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Abstract. Let Mp denote the class of functions f of the form f(z) = 1/z
p +

∑
∞

k=0 akz
k, p a positive integer, in the unit disk E = {|z| < 1}, f being regular in 0 < |z|

< 1. Let Ln,p(α) = {f : f ∈ Mp, Re{−(z
p+1/p)(Dnf)′} > α}, α < 1, where Dnf =

(zn+pf(z))(n)/(zpn!). Results on Ln,p(α) are derived by proving more general results on
differential subordination. These results reduce, by putting p = 1, to the recent results of
Al-Amiri and Mocanu.

1. Introduction. Let Mp denote the class of meromorphic functions f
in the unit disk E = {z : |z| < 1} having only a pole of order p at z = 0, of
the form

(1) f(z) =
1

zp
+

∞
∑

k=0

akzk, p a positive integer.

We define

Dnf(z) =
1

zp(1 − z)n+1
∗ f(z),

where n is a non-negative integer and ∗ denotes Hadamard product. It can
be verified that

Dnf(z) =
(zn+pf(z))(n)

zpn!
,

where f (n) denotes the nth derivative of f in the usual sense. Let Ln,p(α),
α < 1, denote the class of functions f ∈ Mp such that

(2) Re

{

−zp+1

p
(Dnf)′

}

> α.
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Let

Ic(f)(z) =
c − p + 1

zc+1

z\
0

tcf(t) dt, Re c > 0.

For p = 1, H. Al-Amiri and P. T. Mocanu [1] have shown that Ln+1,1(α) ⊂
Ln,1(r), r > α; and Ic[Ln,1(α)] ⊂ Ln,1(δ), δ > α. Furthermore, they proved
that if f ∈ M1 and Re c > 0 then

Re[−z2(Dnf(z))′] > α − (1 − α)Re
1

c
⇒ Ic(f) ∈ Ln,1(α).

Indeed they have proved certain more general results on differential subor-
dination from which the above results are deduced.

In this paper, we obtain analogous results for Ln,p(α) when p is any
positive integer and the results obtained by Al-Amiri and Mocanu [1] can
be deduced from our results when we put p = 1. We also establish general
results on differential subordination from which the results of Al-Amiri and
Mocanu are deducible.

2. Preliminary definitions and lemmas

Definition 1. If f and g are analytic in E and g is univalent in E,
then f is said to be subordinate to g, written f ≺ g, if f(0) = g(0) and
f(E) ⊂ g(E).

Lemma A [3, 4]. Let p(z) = p(0) + pnzn + . . . be analytic in E and q
analytic and univalent in E. If p is not subordinate to the analytic function q
in E, then there exist points z0 ∈ E and ζ0 ∈ ∂E such that (i) p(z0) = q(ζ0),
(ii) z0p

′(z0) = mζ0q
′(ζ0), where m ≥ n.

Lemma B [3, 4]. Let the function H : C
2 → C satisfy ReH(is, t) ≤ 0

for real s and t ≤ −n(1 + s2)/2, where n is a positive integer. If p(z) =
1 + pnzn + . . . is analytic in E and ReH(p(z), zp′(z)) > 0 for z ∈ E, then

Re p(z) > 0 in E.

Definition 2. Let z ∈ E, t ≥ 0. A function L(z, t) is called a subor-

dination chain if L(·, t) is analytic and univalent on E for all t ≥ 0, L(z, ·)
is continuously differentiable on [0,∞) for each z ∈ E, and L(z, s) ≺ L(z, l)
for 0 ≤ s < l.

Lemma C [6]. The function L(z, t) = a1(t)z + . . . , with a1(t) 6= 0 and

limt→∞ |a1(t)| = ∞, is a subordination chain if and only if

Re

[

z
∂L

∂z

/

∂L

∂t

]

> 0 for z ∈ E and t ≥ 0.
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Lemma D [7]. Let α, β ∈ R, α > 0, g starlike univalent in E, and h
analytic in E with h(0) = 1 and Reh > 0 in E. Define

B(α, β) =
{

F : F (z) =
(

z\
0

h(t)gα(t)tiβ−1 dt
)1/(α+iβ)

, z ∈ E
}

.

Then G ∈ B(α, β), where

G(z) =
[

z−c
z\
0

tc−1Fα+iβ(t) dt
]1/(α+iβ)

, c ∈ C, Re c > 0.

Remark. F ∈ B(α, β) is univalent and analytic in E and is called a
Bazilevič function. The class B(1, 0) consists of close-to-convex functions
in E.

