A remark on the Lion-Rolin Preparation Theorem for LA-functions

by WiesŁaw PawŁucki and Artur Piȩkosz (Kraków)

Abstract

A correct formulation of the Lion-Rolin Preparation Theorem for loga-rithmic-subanalytic functions (LA-functions) is given.

In [2] Lion and Rolin give an explicit description of functions on \mathbb{R}^{n} ($n \in \mathbb{Z}, n>0$), called by them LE-functions, defined as finite compositions of globally subanalytic functions with logarithmic and with exponential functions. This enables them to obtain the fundamental results of van den Dries, Macintyre and Marker [1] without making use of model theory. One important step in their study is their Preparation Theorem for LA-functions. To quote this theorem we first recall some basic definitions from [2].

If \mathcal{F} is any family of real functions on \mathbb{R}^{n}, a subset E of \mathbb{R}^{n} is called an \mathcal{F}-set if

$$
E=\bigcup_{i \in I} \bigcap_{j \in J} E_{i j}
$$

where I and J are finite and for each $(i, j) \in I \times J, E_{i j}=\left\{\phi_{i j}>0\right\}$ or $E_{i j}=\left\{\phi_{i j}=0\right\}$ or $E_{i j}=\left\{\phi_{i j}<0\right\}$, with some $\phi_{i j} \in \mathcal{F}$.

A subset C of $\mathbb{R}^{n+1}=\left\{(x, y) \mid x \in \mathbb{R}^{n}, y \in \mathbb{R}\right\}$ is called an \mathcal{F}-cylinder if either

$$
C=\{(x, y) \mid x \in B, y=\phi(x)\}
$$

where B is an \mathcal{F}-set in \mathbb{R}^{n} and $\phi \in \mathcal{F}$, or

$$
C=\{(x, y) \mid x \in B, \phi(x)<y<\psi(x)\}
$$

where B is an \mathcal{F}-set in $\mathbb{R}^{n}, \phi, \psi \in \mathcal{F} \cup\{-\infty\}^{B} \cup\{\infty\}^{B}$ and $\phi(x)<\psi(x)$ for each $x \in B$.

Let $f: \mathbb{R}^{n+1}=\mathbb{R}^{n} \times \mathbb{R} \rightarrow \mathbb{R}$. We say that

1991 Mathematics Subject Classification: Primary 32B20; Secondary 33B10.
Key words and phrases: subanalytic function, logarithmic-subanalytic function, reducible.
(1) f is an $L A$-function of type 0 if f can be represented as

$$
f(x, y)=F\left(a_{1}(x), \ldots, a_{m}(x), y\right)
$$

where $m \in \mathbb{Z}, m>0, F$ is a globally subanalytic function on \mathbb{R}^{m+1}, and a_{j} are LE-functions on \mathbb{R}^{n};
(2) f is an LA-function of type $r, r \geq 1$, if f can be represented as

$$
f(x, y)=F\left(f_{1}(x, y), \ldots, f_{m}(x, y), \log \left|f_{m+1}(x, y)\right|, \ldots, \log \left|f_{m+l}(x, y)\right|\right)
$$

where F is globally subanalytic, $m, l \in \mathbb{Z}, m, l>0$, and f_{i} are LA-functions of type $r-1$.

An LA-function $f: \mathbb{R}^{n+1} \rightarrow \mathbb{R}$ of type r is called reducible if there exists a finite covering \mathcal{C} of \mathbb{R}^{n+1} by LE-cylinders such that, on each $C \in \mathcal{C}, f$ can be represented in the form

$$
f(x, y)=\left|y_{0}\right|^{\alpha_{0}} \ldots\left|y_{r}\right|^{\alpha_{r}} A(x) U\left(x, y_{0}, \ldots, y_{r}\right),
$$

where $y_{0}=y-\theta_{0}(x), y_{1}=\log \left|y_{0}\right|-\theta_{1}(x), \ldots, y_{r}=\log \left|y_{r-1}\right|-\theta_{r}(x)$, with some LE-functions θ_{j} such that $\left|y_{j}\right| \leq M\left|\theta_{j}(x)\right|$ on C, A is an LE-function, $\alpha_{j} \in \mathbb{Q}(j=0, \ldots, r)$, and

$$
U\left(x, y_{0}, \ldots, y_{r}\right)=V(\psi(x, y))
$$

where

$$
\begin{aligned}
& \psi(x, y) \\
& \quad=\left(\phi_{1}(x), \ldots, \psi_{s}(x), \frac{\left|y_{0}\right|^{1 / p_{0}}}{a_{0}(x)}, \ldots, \frac{\left|y_{r}\right|^{1 / p_{r}}}{a_{r}(x)}, \ldots, \frac{b_{0}(x)}{\left|y_{0}\right|^{1 / p_{0}}}, \ldots, \frac{b_{r}(x)}{\left|y_{r}\right|^{1 / p_{r}}}\right),
\end{aligned}
$$

with some LE-functions ϕ_{i}, a_{j}, b_{j}, positive integers p_{j}, and an analytic nonvanishing function V of constant sign in a neighbourhood of the compact set $\overline{\psi(C)}$ in $\left(\mathbb{P}^{1}\right)^{s+2 r+2}$, where \mathbb{P}^{1} denotes the real projective line.

