ANNALES POLONICI MATHEMATICI LXXI.2 (1999)

A remark on the Lion–Rolin Preparation Theorem for LA-functions

by WIESŁAW PAWŁUCKI and ARTUR PIĘKOSZ (Kraków)

Abstract. A correct formulation of the Lion–Rolin Preparation Theorem for logarithmic-subanalytic functions (LA-functions) is given.

In [2] Lion and Rolin give an explicit description of functions on \mathbb{R}^n $(n \in \mathbb{Z}, n > 0)$, called by them *LE-functions*, defined as finite compositions of globally subanalytic functions with logarithmic and with exponential functions. This enables them to obtain the fundamental results of van den Dries, Macintyre and Marker [1] without making use of model theory. One important step in their study is their Preparation Theorem for LA-functions. To quote this theorem we first recall some basic definitions from [2].

If $\mathcal F$ is any family of real functions on $\mathbb R^n,$ a subset E of $\mathbb R^n$ is called an $\mathcal F\text{-}set$ if

$$E = \bigcup_{i \in I} \bigcap_{j \in J} E_{ij}$$

where I and J are finite and for each $(i, j) \in I \times J$, $E_{ij} = \{\phi_{ij} > 0\}$ or $E_{ij} = \{\phi_{ij} = 0\}$ or $E_{ij} = \{\phi_{ij} < 0\}$, with some $\phi_{ij} \in \mathcal{F}$.

A subset C of $\mathbb{R}^{n+1} = \{(x, y) \mid x \in \mathbb{R}^n, y \in \mathbb{R}\}$ is called an \mathcal{F} -cylinder if either

$$C = \{(x, y) \mid x \in B, \ y = \phi(x)\}$$

where B is an \mathcal{F} -set in \mathbb{R}^n and $\phi \in \mathcal{F}$, or

$$C = \{ (x, y) \mid x \in B, \ \phi(x) < y < \psi(x) \},\$$

where B is an \mathcal{F} -set in \mathbb{R}^n , $\phi, \psi \in \mathcal{F} \cup \{-\infty\}^B \cup \{\infty\}^B$ and $\phi(x) < \psi(x)$ for each $x \in B$.

Let $f : \mathbb{R}^{n+1} = \mathbb{R}^n \times \mathbb{R} \to \mathbb{R}$. We say that

 $Key\ words\ and\ phrases:$ subanalytic function, logarithmic-subanalytic function, reducible.

¹⁹⁹¹ Mathematics Subject Classification: Primary 32B20; Secondary 33B10.

(1) f is an LA-function of type 0 if f can be represented as

$$f(x,y) = F(a_1(x),\ldots,a_m(x),y),$$

where $m \in \mathbb{Z}$, m > 0, F is a globally subanalytic function on \mathbb{R}^{m+1} , and a_j are LE-functions on \mathbb{R}^n ;

(2) f is an LA-function of type $r, r \ge 1$, if f can be represented as

 $f(x,y) = F(f_1(x,y), \dots, f_m(x,y), \log |f_{m+1}(x,y)|, \dots, \log |f_{m+1}(x,y)|),$

where F is globally subanalytic, $m, l \in \mathbb{Z}, m, l > 0$, and f_i are LA-functions of type r - 1.

An LA-function $f : \mathbb{R}^{n+1} \to \mathbb{R}$ of type r is called *reducible* if there exists a finite covering \mathcal{C} of \mathbb{R}^{n+1} by LE-cylinders such that, on each $C \in \mathcal{C}$, f can be represented in the form

$$f(x,y) = |y_0|^{\alpha_0} \dots |y_r|^{\alpha_r} A(x) U(x,y_0,\dots,y_r),$$

where $y_0 = y - \theta_0(x)$, $y_1 = \log |y_0| - \theta_1(x)$, ..., $y_r = \log |y_{r-1}| - \theta_r(x)$, with some LE-functions θ_j such that $|y_j| \leq M |\theta_j(x)|$ on C, A is an LE-function, $\alpha_j \in \mathbb{Q}$ (j = 0, ..., r), and

$$U(x, y_0, \dots, y_r) = V(\psi(x, y)),$$

where

$$\psi(x,y) = \left(\phi_1(x), \dots, \psi_s(x), \frac{|y_0|^{1/p_0}}{a_0(x)}, \dots, \frac{|y_r|^{1/p_r}}{a_r(x)}, \dots, \frac{b_0(x)}{|y_0|^{1/p_0}}, \dots, \frac{b_r(x)}{|y_r|^{1/p_r}}\right)$$

with some LE-functions ϕ_i , a_j , b_j , positive integers p_j , and an analytic nonvanishing function V of constant sign in a neighbourhood of the compact set $\overline{\psi(C)}$ in $(\mathbb{P}^1)^{s+2r+2}$, where \mathbb{P}^1 denotes the real projective line.