Definition 3. Let H(p(z), zp′(z)) ≺ h(z) be a first order differen-
tial subordination. Then a univalent function q is called its dominant if
p ≺ q for all analytic functions p that satisfy the differential subordination.
A dominant q is called the best dominant if q ≺ q for all dominants q. For
the general theory of differential subordination and its applications we refer
to [5].

Lemma 1. Let q be a convex univalent function in E and Re c > 0. Let

h(z) = q(z) +
p + 1

c
zq′(z),

where p is a positive integer. If p(z) = 1 + ap+1z
p+1 + . . . is analytic in E

and

p(z) +
1

c
zp′(z) ≺ h(z),

then p(z) ≺ q(z) and q is the best dominant.

P r o o f. We can assume that q is analytic and convex on E without
any loss of generality, because otherwise we replace q(z) by qr(z) = q(rz),
0 < r < 1. These functions satisfy the conditions of the lemma on E. We
can prove that pr(z) ≺ qr(z), which enables us to obtain p ≺ q on letting
r → 1. Consider

L(z, t) = q(z) +
p + 1 + t

c
zq′(z), z ∈ E, t ≥ 0.

Then

∂L

∂t
=

zq′(z)

c
,

∂L

∂z
= q′(z) +

p + 1 + t

c
zq′′(z) +

p + 1 + t

c
q′(z).

We have

Re

(

z∂L/∂z

∂L/∂t

)

= Re{c + (p + 1 + t)(1 + zq′′(z)/q′(z))} > 0,
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since q is convex and Re c > 0. Hence L(z, t) is a subordination chain by
Lemma C. We have L(z, 0) = h(z) ≺ L(z, t) for t > 0 and L(ζ, t) 6∈ h(E)
for |ζ| = 1 and t ≥ 0. If p is not subordinate to q, then by Lemma A,
there exist points z0 ∈ E, ζ0 ∈ ∂E and m ≥ p + 1 such that p(z0) = q(ζ0),
z0p

′(z0) = mζ0q
′(ζ0) and so

p(z0) +
1

c
z0p

′(z0) = q(ζ0) +
m

c
ζ0q

′(ζ0) = L(ζ0,m − p − 1) 6∈ h(E),

which contradicts our assumption that p(z)+ 1
czp′(z) ≺ h(z). So we conclude

that p ≺ q. Consider p(z) = q(zp+1) to see that q is the best dominant.

Lemma 2. Let

(3) w =
(p + 1)2 + |c|2 − |(p + 1)2 − c2|

4(p + 1)Re c
, Re c > 0.

If h is analytic in E with h(0) = 1 and

(4) Re

{

1 +
zh′′(z)

h′(z)

}

> −w,

and if p(z) = 1 + ap+1z
p+1 + . . . is analytic in E and satisfies

(5) p(z) +
1

c
zp′(z) ≺ h(z),

then p(z) ≺ q(z), where q(z) is the solution of

(6) q(z) +
p + 1

c
zq′(z) = h(t), q(0) = 1,

given by

(7) q(z) =
c

(p + 1)zc/(p+1)

z\
0

tc/(p+1)−1h(t) dt.

Also q is the best dominant of (5).

P r o o f. Using Lemma 1, we see that it is sufficient to show that q is
convex. First we note that w ≤ 1/2. To see this we observe that Re c > 0
implies |c−(p+1)| < |c+(p+1)|. Multiplying by |c−(p+1)| and simplifying,
we get

(p + 1)2 + |c|2 − |(p + 1)2 − c2| < 2Re c · (p + 1)

whence w ≤ 1/2.

If c = p + 1, then w = 1/2, and (4) implies that h is close-to-convex
and, by Lemma D, (7) implies that q is also close-to-convex. So q′(z) 6= 0
for z ∈ E and the function

P (z) = 1 +
zq′′(z)

q′(z)
= 1 + P1z + P2z

2 + . . .
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is analytic in E, with P (0) = 1. From (6), on differentiation, we get

(p + 1)P (z) + c = ch′(z)/q′(z).

Again logarithmic differentiation and substitution for zq′′(z)/q′(z) in terms
of P (z) yields

(8) P (z) + zP ′(z)
/

(

P (z) +
c

p + 1

)

= 1 +
zh′′(z)

h′(z)
.

Now let

(9) H(u, v) = u +
v

u + c
p+1

+ w.

Then

ReH(is, t) = Re

{

is +
t

is + c
p+1

+ w

}

= Re

{

t(p + 1)(c − (p + 1)is)

|c + (p + 1)is|2
+ w

}

=
(p + 1)t Re c

|c + (p + 1)is|2
+ w.

From (8), (9) and (4) we obtain

(10) ReH(P (z), zP ′(z)) > 0, z ∈ E.

