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Markov operators on the space of vector measures;

coloured fractals

by Karol Baron and Andrzej Lasota (Katowice)

Abstract. We consider the family M of measures with values in a reflexive Banach
space. InM we introduce the notion of a Markov operator and using an extension of the
Fortet–Mourier norm we show some criteria of the asymptotic stability. Asymptotically
stable Markov operators can be used to construct coloured fractals.

Introduction. The theory of Markov operators started in 1906 when
A. A. Markov showed that asymptotic properties of some stochastic pro-
cesses can be studied by using stochastic matrices [8]. Such matrices define
positive, linear operators on R

n. Markov’s ideas were generalized in many
directions. In particular, W. Feller developed the theory of Markov oper-
ators acting on Borel measures defined on some topological spaces and E.
Hopf proposed to study Markov operators on L1 spaces (see [6]). Another
important idea is to study Markov operators on an arbitrary measurable
space. This approach, some historical remarks and a vast literature can be
found in the book of E. Nummelin [9].

In all these generalizations a Markov operator is a linear operator P
which satisfies the condition of nonnegativity

(0.1) Pµ ≥ 0 for µ ≥ 0

and the normalization property

(0.2) Pµ(X) = 1 for µ(X) = 1, µ ∈ MR,

where MR denotes the class of real-valued measures.
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It is easy to verify that conditions (0.1) and (0.2) imply the inequality

(0.3) |Pµ|(X) ≤ |µ|(X),

where |µ| denotes the total variation of µ. On the other hand, for real-valued
measures conditions (0.2) and (0.3) imply (0.1). The starting point of our
generalization of Markov operators is the pair of conditions (0.2), (0.3).

The purpose of this paper is to develop the theory of Markov operators
acting on the space ME of vector measures defined on Borel subsets of a
compact metric space X. These measures take values in a reflexive Banach
space E. In the definition of a Markov operator on ME we replace conditions
(0.2), (0.3) by similar ones. Namely in (0.2) the number 1 is replaced by an
arbitrary element e ∈ E and in (0.3) the total variation by the semivariation
or variation. These two norms lead to two different definitions of Markov
operators. However, the main results are similar.

The Fortet–Mourier norm originally defined for real-valued measures [11]
can be extended to the space ME . It allows us to obtain sufficient conditions
for the asymptotic stability of Markov operators of both types.

The reason for studying Markov operators on vector measures is not
purely theoretical. We believe that a sequence or flow of vector measures is
an excellent tool for describing the evolution of complicated objects. We il-
lustrate this possibility by proving a convergence theorem for Iterated Func-
tion Systems (see [1]) acting on vector measures. Such systems can be used
to construct coloured fractals.

The paper is organized as follows. In Section 1 we introduce the Fortet–
Mourier norm ‖ ‖F in the space ME , denoted in the sequel simply by M,
and we prove the completeness of some subsets of (M, ‖ ‖F ). In Section 2
we study the properties of the space adjoint to (M, ‖ ‖F ). The last section
contains the definitions of two types of Markov operators and some criteria
of the asymptotic stability.

1. Vector measures with the Fortet–Mourier norm. Let (X, ̺)
be a compact metric space and (E, ‖ ‖) a separable reflexive (real) Banach
space. These assumptions will not be repeated in the sequel.

By C(X) we denote the space of continuous functions f : X → R with
the supremum norm ‖f‖∞. Let BX denote the family of Borel subsets of X.
By M we denote the space of all σ-additive measures µ : BX → E. It is well
known that in the condition of σ-additivity

µ
(

∞
⋃

n=1

Bn

)

=

∞
∑

n=1

µ(Bn),

where Bn ∈ BX for n ∈ N, and Bi ∩ Bj = ∅ for i 6= j, the requirements of
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the weak and strong convergence of the series are equivalent. Let

Lip1(X) = {f ∈ C(X) : |f(x) − f(z)| ≤ ̺(x, z) for x, z ∈ X}.

In M we introduce the Fortet–Mourier norm by the formula

(1.1) ‖µ‖F = sup
{∥

∥

∥

\
X

f dµ
∥

∥

∥
: f ∈ Lip1(X), ‖f‖∞ ≤ 1

}

.

For every functional λ ∈ E∗ and measure µ ∈ M the set function ν = λµ is
a real-valued measure for which

‖ν‖F = sup
{∣

∣

∣

\
X

f dν
∣

∣

∣
: f ∈ Lip1(X), ‖f‖∞ ≤ 1

}

is the classical Fortet–Mourier norm. Evidently

‖µ‖F = sup
{∣

∣

∣
λ
\
X

f dµ
∣

∣

∣
: f ∈ Lip1(X), ‖f‖∞ ≤ 1; λ ∈ E∗, ‖λ‖ ≤ 1

}

= sup{‖λµ‖F : λ ∈ E∗, ‖λ‖ ≤ 1}

for µ ∈ M. From this equality it follows that (1.1) defines a norm in M.
The semivariation of µ ∈ M is defined by

(1.2) ‖µ‖(B) = sup{|λµ|(B) : λ ∈ E∗, ‖λ‖ ≤ 1} for B ∈ BX ,

where |λµ| is the total variation of the real-valued measure λµ.
For K > 0 fixed, we are going to study properties of the set

(1.3) MK = {µ ∈ M : ‖µ‖(X) ≤ K}.