Lion and Rolin formulate the following Preparation Theorem for LAfunctions [2, Théorème 2]: Every LA-function is reducible.

Our goal here is to observe that this formulation requires some correction. To see this, consider the function $f : \mathbb{R} \to \mathbb{R}$ defined as follows:

$$f(y) = \begin{cases} y^y = e^{y \log y} & \text{if } y \in (0,1) \\ 0 & \text{if } y \notin (0,1) \end{cases}$$

Of course, f is an LA-function of type 1. However, it is not reducible in the above sense. If it were, we would have the following equality in some interval $(0, \varepsilon)$ ($\varepsilon > 0$):

$$f(y) = |y_0|^{\alpha_0} |y_1|^{\alpha_1} V(|y_0|^{1/p_0}, |y_1|^{1/p_1}, |y_0|^{-1/p_0}, |y_1|^{-1/p_1})$$

where $y_0 = y - \theta_0$, $y_1 = \log |y_0| - \theta_1$, p_0 , p_1 are positive integers, $\alpha_0, \alpha_1 \in \mathbb{Q}$ and V is an analytic positive function in a neighbourhood of $\overline{\psi(0,\varepsilon)}$ in $(\mathbb{P}^1)^4$, where

$$\psi(y) = (|y_0|^{1/p_0}, |y_1|^{1/p_1}, |y_0|^{-1/p_0}, |y_1|^{-1/p_1}).$$

196

If $\theta_0 \neq 0$, then f would be subanalytic near 0, which is not the case, so suppose that $\theta_0 = 0$. Then

$$f(y) = |y|^{\alpha_0} |y_1|^{\alpha_1} \widetilde{V}(|y|^{1/p_0}, |y_1|^{-1/p_1}),$$

where \widetilde{V} is analytic in a neighbourhood of (0,0) and $\widetilde{V}(0,0) > 0$.

If $\alpha_0 \neq 0$ or $\alpha_1 \neq 0$, the right-hand side would tend to 0 or ∞ as y tends to 0; a contradiction. Hence,

 $f(y) = \widetilde{V}(|y|^{1/p_0}, |y_1|^{-1/p_1})$ and $y \log y = (\log \widetilde{V})(|y|^{1/p_0}, |y_1|^{-1/p_1})$ for $y \in (0, \varepsilon')$. Expanding $\log \widetilde{V}$ with respect to the first variable, we have

$$y \log y = \sum_{\nu=k}^{\infty} C_{\nu}(|y_{1}|^{-1/p_{1}})|y|^{\nu/p_{0}}$$

= $C_{k}(|y_{1}|^{-1/p_{1}})|y|^{k/p_{0}}$
 $\times \left[1 + \frac{|y|^{1/p_{0}}}{C_{k}(|y_{1}|^{-1/p_{1}})}\sum_{\nu>k}^{\infty} C_{\nu}(|y_{1}|^{-1/p_{1}})|y|^{(\nu-k-1)/p_{0}}\right].$

Hence $y^{1-k/p_0}(\log y)[C_k(|y_1|^{-1/p_1})]^{-1}$ tends to 1 as y tends to 0; this is asymptotically equivalent to

$$y^{1-k/p_0}(\log y)|y_1|^{l/p_1}$$
 for some $l > 0$,

so tends to 0 or ∞ .

This example indicates that in order to obtain a correct formulation of the theorem one should allow ψ in the definition of reducibility in a more general form, viz.

$$\psi(x,y) = (a_1(x)|y_0|^{\beta_{10}} \dots |y_r|^{\beta_{1r}}, \dots, a_s(x)|y_0|^{\beta_{s0}} \dots |y_r|^{\beta_{sr}}),$$

where $\beta_{ij} \in \mathbb{Q}$.

The proof after this modification is that of [2].

References

- [1] L. van den Dries, A. Macintyre and D. Marker, *The elementary theory of restricted analytic fields with exponentiation*, Ann. of Math. 140 (1994), 183–205.
- J.-M. Lion et J.-P. Rolin, Théorème de préparation pour les fonctions logarithmico-exponentielles, Ann. Inst. Fourier (Grenoble) 47 (1997), 859–884.

Wiesław Pawłucki Institute of Mathematics Jagiellonian University Reymonta 4 30-059 Kraków, Poland E-mail: pawlucki@im.uj.edu.pl Artur Piękosz Institute of Mathematics Cracow University of Technology Warszawska 24 31-155 Kraków, Poland E-mail: pupiekos@cyf-kr.edu.pl

Reçu par la Rédaction le 24.9.1998