We proceed to show that Re H(is, t) ≤ 0 for all real s and t ≤ −(1+s2)/2:

ReH(is, t) =
(p + 1)t Re c

|c + (p + 1)is|2
+ w(11)

≤ −
1

|c + (p + 1)is|2

{

s2

(

p + 1

2
Re c − (p + 1)2w

)

− 2s(p + 1)w · Im c + Re c ·
p + 1

2
− w|c|2

}

.

For w given by (3), the coefficient of s2 of the quadratic expression in s in
braces is positive. To check this, put c = c1+ic2 so that Re c = c1, Im c = c2.
We have to verify that

c1 > 2(p + 1)w =
(p + 1)2 + |c|2 − |(p + 1)2 − c2|

2c1
.

This inequality will hold if

2c2
1 + |(p + 1)2 − c2| > (p + 1)2 + |c| = (p + 1)2 + c2

1 + c2
2,

that is, if

|(p + 1)2 − c2| > (p + 1)2 − Re c2,

which is obviously true. Further, the quadratic expression in s is a perfect
square for the assumed value of w. So from (11) we see that ReH(is, t) ≤ 0.
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Lemma B enables us to conclude from (10) that Re P (z) > 0, z ∈ E,
that is,

Re

{

1 +
zq′′(z)

q′(z)

}

> 0, z ∈ E.

So q is convex and the proof is complete.

Remark. If c > 0, then w = c
2(p+1) for 0 < c ≤ p + 1, and w = p+1

2c for
c > p + 1.

3. Theorems and their proofs

Theorem 1. Let q be a convex analytic function in E with q(0) = 1 and

let

h(z) = q(z) +
(p + 1)zq′(z)

n + 1
, n a positive integer.

If f ∈ Mp and

Dnf(z) =
1

zp(1 − z)n+1
∗ f(z),

then

−
zp+1

p
(Dn+1f)′ ≺ h ⇒ −

zp+1

p
(Dnf)′ ≺ q

and the latter subordination is best possible.

P r o o f. One can verify without difficulty the relation

(12) (n + 1)Dn+1f = z(Dnf)′ + (n + p + 1)Dnf.

Set P (z) = − zp+1

p
(Dnf)′. Differentiation gives

(13) pzP ′(z) = p(p + 1)P (z) − zp+2(Dnf)′′.

Differentiating (12) we obtain

(14) (n + 1)(Dn+1f)′ = (n + p + 2)(Dnf)′ + z(Dnf)′′.

Multiplying (14) by −zp+1 and using (13) gives

(15)
zP ′

n + 1
+ P (z) = −

zp+1

p
(Dn+1f)′ ≺ h(z).

Moreover, P (0) = 1 and P ′(0) = 0. Indeed, P (z) = 1 + Pp+1z
p+1 +

Pp+2z
p+2 + . . . By Lemma 1, we conclude that P (z) ≺ q(z) and q is the

best dominant.

Theorem 2. Let h be analytic in E with

h(0) = 1, Re

(

1 +
zh′′(z)

h′(z)

)

> −w,
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where

w =

{

(n + 1)/(2(p + 1)), n = 0, 1, . . . , p − 1,
(p + 1)/(2(n + 1)), n ≥ p,

n being a positive integer. If f ∈ Mp, then

−
zp+1

p
(Dn+1f)′ ≺ h ⇒ −

zp+1

p
(Dnf)′ ≺ q,

where q is the solution of

q(z) + (p + 1)
zq′(z)

n + 1
= h(z), q(0) = 1.

In fact , q is given by

q(z) =
n + 1

(p + 1)z(n+1)/(p+1)

z\
0

t(n+1)/(p+1)−1h(t) dt

and it is the best dominant.

P r o o f. The proof is immediate from Lemma 2, with c = n + 1, if we
note that the value of w for positive c is given by the remark following the
proof of Lemma 2.

Corollary 1. Ln+1,p(α) ⊂ Ln,p(r) for α < 1, where the best possible

value of r is given by

r = r(α, n) = 2α − 1 +
2(1 − α)

p + 1
(n + 1)

1\
0

t(n−p)/(p+1)

1 + t
dt > α.

P r o o f. Choose

h(z) =
1 + z(2α − 1)

1 + z

in Theorem 2. Then h is convex and

(16) q(z) =
n + 1

(p + 1)z(n+1)/(p+1)

z\
0

t(n−p)/(p+1) 1 + (2α − 1)t

1 + t
dt.

Since Re h(z) > α, the theorem asserts that

Re

{

−
zp+1

p
(Dn+1f)′

}

> α ⇒ −
zp+1

p
(Dnf)′ ≺ q(z).

