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On certain subclasses of multivalently meromorphic
close-to-convex maps

by K. S. PADMANABHAN (Madras)

Abstract. Let M, denote the class of functions f of the form f(z) = 1/zF +
Yo aiz®, p a positive integer, in the unit disk £ = {|z] < 1}, f being regular in 0 < |z
< 1. Let Lnp(e) = {f : f € Mp, Re{—(zPTL/p)(D"f)'} > a}, a < 1, where D" f =
(2"P£(2))™ /(2Pnl). Results on Ln p(a) are derived by proving more general results on
differential subordination. These results reduce, by putting p = 1, to the recent results of
Al-Amiri and Mocanu.

1. Introduction. Let M, denote the class of meromorphic functions f
in the unit disk £ = {z : |z| < 1} having only a pole of order p at z = 0, of
the form

1 o
(1) flz) = > + Z apz®,  p a positive integer.
k=0

We define

D"f(2) = gt +/C)

where n is a non-negative integer and * denotes Hadamard product. It can
be verified that
VNN CLs (AR
D f(Z) - Zp’I’L!
where f(™) denotes the nth derivative of f in the usual sense. Let L, ,(«a),
a < 1, denote the class of functions f € M), such that

(2) Re{ _z:1 (D”f)’} > a.

)
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Let

L(f)(z) = C;j’%fl §tcf(t) dt, Rec> 0.

0
For p =1, H. Al-Amiri and P. T. Mocanu [1] have shown that L, 41 1(a) C
Ly, 1(r), > a;and I.[L, ()] C Ly,1(d), 6 > a. Furthermore, they proved
that if f € M; and Rec > 0 then

Re[—22(D" f())] > a — (1 — a) Re% — L(f) € Lna(a).

Indeed they have proved certain more general results on differential subor-
dination from which the above results are deduced.

In this paper, we obtain analogous results for L, ,(a) when p is any
positive integer and the results obtained by Al-Amiri and Mocanu [1] can
be deduced from our results when we put p = 1. We also establish general
results on differential subordination from which the results of Al-Amiri and
Mocanu are deducible.

2. Preliminary definitions and lemmas

DErFINITION 1. If f and ¢ are analytic in E and ¢ is univalent in F,
then f is said to be subordinate to g, written f < g, if f(0) = g(0) and

f(E) Cyg(E).

LEMMA A [3, 4]. Let p(z) = p(0) + ppz™ + ... be analytic in E and q
analytic and univalent in E. If p is not subordinate to the analytic function q
in E, then there exist points zg € E and (o € OF such that (1) p(z0) = q({o),
(i1) zop'(20) = mCoq’ (o), where m > n.

LEMMA B [3, 4]. Let the function H : C* — C satisfy Re H(is,t) < 0
for real s and t < —n(1 + s%)/2, where n is a positive integer. If p(z) =
1+ pn2™ + ... is analytic in E and Re H(p(z),zp'(2)) > 0 for z € E, then
Rep(z) >0 in E.

DEFINITION 2. Let z € E, t > 0. A function L(z,t) is called a subor-
dination chain if L(-,t) is analytic and univalent on F for all t > 0, L(z,-)
is continuously differentiable on [0, 00) for each z € E, and L(z,s) < L(z,1)
for 0 <s <.

LeMMmA C [6]. The function L(z,t) = a1(t)z + ..., with a1(t) # 0 and
lim;_ o |a1(t)| = o0, is a subordination chain if and only if

R > (.
Re{z z/ 75]>0 forze Eandt>0
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LEMMA D [7]. Let o, € R, a > 0, g starlike univalent in E, and h
analytic in E with h(0) =1 and Reh > 0 in E. Define

Bla,8) = {F: P(2) = ({hogewesrar) ", s e ).
0

Then G € B(a, 3), where

|: Stc 1Fa+z,3 d } 1/(a+iB)

, c€C, Rec>0.

