z°,79) such that D N B(zY, ry) satisfies condition S.

One can easily conclude that D is pseudoconvex if D satisfies condition
S locally.
We have the following main result:

THEOREM 1.1. Let D be a domain which satisfies condition S locally.
Then D is complete w.r.t. the Bergman metric.

From Theorem 1.1 we can deduce

THEOREM 1.2. The Bergman metric of any bounded pseudoconvezr do-
main with Lipschitz boundary is complete.

It is known from [5] that any bounded pseudoconvex domain with Lip-
schitz boundary is hyperconvex, that is, it admits a bounded continuous
plurisubharmonic (psh) exhaustion function. Naturally, one would ask:

(a) Is any bounded hyperconvex domain in C™ complete w.r.t. the Berg-
man metric?
(b) Are the hyperconvezity and the Bergman completeness equivalent?

In Section 5 we will construct a domain which is not hyperconvex but
complete w.r.t. the Bergman metric. Question (a) seems to be quite difficult.
However, we can prove that the answer is affirmative for some special cases.

Given a domain D C C™ and ¢ € D, we consider the function

up((,2z) = uc(z) = sup{v(z) | v is psh on D,
v < 0 and v(w) <log|w — (| + O(1),w € D},

which is the pluricomplex Green function on D with logarithmic pole at ¢
(cf. [1], [5]). We obtain another main result:

THEOREM 1.3. Let D be a bounded hyperconvex domain in C™ and sup-
pose that up((, z) is symmetric. Then the Bergman metric on D is complete.

Since the complex Green function of hyperconvex domains in C is sym-
metric (cf. [12]), Theorem 1.3 implies

COROLLARY 1.4. Any bounded hyperconver domain in C is complete
w.r.t. the Bergman metric.

It is known from [3] that any bounded convex domain in C™ is hyper-
convex, and the pluricomplex Green function is symmetric (cf. [15]). Imme-
diately we obtain

COROLLARY 1.5. The Bergman metric of any bounded conver domain in
C™ is complete.
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The proofs of the theorems are based on the techniques of L?-estimates
for the d-equation on complete Kahler manifolds due to Diederich and Oh-
sawa.

2. Preliminaries. Let X be a complete manifold of dimension n and
ds® be a Hermitian metric on X. Let C5"/(X) be the set of C*°-differentiable
(p, q)-forms on X with compact support, and let ¢ : X — R be a continuous
function. We define an inner product by

(uvv)dSQ,go = S e YU N xqs20
X

for u,v € C¥9(X). Here %452 denotes the Hodge star operator associated
with ds?. Put
1/2
lullase o = (w,u)il2
and denote by LP(X,ds?, ) the space of all square integrable (p, q)-forms
on X, i.e., the completion of C}?(X) with respect to the norm || - || s2,-
Now we recall the following useful result:

PROPOSITION 2.1 (cf. Theorem 3 in [6]). Let X be a complex manifold that
admits a complete Kdhler metric with a positive C*° global potential function
1, and let ¥ : X — R be another C* strictly psh function on X satisfying the
estimate 00y > 0YoO. Furthermore, let ¢ be any C> psh function on X.
Then, for any O-closed (n,1)-form g on X satisfying ||g\|85w7§0 < oo, there

is a measurable (n,0)-form h satisfying Oh = g and ||h||, < Cligllszy.p0

where C' is a numerical constant (independent of X, ¢, ¢,g) and ||h\|i =
|§x e #h AR

3. Proofs of Theorems 1.1-1.2. Let D be a bounded domain in C”.
We denote by H?(D) the space of all square integrable holomorphic func-
tions on D and by H(D) the space of all functions holomorphic in a neigh-
bourhood of D. The L?-norm is denoted by || - ||p, and ||f||p,, means the
L?-norm of f with weight e~%, where ¢ is a continuous real function on D.
We claim

LEMMA 3.1. Let D be a domain satisfying condition S. Then H(D) is
dense in H?(D).

Proof. Let f € H?(D). Without loss of generality we can assume
|fllp < 1. We define D;; = {z € D; | dp,(2) > t}, t > 0. Then D;,
is pseudoconvex since —logdp,(z)/t is a psh exhaustion function on D,
and we have

Dja, CDCCDjy  forallt <A
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Put

1/2, a=1,

8= l-«

1—a/2’
Let x : R — [0,1] be a C*° function satisfying X|(—co,14+1/(210g3)) = 1 and
X|[1,00) = 0. Since each continuous psh function can be approximated by a
decreasing sequence of C'*° strictly psh functions, there exist for each j a
number v; with A\;/2 < v; < A; and a C*° strictly psh function u; defined
on Dj,. such that

O<a<l.

dDj (Z)
(1) —log /2 <uj(z) <0on Dj,,,
dDj (Z) —1 _1/2 A]
(2) uj(z) + log /2 < (B -p )log)\j/Z, Vz e D.