Theorem 1.1. For every sequence (µn) in MK there exists µ ∈ MK

and a strictly increasing sequence (mn) of positive integers such that

(1.4) lim
n→∞

λ
\
X

f dµmn
= λ

\
X

f dµ for f ∈ C(X) and λ ∈ E∗.

In order to prove Theorem 1.1 we need the following lemma.

Lemma 1.1. For every sequence (νn) of real-valued measures on BX with

|νn|(X) ≤ K for n ∈ N there exists a real-valued measure ν on BX and a

strictly increasing sequence (mn) of positive integers such that

|ν|(X) ≤ lim
n→∞

|νmn
|(X) ≤ K

and

lim
n→∞

\
X

f dνmn
=
\
X

f dν for f ∈ C(X).

P r o o f. By the Jordan decomposition we may restrict ourselves to the
case of nonnegative measures satisfying νn(X) ≤ K. If there exists a subse-
quence of (νn(X)) converging to zero then the statement is immediate with
ν = 0. If not, we may choose a sequence (mn) of positive integers such that
the sequence (νmn

(X)) of numbers converges to an α > 0 and the sequence
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(νmn
/νmn

(X)) of probabilistic measures is weakly convergent (Prokhorov’s
theorem, see [10; Theorems 6.1 and 6.4]) to a probability measure ν. In this
case the sequence (νmn

) of measures converges weakly to αν.

Proof of Theorem 1.1. We divide the proof into two steps. Let (µn) be a
sequence in MK .

Step I. We now prove that there exists a strictly increasing sequence
(mn) of positive integers with the following property.

(P) For every functional λ ∈ E∗ there exists a real-valued measure νλ

on BX such that

(1.5) |νλ|(X) ≤ K‖λ‖

and

(1.6) lim
n→∞

\
X

f d(λµmn
) =

\
X

f dνλ for f ∈ C(X).

Fix λ ∈ E∗. According to (1.2) and (1.3) we have

(1.7) |λµn|(X) ≤ ‖λ‖ · ‖µn‖(X) ≤ K‖λ‖ for n ∈ N,

and it follows from Lemma 1.1 that there exists a real-valued measure νλ on
BX satisfying (1.5), and a strictly increasing sequence (mn(λ)) of positive
integers such that

lim
n→∞

\
X

f d(λµmn(λ)) =
\
X

f dνλ for f ∈ C(X).

Since E is separable and reflexive, E∗ is separable. Let (λk) be a dense
sequence in E∗. Using Cantor’s diagonal method we infer that for every
k ∈ N there exists a real-valued measure νk on BX satisfying

(1.8) |νk|(X) ≤ K‖λk‖,

and a strictly increasing sequence (mn) of positive integers such that

(1.9) lim
n→∞

\
X

f d(λkµmn
) =

\
X

f dνk for f ∈ C(X).

Now we are ready to show that condition (P) holds.

Fix λ ∈ E∗ and let (kn) be a sequence of positive integers satisfying

(1.10) lim
n→∞

‖λkn
− λ‖ = 0.

From (1.8) and Lemma 1.1 it follows that there exists a real-valued measure
νλ on BX and a strictly increasing sequence (pn) of positive integers such
that

|νλ|(X) ≤ lim
n→∞

|νkpn
|(X) ≤ lim

n→∞
K‖λkpn

‖ = K‖λ‖
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and

(1.11) lim
n→∞

\
X

f dνkpn
=
\
X

f dνλ for f ∈ C(X).

Further, the inequalities
∣

∣

∣

\
X

f d(λµmn
) −

\
X

f dνλ

∣

∣

∣
≤

∣

∣

∣

\
X

f d(λµmn
) −

\
X

f d(λkpq
µmn

)
∣

∣

∣

+
∣

∣

∣

\
X

f d(λkpq
µmn

) −
\
X

f dνkpq

∣

∣

∣

+
∣

∣

∣

\
X

f dνkpq
−
\
X

f dνλ

∣

∣

∣

and (cf. (1.7))
∣

∣

∣

\
X

f d(λµmn
) −

\
X

f d(λkpq
µmn

)
∣

∣

∣
≤ ‖f‖∞|(λ− λkpq

)µmn
|(X)

≤ K‖λ− λkpq
‖ · ‖f‖∞

imply according to (1.9) that

lim sup
n→∞

∣

∣

∣

\
X

f d(λµmn
)−
\
X

f dνλ

∣

∣

∣
≤ K‖λ−λkpq

‖·‖f‖∞+
∣

∣

∣

\
X

f dνkpq
−
\
X

f dνλ

∣

∣

∣

for f ∈ C(X) and q ∈ N. From this and conditions (1.10), (1.11), we obtain
(1.6) when q tends to infinity. This finishes the proof of Step I.

Step II. Fix a strictly increasing sequence (mn) of positive integers with
property (P). Clearly, for every λ ∈ E∗ condition (1.6) determines the real-
valued measure νλ on BX uniquely. We now prove that there exists µ ∈ MK

such that

(1.12) λµ = νλ for λ ∈ E∗.

Given f ∈ C(X) consider a functional Λf on E∗ defined by

(1.13) Λfλ =
\
X

f dνλ.