REMARK. F € B(a, () is univalent and analytic in E and is called a
Bazilevié function. The class B(1,0) consists of close-to-convex functions
in E.

DEFINITION 3. Let H(p(z),2p'(2)) < h(z) be a first order differen-
tial subordination. Then a univalent function ¢ is called its dominant if
p < g for all analytic functions p that satisfy the differential subordination.
A dominant § is called the best dominant if § < g for all dominants ¢g. For
the general theory of differential subordination and its applications we refer
to [5].

LEMMA 1. Let q be a convexr univalent function in E and Rec > 0. Let
+1
2q'(2),

where p is a positive integer. If p(z) = 1+ a,412PT! + ... is analytic in E
and

1
p(z) + Ezp’(z) < h(z),
then p(z) < q(z) and q is the best dominant.

Proof. We can assume that ¢ is analytic and convex on E without
any loss of generality, because otherwise we replace ¢(z) by ¢.(z) = q(rz),
0 < r < 1. These functions satisfy the conditions of the lemma on E. We
can prove that p.(z) < ¢.(z), which enables us to obtain p < ¢ on letting
r — 1. Consider

1+t
L(z,t) =q(z) + uzq’(z), z€ E, t>0.
c
Then
OL  zq'(z) oL p+1+4+t p+1+t,
% e 5—Q(Z)+T2q (Z)+TQ(Z)-
We have

Re <Z8L/8z

OL/ot > =Refe+(p+1+0)(1+2¢"(2)/¢'(2))} >0,



254 K. S. Padmanabhan

since ¢ is convex and Rec > 0. Hence L(z,t) is a subordination chain by
Lemma C. We have L(z,0) = h(z) < L(z,t) for t > 0 and L((,t) € h(E)
for [(| = 1 and ¢ > 0. If p is not subordinate to ¢, then by Lemma A,
there exist points zg € E, (o € OF and m > p + 1 such that p(zg) = q(¢p),
z0p'(z0) = moq'(¢p) and so

1 m
p(e0) + 2200 (0) = alCo) + o' () = LiCom —p 1) & h(E),
which contradicts our assumption that p(z)+2zp’(z) < h(z). So we conclude
that p < ¢. Consider p(z) = q(2P*!) to see that ¢ is the best dominant.

LEMMA 2. Let

(3) — (p—i—l)Q—l-’C’Q—’(p—i—l)Q—CQ’
4(p+1)Rec ’

If h is analytic in E with h(0) =1 and

" ol 20) .,

and if p(2) = 1+ ap12PTH + .. s cmalytzc i E and satisfies

Rec > 0.

(5) ()+1nﬂ@<h@%

then p(2) < q(2), where (=) is the solution of

(6) a2)+ g ) = h),  q0) =1,
given, by

(7) a(z) = ° [/ (r) .

(p + 1)zc/(p+1)
Also q is the best dominant of (5).

Proof. Using Lemma 1, we see that it is sufficient to show that ¢ is
convex. First we note that w < 1/2. To see this we observe that Rec > 0
implies [c—(p+1)| < |c+(p+1)|. Multiplying by |c—(p+1)| and simplifying,
we get

P+ 1)+ e = |(p+1)* = *| <2Rec- (p+1)
whence w < 1/2.

If c =p+1, then w = 1/2, and (4) implies that h is close-to-convex
and, by Lemma D, (7) implies that ¢ is also close-to-convex. So ¢'(z) # 0
for z € E and the function

14+ = =14+ Piz+ P22 +...
q'(2)
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is analytic in F, with P(0) = 1. From (6), on differentiation, we get
(p+1)P(2) + c=ch/(2)/d (2).

