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Dini continuity of the first derivatives of

generalized solutions to the Dirichlet problem for linear

elliptic second order equations in nonsmooth domains

by Michail Borsuk (Olsztyn)

Abstract.We consider generalized solutions to the Dirichlet problem for linear elliptic
second order equations in a domain bounded by a Dini–Lyapunov surface and containing
a conical point. For such solutions we derive Dini estimates for the first order generalized
derivatives.

1. Introduction. We consider generalized solutions to the Dirichlet
problem for a linear uniformly elliptic second order equation in divergence
form

(DL)





∂

∂xi
(aij(x)uxj

+ ai(x)u) + bi(x)uxi
+ c(x)u

= g(x) +
∂f j(x)

∂xj
, x ∈ G,

u(x) = ϕ(x), x ∈ ∂G

(summation over repeated indices from 1 to n is understood), where G ⊂ R
n

is a bounded domain with boundary ∂G and ∂G is a Dini–Lyapunov surface
containing the origin O as a conical point. This last means that ∂G \O is a
smooth manifold but near O the domain G is diffeomorphic to a cone.

Hölder estimates for the first derivatives of generalized solutions to the
problem (DL) are well known in the case where the leading coefficients
aij(x) are Hölder continuous (see e.g. [5, 8.11] for smooth domains and [1]
for domains with angular points). Here we derive Dini estimates for the first
derivatives of generalized solutions of the problem (DL) in a domain with a
conical boundary point under minimal smoothness conditions on the leading
coefficients (Dini continuity). It should be noted that interior Dini continuity
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of the first and second derivatives of generalized solutions to the problem
(DL) was investigated in [3, 7] under the condition of Dini continuity of the
first derivatives of the leading coefficients.

We introduce the following notations and definitions:

• [l]: the integral part of l (if l is not an integer);
• r = |x| = (

∑n
i=1 x

2
i )

1/2;
• G′

⋐ G: G′ has compact closure contained in G;
• mesG: volume of G;
• Sn−1: the unit sphere in R

n;
• Br(x0): the open ball in R

n of radius r centered at x0;
• ωn = 2πn/2/(nΓ (n/2)): the volume of the unit ball in R

n;
• σn = nωn: the area of the n-dimensional unit sphere;
• R

n
+: the half-space xn > 0;

• Σ: the hyperplane {xn = 0};
• B+

r = Br ∩ R
n
+, where x0 ∈ R

n
+;

• (r, ω): the spherical coordinates of x ∈ R
n with pole O;

• Ω: a domain in Sn−1 with smooth (n− 2)-dimensional boundary ∂Ω;
• Gb

a = G ∩ {(r, ω) | 0 ≤ a < r < b, ω ∈ Ω}: a layer in R
n;

• Γ b
a = ∂G ∩ {(r, ω) | 0 ≤ a < r < b, ω ∈ ∂Ω}: the lateral surface of the

layer Gb
a;

• Diu = uxi
= ∂u/∂xi, Diju = uxixj

= ∂2u/∂xi∂xj ;
• ∇u ≡ ux = (ux1

, . . . , uxn
): the gradient of u(x);

• n = n(x) = {ν1, . . . , νn}: the unit outward normal to ∂G at the
point x;

• dΩ: the (n − 1)-dimensional area element of the unit sphere;
• dσ: the (n− 1)-dimensional area element of ∂G;
• ∆: the Laplacian in R

n;
• ∆ω: the Laplace–Beltrami operator on the unit sphere Sn−1;
• d(x) = dist(x, ∂G \ O);
• Φ(x): any possible extension into G of a boundary function ϕ(x), i.e.,
Φ(x) = ϕ(x) for x ∈ ∂G;

• A(t): a function defined for t ≥ 0, nonnegative, increasing, continuous
at zero, with limt→+0 A(t) = 0.

Definition 1.1. The function A is called Dini continuous at zero ifTd
0
t−1A(t) dt <∞ for some d > 0.

Definition 1.2. The function A is called an α-function, 0 < α < 1, on
(0, d] if t−αA(t) is decreasing on (0, d], i.e.

(1.1) A(t) ≤ tατ−αA(τ), 0 < τ ≤ t ≤ d.