Clearly, it is linear. Moreover, according to (1.13) and (1.5) we have

(1.14) |Λfλ| ≤ ‖f‖∞|νλ|(X) ≤ K‖f‖∞‖λ‖ for λ ∈ E∗.

Hence Λf ∈ E∗∗ and, since E is reflexive, there exists T (f) ∈ E such that

(1.15) Λfλ = λT (f) for λ ∈ E∗.

Obviously, the operator T : C(X) → E defined by (1.15) is linear. It is also
continuous: If f ∈ C(X) then choosing λ ∈ E∗ such that ‖T (f)‖ = λT (f)
and ‖λ‖ ≤ 1 and using (1.15) and (1.14) we obtain

(1.16) ‖T (f)‖ = λT (f) = Λfλ ≤ K‖f‖∞.
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Finally, by reflexivity of E, the operator T is weakly compact. According to
the Riesz Representation Theorem [3; VI.2] there exists a σ-additive measure
µ : BX → E such that ‖µ‖(X) = ‖T‖ and

(1.17) T (f) =
\
X

f dµ for f ∈ C(X).

From this and (1.16) it follows that µ ∈ MK . To prove (1.12) fix λ ∈ E∗.
Now using (1.17), (1.15) and (1.13) we obtain\

X

f d(λµ) = λT (f) =
\
X

f dνλ for f ∈ C(X).

Thus λµ = νλ, which completes the proof of Theorem 1.1.

Now let us see what Theorem 1.1 says about the space MK defined by
(1.3) and endowed with the Fortet–Mourier metric

(1.18) ‖µ1 − µ2‖F .

Corollary 1.1. The space MK with metric (1.18) is complete.

P r o o f. Let (µn) be a Cauchy sequence in the space under considera-
tion. From Theorem 1.1 it follows that there exists µ ∈ MK and a strictly
increasing sequence (mn) of positive integers such that (1.4) holds. Thus
the sequence of functions

(1.19) (f, λ) 7→ λ
\
X

f dµn

defined on {f ∈ Lip1(X) : ‖f‖∞ ≤ 1} × {λ ∈ E∗ : ‖λ‖ ≤ 1} satisfies the
uniform Cauchy condition and contains a subsequence converging pointwise
to the function

(1.20) (f, λ) 7→ λ
\
X

f dµ.

Consequently, this convergence is uniform, which means limn→∞ ‖µn −µ‖F
= 0. This completes the proof.

The functionals (1.19) and (1.20) are evidently bilinear and continuous
on C(X) × E∗. Thus the convergence (1.4) is uniform on every compact
subset of C(X)×E∗. In particular, it is uniform on {f ∈ Lip1(X) : ‖f‖∞ ≤
1} × L where L is a compact subset of E∗. Thus, as an immediate conse-
quence of Theorem 1.1 we have the following corollary.

Corollary 1.2. For every sequence (µn) in MK there exists µ ∈ MK

and a strictly increasing sequence (mn) of positive integers such that

lim
n→∞

‖λ(µmn
− µ)‖F = 0 for λ ∈ E∗.
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In addition to the semivariation ‖µ‖ of a vector-valued measure µ which
was defined by formula (1.2) we will consider another set function |µ| called
variation. It is given by

(1.21) |µ|(B) = sup
π

∑

P∈π

‖µ(P )‖ for B ∈ BX

where the supremum is taken over all finite partitions of B into Borel subsets.
It is evident that ‖µ‖ ≤ |µ| for every measure µ∈M. Consequently, the set

(1.22) {µ ∈ M : |µ|(X) ≤ K}

is a subset of MK .

Theorem 1.2. The set (1.22) is a closed subset of the space MK with

metric (1.18).

The proof of Theorem 1.2 is based on two lemmas.

Lemma 1.2. If a sequence (µn) in M converges in the norm ‖ · ‖F to a

measure µ ∈ M, then for every closed set F ⊂ X and for every ε > 0 there

exists an open set G ⊂ X such that

(1.23) F ⊂ G, ̺(x, F ) < ε for x ∈ G,

and

(1.24) ‖µ(F )‖ ≤ lim inf
n→∞

‖µn‖(G) + ε.

P r o o f. Let F ⊂ X be a closed set and ε > 0. Fix λ ∈ E∗ such that

‖µ(F )‖ = λµ(F ), ‖λ‖ ≤ 1,

and N > 1/ε such that the set

G = {x ∈ X : ̺(x, F ) < 1/N}

satisfies

|λµ|(G \ F ) < ε.

Clearly G is open and (1.23) holds. Now choose a Lipschitzian f : X → [0, 1]
such that f(x) = 1 for x ∈ F and f(x) = 0 for x ∈ X \G. Evidently

lim
n→∞

λ
\
X

f dµn = λ
\
X

f dµ

and

λ
\
X

f dµn = λ
\
G

f dµn ≤
∥

∥

∥

\
G

f dµn

∥

∥

∥
≤ ‖µn‖(G)

for n ∈ N. Hence

λ
\
X

f dµ ≤ lim inf
n→∞

‖µn‖(G).
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Moreover,

λ
\
X

(1F − f) dµ = −
\

G\F

f d(λµ) ≤ |λµ|(G \ F ) < ε

and, consequently,

‖µ(F )‖ = λµ(F ) = λ
\
X

(1F − f) dµ+ λ
\
X

f dµ < ε+ lim inf
n→∞

‖µn‖(G).