Again logarithmic differentiation and substitution for z¢”(z)/q’(z) in terms
of P(z) yields

, c B zh"(z)
(8) P(2)+zP (z)/(P(z)+p+1>—1+ W)
Now let
9) H(u,v):u+u+v = +w
Pt
Then

Re H(is,t) = Re {’iS + % +w}
1S+ o
Re{t(p+ (@~ (p + )is) +w}
lc+ (p+ 1)is|?
_ (p+DtRec
e+ (p+1)isf?
From (8), (9) and (4) we obtain

(10) ReH(P(z),zP'(z)) >0, z€E.
We proceed to show that Re H (is,t) < 0 for all real s and t < —(1+s%)/2:
(p+1)tRec

(11) ReH(is,t) = —|c (p £ DisP

1 of p+1 9
S‘\c+<p+1>z's\2{s< g Ree— (1) “’>

1
—2s(p+ 1)w~Imc+Rec'p; —w\c\z}.

For w given by (3), the coefficient of s of the quadratic expression in s in
braces is positive. To check this, put ¢ = ¢1+icy so that Rec = ¢1, Imc = ¢s.
We have to verify that

(P+1)* +c* = (p+1)* — |

> 2 NHw =
c1 (p+Dw 2o

This inequality will hold if
23 +|(p+ 1) = > (p+1)° +]c| = (p+ 1)* + ¢} +c3,
that is, if
((p+1)? = > (p+ 1)* = Rec?,

which is obviously true. Further, the quadratic expression in s is a perfect
square for the assumed value of w. So from (11) we see that Re H (is,t) < 0.
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Lemma B enables us to conclude from (10) that Re P(z) > 0, z € E,
that is,

1

Re{1+2q,(z)}>0, z € FE.
7 (2)

So ¢ is convex and the proof is complete.

[

REMARK. If ¢ >0, then w =7+~ for 0 <c<p+1, and w

_ ptl
2(p+1) o
c>p+1.

o for

3. Theorems and their proofs

THEOREM 1. Let q be a convex analytic function in E with q(0) = 1 and
let

h(z) = q(2) + (p+1)zq'(2)

,  m a positive integer.

n—+1
If f € M, and
" 1
Df(z)zw*f@%
then
Zp+1 n+1 p\/ Zp+1 n £\/
_T(D Y <h = — (D"f) <4q

and the latter subordination is best possible.

Proof. One can verify without difficulty the relation

(12) (n+1)D"'f =2(D"f) + (n+p+1)D"f.
Set P(z) = —%(D”f)'. Differentiation gives

(13) pzP'(z) = p(p+ 1)P(2) — 22D f)".
Differentiating (12) we obtain

(14) (n+1)(D"Ff) = (n+p+2)(D"f) + (D" f)".
Multiplying (14) by —2P*! and using (13) gives

(15) P = =DM Y < he),

Moreover, P(0) = 1 and P’(0) = 0. Indeed, P(z) = 1
Py122PT? + ... By Lemma 1, we conclude that P(z) < ¢
best dominant.

+ Ppyq2Ptt +
z) and ¢ is the

THEOREM 2. Let h be analytic in E with

h(0)=1, Re <1 n Z;;;;i?) > —w,
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where

:{(n—l—l)/(Q(p—l—l)), n=0,1,...,p—1,
(p+1)/(2(n+1)), n=p,

n being a positive integer. If f € My, then

pan 41 v pan ,
—T(D” [l =<h = - (D"f) <4q,
where q is the solution of
2q' (2
o)+ o+ DL ), =1

In fact, q is given by

S t(”+1)/(p+1)—1h(t) dt
0

- n+1
1) = DD

and it is the best dominant.

Proof. The proof is immediate from Lemma 2, with ¢ = n + 1, if we
note that the value of w for positive ¢ is given by the remark following the
proof of Lemma, 2.

COROLLARY 1. Ly 41 p(a) C Ly, (1) for a < 1, where the best possible
value of r is given by

1
2(1 — a) t(n—p)/(p+1)
= =20—1+ —-—~ )\ ——— .
r=r(a,n)=2a—1+ | (n+ )§ 151 dt > «
Proof. Choose
1+ 2(2a—1)
h(z) = ————=
(2) 1+ 2
in Theorem 2. Then h is convex and
o n + 1 < (n—p)/(p+1) 1 + (20[ — 1)t
(16)  q(2) = 5 7 D)7 |t —

0

Since Re h(z) > «, the theorem asserts that

Lp+1 Lp+l
Re{—T(D"Hf)’} > = — ; (D™ f) < q(z).