Lion and Rolin formulate the following Preparation Theorem for LAfunctions [2, Théorème 2]: Every LA-function is reducible.

Our goal here is to observe that this formulation requires some correction. To see this, consider the function $f: \mathbb{R} \rightarrow \mathbb{R}$ defined as follows:

$$
f(y)= \begin{cases}y^{y}=e^{y \log y} & \text { if } y \in(0,1) \\ 0 & \text { if } y \notin(0,1)\end{cases}
$$

Of course, f is an LA-function of type 1 . However, it is not reducible in the above sense. If it were, we would have the following equality in some interval $(0, \varepsilon)(\varepsilon>0):$

$$
f(y)=\left|y_{0}\right|^{\alpha_{0}}\left|y_{1}\right|^{\alpha_{1}} V\left(\left|y_{0}\right|^{1 / p_{0}},\left|y_{1}\right|^{1 / p_{1}},\left|y_{0}\right|^{-1 / p_{0}},\left|y_{1}\right|^{-1 / p_{1}}\right),
$$

where $y_{0}=y-\theta_{0}, y_{1}=\log \left|y_{0}\right|-\theta_{1}, p_{0}, p_{1}$ are positive integers, $\alpha_{0}, \alpha_{1} \in \mathbb{Q}$ and V is an analytic positive function in a neighbourhood of $\overline{\psi(0, \varepsilon)}$ in $\left(\mathbb{P}^{1}\right)^{4}$, where

$$
\psi(y)=\left(\left|y_{0}\right|^{1 / p_{0}},\left|y_{1}\right|^{1 / p_{1}},\left|y_{0}\right|^{-1 / p_{0}},\left|y_{1}\right|^{-1 / p_{1}}\right) .
$$

If $\theta_{0} \neq 0$, then f would be subanalytic near 0 , which is not the case, so suppose that $\theta_{0}=0$. Then

$$
f(y)=|y|^{\alpha_{0}}\left|y_{1}\right|^{\alpha_{1}} \tilde{V}\left(|y|^{1 / p_{0}},\left|y_{1}\right|^{-1 / p_{1}}\right),
$$

where \widetilde{V} is analytic in a neighbourhood of $(0,0)$ and $\widetilde{V}(0,0)>0$.
If $\alpha_{0} \neq 0$ or $\alpha_{1} \neq 0$, the right-hand side would tend to 0 or ∞ as y tends to 0 ; a contradiction. Hence,

$$
f(y)=\widetilde{V}\left(|y|^{1 / p_{0}},\left|y_{1}\right|^{-1 / p_{1}}\right) \quad \text { and } \quad y \log y=(\log \widetilde{V})\left(|y|^{1 / p_{0}},\left|y_{1}\right|^{-1 / p_{1}}\right)
$$

for $y \in\left(0, \varepsilon^{\prime}\right)$. Expanding $\log \widetilde{V}$ with respect to the first variable, we have

$$
\begin{aligned}
y \log y= & \sum_{\nu=k}^{\infty} C_{\nu}\left(\left|y_{1}\right|^{-1 / p_{1}}\right)|y|^{\nu / p_{0}} \\
= & C_{k}\left(\left|y_{1}\right|^{-1 / p_{1}}\right)|y|^{k / p_{0}} \\
& \times\left[1+\frac{|y|^{1 / p_{0}}}{C_{k}\left(\left|y_{1}\right|^{-1 / p_{1}}\right)} \sum_{\nu>k}^{\infty} C_{\nu}\left(\left|y_{1}\right|^{-1 / p_{1}}\right)|y|^{(\nu-k-1) / p_{0}}\right]
\end{aligned}
$$

Hence $y^{1-k / p_{0}}(\log y)\left[C_{k}\left(\left|y_{1}\right|^{-1 / p_{1}}\right)\right]^{-1}$ tends to 1 as y tends to 0 ; this is asymptotically equivalent to

$$
y^{1-k / p_{0}}(\log y)\left|y_{1}\right|^{l / p_{1}} \quad \text { for some } l>0,
$$

so tends to 0 or ∞.
This example indicates that in order to obtain a correct formulation of the theorem one should allow ψ in the definition of reducibility in a more general form, viz.

$$
\psi(x, y)=\left(a_{1}(x)\left|y_{0}\right|^{\beta_{10}} \ldots\left|y_{r}\right|^{\beta_{1 r}}, \ldots, a_{s}(x)\left|y_{0}\right|^{\beta_{s 0}} \ldots\left|y_{r}\right|^{\beta_{s r}}\right),
$$

where $\beta_{i j} \in \mathbb{Q}$.
The proof after this modification is that of [2].

References

[1] L. van den Dries, A. Macintyre and D. Marker, The elementary theory of restricted analytic fields with exponentiation, Ann. of Math. 140 (1994), 183-205.
[2] J.-M. Lion et J.-P. Rolin, Théorème de préparation pour les fonctions logarith-mico-exponentielles, Ann. Inst. Fourier (Grenoble) 47 (1997), 859-884.

Wiesław Pawłucki
Institute of Mathematics
Jagiellonian University
Reymonta 4
30-059 Kraków, Poland
E-mail: pawlucki@im.uj.edu.pl

Artur Piękosz
Institute of Mathematics Cracow University of Technology

Warszawska 24 31-155 Kraków, Poland E-mail: pupiekos@cyf-kr.edu.pl