The proof of the next lemma is straightforward and will be omitted.

Lemma 1.3. If µ ∈ M, then for every Borel set B ⊂ X and for every

ε > 0 there exists a closed set F ⊂ B such that ‖µ(B)‖ ≤ ‖µ(F )‖ + ε.

Proof of Theorem 1.2. Let (µn) be a sequence in the set (1.22) which
converges in the Fortet–Mourier norm to a measure µ ∈ M. We have to
show that |µ|(X) ≤ K.

Fix a finite Borel partition B1, . . . , BN of X and ε > 0. It follows from
Lemma 1.3 that there exist closed subsets F1, . . . , FN of X such that

Fj ⊂ Bj , ‖µ(Bj)‖ ≤ ‖µ(Fj)‖ +
ε

2N
for j = 1, . . . , N.

Since F1, . . . , FN are compact and disjoint, there exists a positive nuber
ε0 ≤ ε/2 such that

{x ∈ X : ̺(x, Fj) < ε0} ∩ {x ∈ X : ̺(x, Fk) < ε0} = ∅ for j 6= k.

Finally, according to Lemma 1.2 there exist open subsets G1, . . . , GN of X
such that Fj ⊂ Gj , ̺(x, Fj) < ε0 for x ∈ Gj , and

‖µ(Fj)‖ ≤ lim inf
n→∞

‖µn‖(Gj) + ε0/N for j = 1, . . . , N.

Evidently the sets G1, . . . , GN are also disjoint. Consequently,

N
∑

j=1

‖µn‖(Gj) ≤
N

∑

j=1

|µn|(Gj) = |µn|
(

N
⋃

j=1

Gj

)

≤ |µn|(X) ≤ K

for n ∈ N and
N

∑

j=1

‖µ(Bj)‖ ≤
N

∑

j=1

‖µ(Fj)‖ +
ε

2
≤

N
∑

j=1

lim inf
n→∞

‖µn‖(Gj) + ε0 +
ε

2

≤ lim inf
n→∞

N
∑

j=1

‖µn‖(Gj) + ε ≤ K + ε.

This completes the proof.

2. The adjoint space. In this section we study the properties of con-
tinuous functionals on (M, ‖·‖F ). We start with the definition of an integral
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of the form

(2.1)
\
X

ψ(x, µ(dx))

where ψ : X × E → R is a function such that

(2.2) ψ(x, ·) ∈ E∗ for x ∈ X.

The integral (2.1) is defined as the only real number c satisfying the following
condition (C).

(C) For every ε > 0 there exists δ > 0 such that the inequality

∣

∣

∣

m
∑

i=1

ψ(xi, µ(Bi)) − c
∣

∣

∣
< ε

holds for every finite partition B1, . . . , Bm of X into nonempty Borel sets of
diameter less than δ and for all x1 ∈ B1, . . . , xm ∈ Bm.

In what follows we will exploit the following condition:

(A) There exists a constant L ≥ 0 such that

∣

∣

∣

m
∑

i=1

ψ(xi, ai) − ψ(zi, ai)
∣

∣

∣
≤ L̺(x, z)‖a‖

for all finite sequences x1, . . . , xm ∈ X, z1, . . . , zm ∈ X and a1, . . . , am ∈ E,
where

̺(x, z) := max{̺(xi, zi) : i = 1, . . . ,m}

and

‖a‖ = sup
{

∥

∥

∥

m
∑

i=1

εiai

∥

∥

∥
: |ε1| ≤ 1, . . . , |εm| ≤ 1

}

.

Conditions (2.2) and (A) guarantee the existence of the integral (2.1) for
any µ ∈ M. We omit the routine proof of this fact.

Define

δx(B) = 1B(x) for x ∈ X and B ∈ BX .

Clearly aδx ∈ M and, according to (1.1), (1.2) and (1.21),

(2.3) ‖aδx‖F = ‖aδx‖(X) = |aδx|(X) = ‖a‖ for x ∈ X and a ∈ E.

Theorem 2.1. If ϕ is a continuous linear functional on (M, ‖·‖F ), then

the function ψ : X × E → R defined by

(2.4) ψ(x, a) = ϕ(aδx)

satisfies conditions (2.2) and (A). Moreover ,

(2.5) ϕ(µ) =
\
X

ψ(x, µ(dx)) for µ ∈ M.
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P r o o f. From (2.4) it follows that ψ(x, ·) is linear for every x ∈ X.
Applying (2.3) we also have

|ψ(x, a)| ≤ ‖ϕ‖ · ‖aδx‖F = ‖ϕ‖ · ‖a‖ for a ∈ E,

which proves (2.2).

To show (A) (with L = ‖ϕ‖) it is enough to prove the inequality

(2.6)
∥

∥

∥

m
∑

i=1

(aiδxi
− aiδzi

)
∥

∥

∥
≤ ̺(x, z)‖a‖.