But ¢ is convex as observed in Lemma 2, has real coefficients in its Taylor
expansion and is real for real z. Hence ¢(F) is symmetric with respect to
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the real and thus Req(z) > ¢(1) for z € E. Moreover,

1
g(1) = "L [ fmrosn 1+@a—1)t
p+10 1+1¢
1
2(1 — a) t(n—p)/(p+1)
=2a0—-—14+ —-— HN\——dt
“ * p+1(n+ Q 1+¢
=r, say.
Evidently
1
2(1 — a) t(n—p)/(p+1)

0
So, if f € Lyp41,p(a) then

o (p+1)
Re{— P (D”Jrlf)'} > min Req(z) = ¢(1) =r,

|z|<1
which means f € L, ,(r).
REMARK. For n =0,
2(1 — ) ¢ /(D1
p+1 5 1+1¢

r=20—1+ dt.

Denoting the integral by I(p—}rl), we have r = 0 if

2a—1+2<1_0‘)1< = ):0,

p+1 p+1

that is, if

Denoting this value of a by «g, we find L, ,(ag) C Lo p(0), m > 0. Now

Ly ,(0) consists of the functions f for which

Re{— f’} > 0,
p

since DOf = 27P(1 — 2)"' % f(2) = f(2). So Lo,(0) is a subclass of the
class of multivalently close-to-convex meromorphic functions in the unit disk
introduced by A. E. Livingston [2], the associated meromorphically starlike

function being —1/2P.

THEOREM 3. Let h be defined on E by

he) = q(z) + 2

/
p—— (2),
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where q is convexr univalent in E, h(0) = 1, and ¢ is a complex number with
Rec>p—1. If fe M, and F = I.(f), where

c—p+1¢.,
(17) L(f)(2) = — 35— \tF () dt,
0

then
Sp+1 L+l
(D"f(2)) < h(z) = —

(D"F(2)) < q(2)
and the subordination is sharp.

Proof. From (17) we get

(18) (c+1D)F(2) +2F'(2) = (c—p+1)f(2).
If we use the facts D" (zF’) = z(D"F)’ and
(19) 2(D"F) = (n+1)D""'F — (n+p+1)D"F,

then (18) yields
(c+1)D"F + (n+1)D""'F —(n+p+1)D"F = (c—p+1)D"f

or
(20) (c—n—p)D"F+ (n+1)D""'F = (c—p+1)D"f.
Set

P(z) = — 5 (D"FY
so that
(21) pP'(z) = —(p+ 1)zP(D"F) — 2*TY(D"F)".
Differentiating (19) and using (21) we obtain
(22) pzP'(2) + p(n +1)P(2) = —(n + 1)2PTH (DT F).

Differentiating (20) and using (21), we can rewrite (22) in the form
2/ (2) s :

23 ———— 4+ P(z) = ——(D"f) < h(2).
(2) P = = (D) < h(2)
Since P(z) = 1+ Pi2P*! + ... application of Lemma 1 shows that (23)
implies P(z) < ¢(z) and ¢ is the best dominant.

THEOREM 4. Let

(P+1*+ 12— [(p+1)* — / :
= R >0 = C— 1.

w Ip+ DRed , ec , C=Cc—p—+

Let h be analytic in E and satisfy

h(0)=1, Re {1 + Z]];,/;iz))} > .
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If fe M, and F =1.(f) is defined by (17), then

Pran ~pt+1
(D"f(2)) < h(z) = —

- (D"F() < a(2),

where q is the solution of the differential equation

p+1
q(z) + mzq’(z) =h(z), q(0)=1,
given by
_ c—ptl [ fe-p 1)/ (p41)-1
(24) U2) = Dy S [Pt/ @ED=1h 1) .