But q is convex as observed in Lemma 2, has real coefficients in its Taylor
expansion and is real for real z. Hence q(E) is symmetric with respect to
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the real and thus Re q(z) > q(1) for z ∈ E. Moreover,

q(1) =
n + 1

p + 1

1\
0

t(n−p)/(p+1) 1 + (2α − 1)t

1 + t
dt

= 2α − 1 +
2(1 − α)

p + 1
(n + 1)

1\
0

t(n−p)/(p+1)

1 + t
dt

= r, say.

Evidently

r > 2α − 1 +
2(1 − α)

p + 1
(n + 1)

1\
0

t(n−p)/(p+1)

2
dt = α.

So, if f ∈ Ln+1,p(α) then

Re

{

−
z(p+1)

p
(Dn+1f)′

}

> min
|z|<1

Re q(z) = q(1) = r,

which means f ∈ Ln,p(r).

Remark. For n = 0,

r = 2α − 1 +
2(1 − α)

p + 1

1\
0

t1/(p+1)−1

1 + t
dt.

Denoting the integral by I
(

1
p+1

)

, we have r = 0 if

2α − 1 +
2(1 − α)

p + 1
I

(

1

p + 1

)

= 0,

that is, if

2α

(

1 −
I(1/(p + 1))

p + 1

)

= 1 −
2

p + 1
I

(

1

p + 1

)

.

Denoting this value of α by α0, we find Lm,p(α0) ⊂ L0,p(0), m > 0. Now
L0,p(0) consists of the functions f for which

Re

{

−
zp+1

p
f ′

}

> 0,

since D0f = z−p(1 − z)−1 ∗ f(z) = f(z). So L0,p(0) is a subclass of the
class of multivalently close-to-convex meromorphic functions in the unit disk
introduced by A. E. Livingston [2], the associated meromorphically starlike
function being −1/zp.

Theorem 3. Let h be defined on E by

h(z) = q(z) +
p + 1

c − p + 1
zq′(z),



Multivalently meromorphic maps 259

where q is convex univalent in E, h(0) = 1, and c is a complex number with

Re c > p − 1. If f ∈ Mp and F = Ic(f), where

(17) Ic(f)(z) =
c − p + 1

zc+1

z\
0

tcf(t) dt,

then

−
zp+1

p
(Dnf(z))′ ≺ h(z) ⇒ −

zp+1

p
(DnF (z))′ ≺ q(z)

and the subordination is sharp.

P r o o f. From (17) we get

(18) (c + 1)F (z) + zF ′(z) = (c − p + 1)f(z).

If we use the facts Dn(zF ′) = z(DnF )′ and

(19) z(DnF )′ = (n + 1)Dn+1F − (n + p + 1)DnF,

then (18) yields

(c + 1)DnF + (n + 1)Dn+1F − (n + p + 1)DnF = (c − p + 1)Dnf

or

(20) (c − n − p)DnF + (n + 1)Dn+1F = (c − p + 1)Dnf.

Set

P (z) = −
zp+1

p
(DnF )′

so that

(21) pP ′(z) = −(p + 1)zp(DnF )′ − zp+1(DnF )′′.

Differentiating (19) and using (21) we obtain

(22) pzP ′(z) + p(n + 1)P (z) = −(n + 1)zp+1(Dn+1F )′.

Differentiating (20) and using (21), we can rewrite (22) in the form

(23)
zp′(z)

c − p + 1
+ P (z) = −

zp+1

p
(Dnf)′ ≺ h(z).

Since P (z) = 1 + P1z
p+1 + . . . , application of Lemma 1 shows that (23)

implies P (z) ≺ q(z) and q is the best dominant.

Theorem 4. Let

w =
(p + 1)2 + |c′|2 − |(p + 1)2 − c′2|

4(p + 1)Re c′
, Re c′ > 0, c′ = c − p + 1.

Let h be analytic in E and satisfy

h(0) = 1, Re

{

1 +
zh′′(z)

h′(z)

}

> −w.



260 K. S. Padmanabhan

If f ∈ Mp and F = Ic(f) is defined by (17), then

−
zp+1

p
(Dnf(z))′ ≺ h(z) ⇒ −

zp+1

p
(DnF (z))′ ≺ q(z),

where q is the solution of the differential equation

q(z) +
p + 1

c − p + 1
zq′(z) = h(z), q(0) = 1,

given by

(24) q(z) =
c − p + 1

(p + 1)z(c−p+1)/(p+1)

z\
0

t(c−p+1)/(p+1)−1h(t) dt.