Of course we may (and do) assume that ̺(x, z) > 0. Then, for f ∈ Lip1(X)
with ‖f‖∞ ≤ 1, and εi = (f(xi) − f(zi))/̺(x, z) for i = 1, . . . ,m, we have

∥

∥

∥

\
X

f d

m
∑

i=1

(aiδxi
− aiδzi

)
∥

∥

∥
=

∥

∥

∥

m
∑

i=1

f(xi)ai − f(zi)ai

∥

∥

∥
= ̺(x, z)

∥

∥

∥

m
∑

i=1

εiai

∥

∥

∥

≤ ̺(x, z)‖a‖,

and (2.6) follows.

It remains to verify (2.5). Fix µ ∈ M and ε > 0. Let B1, . . . , Bm be
a finite partition of X into nonempty Borel sets with diameters less than ε
and such that

(2.7)
∣

∣

∣

m
∑

i=1

ψ(xi, µ(Bi)) −
\
X

ψ(x, µ(dx))
∣

∣

∣
< ε

for any x1 ∈ B1, . . . , xm ∈ Bm. Let ai = µ(Bi) for i = 1, . . . ,m. We claim
that

(2.8)
∥

∥

∥
µ−

m
∑

i=1

aiδxi

∥

∥

∥

F
≤ 2ε‖µ‖(X).

To prove this fix f ∈ Lip1(X) with ‖f‖∞ ≤ 1. Defining

g =

m
∑

i=1

f(xi)1Bi

we have |f(x)− g(x)| < ε for x ∈ X and
T
X
g d(µ−

∑m

i=1 aiδxi
) = 0. Hence

∥

∥

∥

\
X

fd
(

µ−
m

∑

i=1

aiδxi

)∥

∥

∥
=

∥

∥

∥

\
X

(f−g)d
(

µ−
m

∑

i=1

aiδxi

)∥

∥

∥
≤ ε

∥

∥

∥
µ−

m
∑

i=1

aiδxi

∥

∥

∥
(X)

and, consequently,

(2.9)
∥

∥

∥
µ−

m
∑

i=1

aiδxi

∥

∥

∥

F
≤ ε

∥

∥

∥
µ−

m
∑

i=1

aiδxi

∥

∥

∥
(X).
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Now let C1, . . . , Cn be a finite Borel partition of X and let ε1, . . . , εn ∈
[−1, 1]. Then

∣

∣

∣

n
∑

j=1

εjδxi
(Cj)

∣

∣

∣
≤

n
∑

j=1

δxi
(Cj) = δxi

(X) = 1 for i = 1, . . . ,m,

and
∥

∥

∥

n
∑

j=1

εj

(

m
∑

i=1

aiδxi

)

(Cj)
∥

∥

∥
=

∥

∥

∥

m
∑

i=1

(

n
∑

j=1

εjδxi
(Cj)µ(Bi)

)
∥

∥

∥
.

Taking the supremum over all partitions C1, . . . , Cn and all ε1, . . . , εn we
obtain (cf. [3; p.4, Proposition 11])

∥

∥

∥

m
∑

i=1

aiδxi

∥

∥

∥
(X) ≤ ‖µ‖(X).

The last inequality jointly with (2.9) implies (2.8).

Finally, using (2.4), (2.8) and (2.7) we obtain

∣

∣

∣
ϕ(µ) −

\
X

ψ(x, µ(dx))
∣

∣

∣
≤

∣

∣

∣
ϕ
(

µ−
m

∑

i=1

aiδxi

)
∣

∣

∣

+
∣

∣

∣

m
∑

i=1

ψ(xi, µ(Bi)) −
\
X

ψ(x, µ(dx))
∣

∣

∣

≤ ε(2‖ϕ‖ · ‖µ‖(X) + 1),

which implies (2.5) and completes the proof of Theorem 2.1.

Unfortunately, Theorem 2.1 does not give a precise description of the
space adjoint to (M, ‖ · ‖F ). Namely, we know that every continuous linear
functional ϕ on M is of the form (2.5) with ψ satisfying (2.2) and (A) but
we do not know if the converse is true. Of course every functional ϕ given
by (2.5) where ψ satisfies conditions (2.2) and (A) is linear. It remains,
however, an open question if ϕ is continuous.

We close this section with a corollary concerning functionals on

(2.10) Mfin = {µ ∈ M : |µ|(X) <∞}.

Corollary 2.1. If ϕ is a continuous linear functional on the space

(Mfin, ‖ · ‖F ), then the function ψ : X × E → R defined by (2.4) satis-

fies conditions (2.2) and (A) and

ϕ(µ) =
\
X

ψ(x, µ(dx)) for µ ∈ Mfin.

P r o o f. Extend ϕ onto the whole M and apply Theorem 2.1.



228 K. Baron and A. Lasota

3. Markov operators. We consider two types of Markov operators.
The first are defined on M and satisfy a normalization condition stated in
terms of the semivariation. The Markov operators of the second type act on
Mfin and are related to the variation of a measure. Their theory is quite
analogous and will be sketched rather briefly.