0
Moreover, q is the best dominant.

Proof. Setting P(z) = —%(D”F)’ as in the proof of Theorem 3, we
find
2P'(2) P
V)L p)y = — 2 (DMFY < h(2).
S P(e) = =T (D"F) < ()

An application of Lemma 2 with ¢ replaced by ¢/ = ¢ — p + 1 gives
P(z) < q(z), where ¢ is given by (24). The proof is complete.

COROLLARY. If a <1, Rec>p—1, and I. is defined by (17), then
Ie(Lyp(a)) C Ly p(6),

where
0= ‘nTlinl Req(z) = d(o, ¢)
and
- c—ptl [ yle—p1)/@en [ L+ (20 = Dt
(25) q(2) = (p+ 1)Z(c—p+1)/(p+1) (S)t 1+t dt,
and the result is sharp. Also if ¢ is real and ¢ > p — 1, then
1
2(1 — ) tle=p+1)/(p+1)—1
2 ) =q(1)=2a -1+ —F(c— 1 dt.
) S(ae) =) =20~ 1+ = e —p D)
Proof. If we choose
1+ 2(2a—1)
h(z) = ————=
(2) T2

in the theorem, then h is convex and we deduce from the theorem that

Zp+1 N , Zp+1 . ,
Re{— (0 (2) } sa = 2 (DFE) <),

b
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where ¢ is given by (25), and so I.(Ly () C Ly p(8). If ¢ is real and
¢ > p — 1, then observing that ¢(FE) is convex and symmetric with respect
to the real axis, we get Req(z) > d = ¢(1) given by (26).

REMARK. If we take ¢ = (3p—1)/2, then the integral in (26) reduces to

1 +—1/2

T
dt—E.
We have 6 =2a— 1+ (1 —a)n/2,and 0 =0 if a = —(m —2)/(4 — m). If

F A T —2
ref -y} > -T2

then

where

_ptl ! [eCP=D/2 (1 a.

F(z) 5 LGz )

THEOREM 5. Let f € My, and let I.(f) be defined by (17). Let o < 1. If

1
c—p+1

Re{—zjl (D”f)’} >a—(1-a)Re

then I.(f) € Ly p(a).

Proof. Denote I.(f) by F and put

—2PHY (D" F(2))
p

(27) =(1-a)P(z)+a.

Using (20) and (12) we obtain after differentiation and simplification
(28) (c+2(D"FY + 2(D"F)" = (c— p+ 1)(D"f).
Multiplying both sides of (28) by 2P™! and using (27) we obtain

{1 —a)P(z) + atpc+2) +plp+ D{(1 — a)P(z) + a}
— (1 —a)pzP'(2)

= (c—p+ 1) (D"f),



262 K. S. Padmanabhan

or

Lt ;L 2P'(2)
(D™ f) —(1—a)P(z)+a+(1—a)Hﬁ.

So the inequality in the assumptions of the theorem becomes

(29) -

11—«
c—p+1
Since P(z) = 1+ P,112P™ + ..., in order to show that (30) implies that
Re P(z) > 0 in F, it suffices to prove the inequality

(30) Re {(1 —a)P(z) + (2P'(2) + 1)} >0, z€E.

1—
Re{(l —Oé)iS-F Tﬁ-l(t—i_ 1)} < 0
for all real s and
1
t< -1+ < (1482,

by Lemma B. Since Re(c — p + 1) > 0, the inequality holds and so Re P(z)
> 0. In other words,

Re{—zjl (D”F)’} =Re(l — a)P(2) +a > a,

or F' € L,, p(«). The proof is complete.

REMARK. If a =0, we conclude that

s
Re{— (D"f)’} > —Re

D c—p+1 P

If moreover n = 0 and ¢ = p, we obtain the result: For f € M,

pan pan
Re{— f'(z)} > -1 = Re{— F’(z)} >0,
p p

where F(z) = 2P~ (St f(t) dt.

:#Im{— uWFy}>0.
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