Moreover , q is the best dominant.

P r o o f. Setting P (z) = − zp+1

p (DnF )′ as in the proof of Theorem 3, we
find

zP ′(z)

c − p + 1
+ P (z) = −

zp+1

p
(DnF )′ ≺ h(z).

An application of Lemma 2 with c replaced by c′ = c − p + 1 gives
P (z) ≺ q(z), where q is given by (24). The proof is complete.

Corollary. If α < 1, Re c > p − 1, and Ic is defined by (17), then

Ic(Ln,p(α)) ⊂ Ln,p(δ),

where

δ = min
|z|=1

Re q(z) = δ(α, c)

and

(25) q(z) =
c − p + 1

(p + 1)z(c−p+1)/(p+1)

z\
0

t(c−p+1)/(p+1)

{

1 + (2α − 1)t

1 + t

}

dt,

and the result is sharp. Also if c is real and c > p − 1, then

(26) δ(α, c) = q(1) = 2α − 1 +
2(1 − α)

p + 1
(c − p + 1)

1\
0

t(c−p+1)/(p+1)−1

1 + t
dt.

P r o o f. If we choose

h(z) =
1 + z(2α − 1)

1 + z

in the theorem, then h is convex and we deduce from the theorem that

Re

{

−
zp+1

p
(Dnf(z))′

}

> α ⇒ −
zp+1

p
(DnF (z))′ ≺ q(z),
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where q is given by (25), and so Ic(Ln,p(α)) ⊂ Ln,p(δ). If c is real and
c > p − 1, then observing that q(E) is convex and symmetric with respect
to the real axis, we get Re q(z) > δ = q(1) given by (26).

Remark. If we take c = (3p−1)/2, then the integral in (26) reduces to

1\
0

t−1/2

1 + t
dt =

π

2
.

We have δ = 2α − 1 + (1 − α)π/2, and δ = 0 if α = −(π − 2)/(4 − π). If

Re

{

−
zp+1

p
(Dnf)′

}

> −
π − 2

4 − π
,

then

Re

{

−
zp+1

p
(DnF )′

}

> 0,

where

F (z) =
p + 1

2
·

1

z(3p+1)/2

z\
0

t(3p−1)/2f(t) dt.

Theorem 5. Let f ∈ Mp and let Ic(f) be defined by (17). Let α < 1. If

Re

{

−
zp+1

p
(Dnf)′

}

> α − (1 − α)Re
1

c − p + 1

then Ic(f) ∈ Ln,p(α).

P r o o f. Denote Ic(f) by F and put

(27)
−zp+1(DnF (z))′

p
= (1 − α)P (z) + α.

Using (20) and (12) we obtain after differentiation and simplification

(28) (c + 2)(DnF )′ + z(DnF )′′ = (c − p + 1)(Dnf)′.

Multiplying both sides of (28) by zp+1 and using (27) we obtain

−{(1 − α)P (z) + α}p(c + 2) + p(p + 1){(1 − α)P (z) + α}

− (1 − α)pzP ′(z)

= (c − p + 1)zp+1(Dnf)′,
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or

(29) −
zp+1

p
(Dnf)′ = (1 − α)P (z) + α + (1 − α)

zP ′(z)

c − p + 1
.

So the inequality in the assumptions of the theorem becomes

(30) Re

{

(1 − α)P (z) +
1 − α

c − p + 1
(zP ′(z) + 1)

}

> 0, z ∈ E.

Since P (z) = 1 + Pp+1z
p+1 + . . . , in order to show that (30) implies that

ReP (z) > 0 in E, it suffices to prove the inequality

Re

{

(1 − α)is +
1 − α

c − p + 1
(t + 1)

}

≤ 0

for all real s and

t ≤ −(1 + s2)
p + 1

2
≤ −(1 + s2),

by Lemma B. Since Re(c − p + 1) > 0, the inequality holds and so Re P (z)
> 0. In other words,

Re

{

−
zp+1

p
(DnF )′

}

= Re(1 − α)P (z) + α > α,

or F ∈ Ln,p(α). The proof is complete.

Remark. If α = 0, we conclude that

Re

{

−
zp+1

p
(Dnf)′

}

> −Re
1

c − p + 1
⇒ Re

{

−
zp+1

p
(DnF )′

}

> 0.

If moreover n = 0 and c = p, we obtain the result: For f ∈ Mp,

Re

{

−
zp+1

p
f ′(z)

}

> −1 ⇒ Re

{

−
zp+1

p
F ′(z)

}

> 0,

where F (z) = z−p−1
Tz
0
tpf(t) dt.
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