Fix e ∈ E. A linear operator P : M → M will be called a Markov

operator if it satisfies the following conditions:

‖Pµ‖(X) ≤ ‖µ‖(X) for µ ∈ M,(3.1)

Pµ(X) = e for µ ∈ M with µ(X) = e.(3.2)

In the class of Markov operators we distinguish contractive Feller operators.
To define them denote by Ψ1 the family of functions ψ : X×E → R satisfying
(2.2) and the following condition:

(A1) If m ∈ N, x1, . . . , xm, z1, . . . , zm ∈ X and a1, . . . , am ∈ E, then

∣

∣

∣

m
∑

i=1

ψ(xi, ai) − ψ(zi, ai)
∣

∣

∣
≤ ̺(x, z)‖a‖,

where

̺(x, z) := max{̺(xi, zi) : i = 1, . . . ,m}

and

‖a‖ := sup
{
∥

∥

∥

m
∑

i=1

εiai

∥

∥

∥
: |ε1| ≤ 1, . . . , |εm| ≤ 1

}

.

Remark 3.1. If f ∈ Lip1(X), λ ∈ E∗ and ‖λ‖ ≤ 1, then the function

ψ : X × E → R defined by

(3.3) ψ(x, a) = f(x)λ(a)

belongs to Ψ1 and

(3.4)
\
X

ψ(x, µ(dx)) = λ
\
X

f dµ for µ ∈ M.

P r o o f. Clearly (2.2) holds. If x1, . . . , xm, z1, . . . , zm ∈ X, a1, . . . , am ∈
E, and ̺(x, z) > 0, then

∣

∣

∣

m
∑

i=1

ψ(xi, ai) − ψ(zi, ai)
∣

∣

∣
= ̺(x, z)

∣

∣

∣

∣

λ

( m
∑

i=1

f(xi) − f(zi)

̺(x, z)
ai

)∣

∣

∣

∣

≤ ̺(x, z)‖a‖.

Thus ψ ∈ Ψ1. The proof of (3.4) is straightforward.

Remark 3.2. If ψ ∈ Ψ1, µ ∈ M and µ(X) = 0, then
∣

∣

∣

\
X

ψ(x, µ(dx))
∣

∣

∣
≤ diam(X)‖µ‖(X).
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P r o o f. Fix ε > 0 and a finite partition B1, . . . , Bm of X into nonempty
Borel sets such that (2.7) holds for all x1 ∈ B1, . . . , xm ∈ Bm. Then, fixing
x1 ∈ B1, . . . , xm ∈ Bm and x0 ∈ X, we have

∣

∣

∣

\
X

ψ(x, µ(dx))
∣

∣

∣
< ε+

∣

∣

∣

m
∑

i=1

ψ(xi, µ(Bi)) − ψ(x0, µ(Bi))
∣

∣

∣

≤ ε+ max
i=1,...,m

̺(xi, x0) · sup
|ε1|≤1,...,|εm|≤1

∥

∥

∥

m
∑

i=1

εiµ(Bi)
∥

∥

∥

≤ ε+ diam(X)‖µ‖(X),

as required.

A Markov operator P : M → M is called a contractive Feller operator if
there exist: a family Ψ ⊂ Ψ1 containing the functions of the form (3.3) where
f ∈ Lip1(X), λ ∈ E∗ and ‖λ‖ ≤ 1, a number ϑ ∈ (0, 1), and a mapping
U : Ψ → ϑΨ such that

(3.5)
∣

∣

∣

\
X

ψ(x, Pµ(dx))
∣

∣

∣
≤

∣

∣

∣

\
X

Uψ(x, µ(dx))
∣

∣

∣

for ψ ∈ Ψ and µ ∈ M with µ(X) = 0.

Proposition 3.1. Let N be a positive integer and let Sj : X → X, j =
1, . . . , N , be Lipschitzian mappings with Lipschitz constants Lj. Further , let

Tj : E → E be a linear and continuous operator such that

(3.6)

N
∑

j=1

‖Tj‖ ≤ 1,

N
∑

j=1

Tje = e,

N
∑

j=1

Lj‖Tj‖ < 1.

Then the operator P : M → M defined by

(3.7) Pµ(B) =
N

∑

j=1

Tjµ(S−1
j (B))

is a contractive Feller operator.

P r o o f. If B1, . . . , Bm is a finite Borel partition of X and ε1, . . . , εm ∈
[−1, 1], then

∥

∥

∥

m
∑

i=1

εiPµ(Bi)
∥

∥

∥
=

∥

∥

∥

N
∑

j=1

Tj

(

m
∑

i=1

εiµ(S−1
j (Bi))

)
∥

∥

∥

≤
N

∑

j=1

‖Tj‖
∥

∥

∥

m
∑

i=1

εiµ(S−1
j (Bi))

∥

∥

∥
≤

N
∑

j=1

‖Tj‖ · ‖µ‖(X) ≤ ‖µ‖(X),

whence (3.1) follows. Property (3.2) is evident. Clearly, P defined by (3.7)
is linear. Hence P is a Markov operator.
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Let Ψ denote the family of functions ψ ∈ Ψ1 which can be written in the
form

(3.8) ψ(x, a) =
n

∑

k=1

fk(x)λk(a)

with a positive integer n, Lipschitzian fk : X → R and λk ∈ E∗ for k =
1, . . . , n. According to Remark 3.1 the family Ψ contains the functions of
the form (3.3) where f ∈ Lip1(X), λ ∈ E∗ and ‖λ‖ ≤ 1. Evidently\

X

ψ(x, µ(dx)) =

n
∑

k=1

λk

\
X

fk dµ for ψ ∈ Ψ and µ ∈ M.