We write INJj = Dj,,, and put

AA
¥; = —log(—u;), Qj=x<¢j+loglog)\ y +1>-
i/2

Then 1); is a C°° strictly psh function on ﬁj satisfying
DOj > Onp; 0.
This gives
—_— ,
‘8Q]‘aa¢j <sup ’X ‘7
where |591|85wj is the point-norm of dg; w.r.t. the metric 991;.

From (1) we obtain
suppoj C Dja; C D.
So we can define a C*> d-closed (n, 1)-form on Ej as follows:

gi = 0(0;f) Ndzy A ... A dz,.

Since
3 —1/2 Aj
suppdo; C ¢ 2 € D |uj(z) > —f log)\A—/2
j
dD,(Z) 1 /1
D| -1 / — 1 J
C{Ze ‘ CN2 v Og)\j/2}
= D\Djyll«ﬁ
where

2rA;, a=1,
Hi= { (200) /A= A2 0 <o < 1,
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we obtain
197125, = 2" § 1Bo; 35, 112V < 2" sup ¥ P 175,
D;
where dV), denotes the 2k-dimensional Lebesgue measure.

Since any pseudoconvex domain admits a complete Kahler metric with
a positive global potential (cf. [7], p. 49), by Proposition 2.1 there exists an

(n,0)-form h; = hjdz; A ... Adz, on D; satisfying Oh; = g; and
1725 H~ < Csup [X'| - |f p\p,

where C' is a numerical constant (mdependent of f,j,a, D).

JP']

Hence f; = o, f — h is holomorphic on D and satisfies

1y = flp < (1= o) fllp + IRsllp < L+ C)sup Y| - [l pvo .-
Given any e > 0, there exists a 6 = d(g) > 0 such that

||f||D\D5 <g,

where Dy = {z € D | dp(z) > t}, t > 0. Since A; — 0 as j — oo, one
has p; < /2 for all sufficiently large j. This gives D;,, D Dj /o for all
sufficiently large j. Since dp,(z) — dp(z) on D, there exists a j(¢) such
that
Dj(e)mu'j(s) 2 D6
Thus
Ifie) = fllp < (1 + Cesup [x'].

The proof is complete.

LEMMA 3.2. lim, _9p Kp(z,2) = oo if D is a domain which satisfies
condition S locally.

Proof. We can easily conclude that D satisfies the cone condition in
the sense of Pflug (cf. [14], p. 399), hence we have lim, _.gp Kp(z,z) = co.

The following localization lemma for the Bergman metric is perhaps
known:

LEMMA 3.3. Let D be a bounded pseudoconver domain in C"* and 2° be
any point in 0D. Suppose that U, V are two open neighbourhoods of z°
with V-CcC U. Then

dsh(G; X) = Cdspry (¢ X), VX € TH(C"), eV ND,
where Cis a constant (independent of ¢, X).

Proof. From the original work of Bergman (cf. [2]) we know that for
any X € T19(C") and ¢ € D we have

dsp (G X) = Kp' (¢ O sup{|Xf[* | f € H*(D), |flp <1, f(¢) = 0}.
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We choose a C* function n : C™ — [0, 1] such that n = 1 on a neighbourhood
of V,7=0o0n C"\U. Fix any point ( € DNV and for any f € H>(DNU)
with ||f]lpnr < 1 and f(¢) = 0 put v = d(nf). Thus we have defined a
C> O-closed (0,1)-form on D. Let ¥(z) = 2(n + 1) log |z — ¢|. We have

S ‘U‘Qeiw an < Cla
D

where (1 is a constant (independent of ¢, f). By a well known Hormander
theorem, there exists a function u(z) which satisfies du = v and

S |U|2|Z - C|72(n+1) an é 027
D

where Cs is a constant (independent of ¢, f). Then F(z) = n(2)f(z) — u(z)
is a holomorphic function on D and ||F||p < 14 C3, where C3 is also
independent of ¢, f. Since n =1 on V', u is holomorphic on V and we have

B
u(¢) =0, 8—2(0:0, V1<j<n.

oF af .
. V<3 <n.
0z ) 0z; (©), lsjsn

Hence
dshH(¢; X) > Cdshay (¢ X), VX and(e€DNV,
where C = (14 C5)~ 2.
Theorem 1.1 is immediately derived from Lemmas 3.1-3.3 and the fol-
lowing proposition:
PROPOSITION 3.4 (cf. [9]). Let D be a bounded domain in C™ and assume
(1) the bounded holomorphic functions in D are dense in H*(D);
(2) lim,_9p Kp(z,2) = oc.
Then the Bergman metric of D is complete.
REMARK. In fact, we can replace assumption (1) by a weaker condition:

For each 2° € D and f € H*(D), f can be approzimated in L*-norm by
a family of holomorphic functions on D which are bounded in some neigh-

bourhood of 2°.
This can be proved easily with the method of [14] (cf. p. 409).