Fix now ψ ∈ Ψ and define Uψ : X × E → R by

Uψ(x, a) =
N

∑

j=1

ψ(Sj(x), Tja).

Clearly, Uψ(x, ·) ∈ E∗ for x ∈ X. Let x1, . . . , xm, z1, . . . , zm ∈ X and
a1, . . . , am ∈ E. Applying condition (A1) we obtain

∣

∣

∣

m
∑

i=1

Uψ(xi, ai)−Uψ(zi, ai)
∣

∣

∣
=

∣

∣

∣

N
∑

j=1

m
∑

i=1

ψ(Sj(xi), Tjai)−ψ(Sj(zi), Tjai)
∣

∣

∣

≤
N

∑

j=1

max
i=1,...,m

̺(Sj(xi), Sj(zi)) · sup
|ε1|≤1,...,|εm|≤1

∥

∥

∥

m
∑

i=1

εiTjai

∥

∥

∥

≤
N

∑

j=1

Lj̺(x, z)‖Tj‖ · ‖a‖ = ϑ̺(x, z)‖a‖,

where

ϑ =
N

∑

j=1

Lj‖Tj‖ < 1.

Thus Uψ ∈ ϑΨ1. Finally, if ψ ∈ Ψ1 is given by (3.8), then

Uψ(x, a) =

N
∑

j=1

n
∑

k=1

fk(Sj(x))λk(Tja).

Hence Uψ ∈ ϑΨ and\
X

ψ(x, Pµ(dx)) =
n

∑

k=1

λk

\
X

fk dPµ =
n

∑

k=1

λk

N
∑

j=1

\
X

fk ◦ Sj d(Tjµ)

=
\
X

Uψ(x, µ(dx)).



Markov operators on vector measures 231

Now we are in a position to state the main result of this section.

Theorem 3.1. If P : M → M is a contractive Feller operator then there

exists µ∗ ∈ M such that µ∗(X) = e and

(3.9) lim
n→∞

‖Pnµ− µ∗‖F = 0 for µ ∈ M with µ(X) = e.

P r o o f. Consider a function ‖ · ‖0 : M → [0,∞] defined by

‖µ‖0 = sup
{
∣

∣

∣

\
X

ψ(x, µ(dx))
∣

∣

∣
: ψ ∈ Ψ

}

,

where Ψ is a fixed subfamily of Ψ1 appearing in the definition of the con-
tractive Feller operator. We claim that

(3.10) ‖µ‖F ≤ ‖µ‖0 for µ ∈ M.

Let µ ∈ M, f ∈ Lip1(X) with ‖f‖∞ ≤ 1, and λ ∈ E∗ be such that
∥

∥

∥

\
X

f dµ
∥

∥

∥
= λ

\
X

f dµ and ‖λ‖ ≤ 1.

Defining ψ : X × E → R by (3.3) and applying Remark 3.1 we obtain
∥

∥

∥

\
X

f dµ
∥

∥

∥
=
\
X

ψ(x, µ(dx)) ≤ ‖µ‖0,

which implies (3.10).
Since 1

ϑ
Uψ ∈ Ψ for ψ ∈ Ψ , according to (3.5) we have

∣

∣

∣

\
X

ψ(x, Pµ(dx))
∣

∣

∣
≤ ϑ

∣

∣

∣

∣

\
X

1

ϑ
Uψ(x, µ(dx))

∣

∣

∣

∣

≤ ϑ‖µ‖0

for ψ ∈ Ψ and µ ∈ M with µ(X) = 0. Hence

(3.11) ‖Pµ‖0 ≤ ϑ‖µ‖0 for µ ∈ M with µ(X) = 0.

Consider now the set

Me = {µ ∈ M : µ(X) = e}.

It follows from Remark 3.2 and inequality (3.10) that the function

(3.12) ‖µ1 − µ2‖0

is a metric in Me. According to (3.2) the operator P maps Me into itself.
Moreover, by (3.11),

(3.13) ‖Pµ1 − Pµ2‖0 ≤ ϑ‖µ1 − µ2‖0 for µ1, µ2 ∈ Me.

Let µ ∈ Me. Inequalities (3.13) and (3.10) imply that (Pnµ) is a Cauchy
sequence with respect to the Fortet–Mourier norm. Let K = ‖µ‖(X). From
(3.1) it follows that Pnµ ∈ MK for all n. Thus according to Corollary 1.1
the sequence (Pnµ) converges in the Fortet–Mourier norm to a measure
µ∗ ∈ M. This convergence and the conditions Pnµ(X) = e imply that
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µ∗(X) = e. From (3.10) and (3.13) it follows that the limiting measure µ∗

does not depend on the initial measure µ ∈ Me.

A Markov operator P : M → M is called asymptotically stable if there
exists a measure µ∗ ∈ M such that µ∗(X) = e, Pµ∗ = µ∗ and (3.9) holds.

Corollary 3.1. If a contractive Feller operator is continuous with re-

spect to the Fortet–Mourier norm then it is asymptotically stable.

The next corollary concerns operators of the form (3.7).

Corollary 3.2. Let N be a positive integer and let Sj : X → X, j =
1, . . . , N , be Lipschitzian mappings with Lipschitz constants Lj. Further , let

Tj : E → E be a linear continuous operator such that (3.6) holds. Then the

operator P : M → M defined by (3.7) is asymptotically stable.

P r o o f. According to Proposition 3.1 and Corollary 3.1 it is sufficient to
prove that P is continuous with respect to the Fortet–Mourier norm ‖ · ‖F .
We show that

‖Pµ‖F ≤ 2‖µ‖F for µ ∈ M.

For, if µ ∈ M, f ∈ Lip1(X) and ‖f‖∞ ≤ 1, then setting J1 = {j : Lj ≤ 1}
and J2 = {j : Lj > 1}, we have

∥

∥

∥

\
X

f dPµ
∥

∥

∥
=

∥

∥

∥

N
∑

j=1

Tj

\
X

f ◦ Sj dµ
∥

∥

∥
≤

N
∑

j=1

‖Tj‖
∥

∥

∥

\
X

f ◦ Sj dµ
∥

∥

∥

=
∑

j∈J1

‖Tj‖
∥

∥

∥

\
X

f ◦ Sj dµ
∥

∥

∥
+

∑

j∈J2

‖Tj‖Lj

∥

∥

∥

∥

\
X

f ◦ Sj

Lj

dµ

∥

∥

∥

∥

≤
∑

j∈J1

‖Tj‖ · ‖µ‖F +
∑

j∈J2

‖Tj‖Lj‖µ‖F ≤ 2‖µ‖F

and the corollary is proved.

Finally, we consider operators acting on the space Mfin defined by (2.10).

Fix e ∈ E. A linear operator P : Mfin → Mfin is called a Markov

operator of the second type if

|Pµ|(X) ≤ |µ|(X) for µ ∈ Mfin

and

Pµ(X) = e for µ ∈ Mfin with µ(X) = e.

Let Ψ2 denote the family of functions ψ : X×E → R satisfying condition
(2.2) and the inequality

|ψ(x, a) − ψ(z, a)| ≤ ̺(x, z)‖a‖ for x, z ∈ X and a ∈ E.
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Clearly, Ψ1 ⊂ Ψ2. Note also that for ψ ∈ Ψ2 and µ ∈ Mfin the integral (2.1)
exists, and if µ(X) = 0 then

∣

∣

∣

\
X

ψ(x, µ(dx))
∣

∣

∣
≤ diam(X)|µ|(X).

A Markov operator P : Mfin → Mfin of the second type is called a
contractive Feller operator of the second type if there exist: a family Ψ ⊂ Ψ2

containing the functions of the form (3.3) where f ∈ Lip1(X), λ ∈ E∗ and
‖λ‖ ≤ 1, a number ϑ ∈ (0, 1), and a mapping U : Ψ → ϑΨ such that (3.5)
holds for ψ ∈ Ψ and µ ∈ Mfin with µ(X) = 0.

Arguing as for Proposition 3.1 we can prove the following.

Proposition 3.2. Let N be a positive integer and let Sj : X → X, j =
1, . . . , N , be Lipschitzian mappings with Lipschitz constants Lj. Further , let

Tj : E → E be a linear and continuous operator. If (3.6) holds then the

formula (3.7) defines a contractive Feller operator P : Mfin → Mfin of the

second type.

Further, arguing as in the proof of Theorem 3.1 and using Theorem 1.2
we also obtain the following result.

Theorem 3.2. If P : Mfin → Mfin is a contractive Feller operator of

the second type then there exists µ∗ ∈ Mfin such that µ∗(X) = e and

(3.14) lim
n→∞

‖Pnµ− µ∗‖F = 0 for µ ∈ Mfin with µ(X) = e.

A Markov operator P : Mfin → Mfin of the second type is called asymp-

totically stable if there exists µ∗ ∈ Mfin such that µ∗(X) = e, Pµ∗ = µ∗

and (3.14) holds.

Clearly, Corollary 3.1 remains valid for contractive Feller operators of
the second type, and Corollary 3.2 can be strengthened as follows.

Corollary 3.3. Let N be a positive integer and let Sj : X → X, j =
1, . . . , N , be Lipschitzian mappings with Lipschitz constants Lj. Further ,
let Tj : E → E be a linear and continuous operator. If (3.6) holds and

P : M → M is defined by (3.7), then there exists a measure µ∗ ∈ M such

that |µ∗|(X) <∞, µ∗(X) = e, Pµ∗ = µ∗ and (3.9) is satisfied.

Corollaries 3.2 and 3.3 extend the well known criteria of asymptotic
stability of Iterated Function Systems acting on real-valued measures [2],
[4], [5]. For these measures the operator (3.7) has the form

(3.15) Pµ(B) =

N
∑

j=1

pjµ(S−1
j (B))

where p1, . . . , pN are nonnegative numbers such that
∑N

j=1 pj = 1. In this
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case Me is replaced by the family of probability measures and condition
(3.6) reduces to

∑N

j=1 pjLj < 1.
Note that due to the special properties of probabilistic measures (e.g.

Prokhorov criterion for compactness) the asymptotic stability of the opera-
tor (3.15) can be proved not only for compact X (see for example [7]).
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