Proof of Theorem 1.2. Let D be a bounded pseudoconvex domain with
Lipschitz boundary. For each 2 € 0D, there exist reals 9,79 > 0 and
a vector Ty that points outside of D such that z + Ty € C*\ D for all
2€ (C*"\ D)N B(z° 1) and 0 < ¢ < &.
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It is known from [5] that D admits a C'*° strictly psh function « on D
such that v < 0 on D and lim,_gp u(z) = 0. For g, > 0, we set

Df ={ze B(2°r) | u(z —eTpy) < 0}.

Put D = Dy, fore< min{eg, rg/4}. Then:

(1) D. is pseudoconvex;
(2) DN B(2°1ry/2) CC Dg;
(3) there exists a constant 0 < C' < 1 such that

Ce<dp_.(z) <e

for all z € (D N B(2°7/2)). Hence D locally satisfies condition S, and
therefore Theorem 1.2 is a direct consequence of Theorem 1.1.

4. Bergman metric on hyperconvex domains. Let D be a bounded
hyperconvex domain in C", and up (¢, z) be the pluricomplex Green function
on D. From [10] we know that there exists a C'* strictly psh function v on
D such that v < 0 on D and lim, ,gpu(z) = 0. We set Dy = {z € D |
u(z) < t}. The following fact is due to Demailly:

PROPOSITION 4.1 (cf. [5], p. 531). For each ¢ € D, up((, -) is a contin-
uous psh exhaustion function on D with values in [—00,0) and up(C,z) ~
log |z —¢| as z — (.

Now we prove the following two lemmas:

LEMMA 4.2. Suppose that D is a bounded hyperconvex domain in C".
Then for each ¢ € D and f € H?*(D), there exists a function F € H?(D)
satisfying F(¢) =0 and

IF' = fllp < Clifllpe, s

where D¢y = {z € D | up(¢,2) < t} and Cis a constant (independent of
¢, f)-

Proof. Fix (. There are negative C strictly psh functions u, defined
on D_, .y, where a(e) — 0 as ¢ — 0, such that u. | up(¢,-) ase | 0.
Let 0 < k < 1 be a C* function on R such that x(t) = 1 on (—o0,
1 —1log2) and £(t) =0 on [1,00). Put
Ve = —log(—ue), 0-(2) =1—k(¥e(2) +1).

Again we have

’595‘35¢5 < sup ‘H’/"
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Put g. = 9(0.f) Adz1 A ... Adz,. One has

19025, e, <2 suplWP§ [ f e,
—2<u<—1

< 2% sup K| 1D,

since u. > up(¢, -). By Proposition 2.1, there exists an (n,0)-form h. =
hedzy A ... Ndz, on D_g4() such that Ohe = g. and

HhEHD—a(a)72nuE < Co”f”Dg,—ﬂ

where Cj is a constant (independent of (,e, f). Then F. = o.f — h. is
holomorphic on D_, (. and

e = fllp_aey < 1T =) fllp_uey + IellD_e) 2nue < (1 +Co)ll D —y-

We also have

IFellD oy 2nue < lloeflln o 2nue + 1hellD_y e 2nu. < (€2 + Co)llfllp-

Since u. < 0, we can choose a sequence ¢; — 0 such that F., converges
weakly to a holomorphic function £ on D. Hence

I1F = fllp < (1 + Co)llfllpe - -
Since u. decreases with e, for each b > 0 and € with 0 < a(e) < b we have
Il p_y 200, < (Co+e™)lIflln.
Letting ¢ — 0 and then b — 0, one gets
IF I p,2nun(c, ) < (Co+ ™) fllp-
Since up((,z) ~ log |z — (| as z — (, one has F(¢) = 0.

LEMMA 4.3. Suppose that D is a bounded hyperconvex domain in C™, and
up((, z) is symmetric. Then the volume of D¢ _1 tends to zero as ¢ — 0D.

Proof. The proof is due to Ohsawa (cf. [12]). For any € >0, there exists
a C™ function k. (z) such that supps. C D_./p and kc|p_, = 1. Then we
can find a constant C' = C(e) such that Cu(z) + k< (2) log |z — (]| is a negative
psh function on D for all { € D_.. Hence there exists a § > 0 such that

up((,z) >—-1, V(e D_., z€ D\ D_y.
Since up((,z) = up(z,(), for any £ > 0 there exists a § > 0 such that
up(¢,z) >—-1, VY(e€D\D_5, z€ D_..
This proves the lemma.
To prove Theorem 1.3, we need the following proposition:

PROPOSITION 4.4 (cf. [14], p. 408). Let D be a bounded domain in C",
and {¢7 521 C D a Cauchy sequence w.r.t. the Bergman metric. Then there
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exist a subsequence {C7*}32., and real numbers 0y such that

{ Kp(-,¢%) ewk}oo
K¢, vy Jam

is a Cauchy sequence in H*(D).

Proof of Theorem 1.3. Suppose that D is not complete w.r.t. the Bergman
metric. Then there exists a Cauchy sequence {¢’ }321 wor.t. the Bergman
metric which converges to a boundary point ¢° of D as j — oo. Proposition
4.4 gives us a subsequence {¢/*}?° | and real numbers 0, satisfying

KD( B Cjk)
K (e, )
in H2(D) with || f||p = 1. This yields
f C]k —1 KD 7C]k
A _ oo (g, KoL) )|y,
KD (C]k7C]k) KD (Cjk’C]k)
By Lemma 4.2 there exists a sequence {F}, }?° ; of holomorphic functions on

D satisfying F (%) = 0 and
B = fllp < Clfllp,, =0

1

because Vol(Dj, 1) — 0 by Lemma 4.3. On the other hand

|£(¢7)]
K} (Cv, ¢iv)

e’iek N f

1% = fllp = — 1,

which is a contradiction.

5. A counterexample. Let A be the unit disc in C and define

Dy = A\ Az, 270)
k=1
where A(z,r) is the disc centred at x with radius r > 0. Assume N (k) > 2
for all k. Then A(27%,27#N(k)) are disjoint from each other for all k. We
have the following criterion for the hyperconvexity of Dy (cf. [12], p. 50):

PROPOSITION 5.1. Dy is hyperconvex if and only if > ;o N(k)~' = oc.
We first prove the following:
LEMMA 5.2. Let D be a bounded domain in C satisfying:

* For each zy € 0D, there exists a sequence {z,}5°, C C\ D with
k=1
z, — 2o as k — 0o such that
|z — 20| log d(z,0D) — 0 as k — oo.

Then the Bergman metric on D is complete.
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Proof. First, we prove Kp(z,z) — oo as z — dD. For each zy € 9D,
put fr(z) = (z — zx)~!. Then f;, is holomorphic on D and satisfies

I fellB < | |2 — 2|2 dV; = 21(Cy — log d(zy,, OD)),
Dn{z||z—zk|>d(z,0D)}

where (] is a constant depending only on the diameter of D.
For each z € DN A(zp, |zr — 20|), one has
S RGP 1
~IfklD T 87z — 20[*(Cr — log d(zk,0D))
Thus we obtain Kp(z,z) — oo as z — 2.
Next we want to show that every f € H?(D) with |[f||p < 1 can be
approximated in L?-norm by a family {f.}.~o of holomorphic functions on

D which are bounded in some open neighbourhood of zj.
For simplicity we can assume z5 = 0 and D CC A. Put

(z) = —log(—log |z]).
Then ) is a C°° strictly psh function on A\ {0} satisfying 99y > 0.
For each 0 < ¢ < 1 we set
Ne = (=1 —loglog(1/e) + 1),
where & is the function in the proof of Lemma 4.2. Put
D.={ze€C|0<|z] <e/2} UD.

Then n. f € C*°(D.). Since every domain in C is pseudoconvex, we can find
a function y. on D, such that f. = n. f —y. is a holomorphic function on D,
satisfying [|vellp. < C2||fllpna(o,er/2), where Cy is a constant (independent
of f,e). This gives

1fe = fllp < 1+ C)fllpnac,r2)

and || f||p. <1+ Cy. Then f. can be extended to a holomorphic function
on DU A(0,e/?) and ||f- — f||p — 0 as € — 0. The proof of Lemma 5.2 is
complete by the remark after Proposition 3.4.

Kp(z,2)

Lemma 5.2 implies
LEMMA 5.3. Let Dy be defined as above. Suppose that
EN(E)27% -0 ask — oo.
Then the Bergman metric on Dy is complete.

Now we take N (k) = k*4+1. Then Dy is not hyperconvex by Proposition
5.1 and the Bergman metric on Dy is complete by Lemma 5.3.
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