In particular, setting t = cτ, c > 1, we have

(1.2) A(cτ) ≤ cαA(τ), 0 < τ ≤ c−1d.
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If an α-function A is Dini continuous at zero, then we say that A is
an α-Dini function. In that case we also define the function B(t) =Tt
0
(A(τ)/τ) dτ . It is obvious that B is increasing and continuous on [0, d],

and B(0) = 0. We integrate the inequality (1.1) over τ from 0 to t:

(1.3) A(t) ≤ αB(t).

Similarly from (1.1) we derive

d\
δ

(A(t)/t2) dt =

d\
δ

tα−2(A(t)/tα) dt ≤ δ−αA(δ)

d\
δ

tα−2 dt ≤ (1 − α)−1A(δ)/δ,

whence by (1.3),

δ

d\
δ

(A(t)/t2) dt ≤ (1 − α)−1A(δ)(1.4)

≤ α(1 − α)−1B(δ), ∀α ∈ (0, 1), 0 < δ < d.

Definition 1.3. The function B is called equivalent to A, written
A ∼ B, if there exist positive constants C1 and C2 such that

C1A(t) ≤ B(t) ≤ C2A(t) for all t ≥ 0.

An equivalence test is known [4, theorem of Sec. 1]: A ∼ B if and only if

(1.5) lim
t→0

A(2t)/A(t) > 1.

In some cases we shall consider functions A such that also

(1.6) sup
0<τ≤1

A(τt)/A(τ) ≤ cA(t), ∀t ∈ (0, d],

with some constant c independent of t. Examples of α-Dini functions A
which satisfy (1.5), (1.6) with c = 1 are:

tα, 0 ≤ t <∞;

tα ln(1/t), t ∈ (0, d], d = min(e−e, e−1/α), e−1 < α < 1.

We will consider the following function spaces:

• C l(G): the Banach space of functions having all the derivatives of order
at most l (if l = integer ≥ 0) and of order [l] (if l is noninteger) continuous in
G and whose [l]th order partial derivatives are uniformly Hölder continuous
with exponent l − [l] in G; |u|l;G is the norm of the element u ∈ C l(G); if
l 6= [l] then

|u|l;G =

[l]∑

j=0

sup
G

|Dju| + sup
|α|=[l]

sup
x,y∈G
x6=y

|Dαu(x) −Dαu(y)|

|x− y|l−[l]
.

• Ck
0 (G): the set of functions in Ck(G) with compact support in G.
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• C0,A(G): the set of bounded and continuous functions f on G with

[f ]A;G = sup
x,y∈G
x6=y

|f(x) − f(y)|

A(|x− y|)
<∞;

equipped with the norm

‖f‖0,A;G = |f |0;G + [f ]A;G,

this set is a Banach space. We also define the quantity

[f ]A,x = sup
y∈G\{x}

|f(x) − f(y)|

A(|x− y|)
.

It is not difficult to see that if A ∼ B then [f ]A ∼ [f ]B.
If k ≥ 1 is an integer then we denote by Ck,A(G) the subspace of Ck(G)

consisting of functions whose (k−1)th order partial derivatives are uniformly
Lipschitz continuous and each kth order derivative belongs to C0,A(G); it
is a Banach space with the norm

‖f‖k,A;G = |f |k;G +
∑

|β|=k

[Dβf ]A;G.

The interpolation inequality (see [8, (10.1)]) will be needed: if the domain

has a Lipschitz boundary , then for any ε > 0 there exists a constant c(ε,G)
such that for every f ∈ C1,A(G),

(1.7)
n∑

i=1

|Dif |0;G ≤ ε
n∑

i=1

[Dif ]A;G + c(ε,G)|f |0;G.

• Lp(G): the Banach space of p-integrable functions u on G (p ≥ 1) with
norm u p;G.

Moreover, λ = λ(Ω) will stand for the smallest positive eigenvalue of the
problem

(EVP)

{
∆ωψ + λ(λ+ n− 2)ψ = 0, ω ∈ Ω ⊂ Sn−1,

ψ(ω) = 0, ω ∈ ∂Ω,

and c(. . .) will be different constants depending only on the quantities ap-
pearing in parentheses.

Let T ⊂ ∂G be a nonempty set. Following [5, Sec. 6.2] and [8, Sec. 3]
we shall say that the boundary portion T is of class C1,A if for each point
x0 ∈ T there are a ball B = B(x0), a one-to-one mapping ψ of B onto a
ball B′ and a constant K > 0 such that:

(i) B ∩ ∂G ⊂ T, ψ(B ∩G) ⊂ R
n
+;

(ii) ψ(B ∩ ∂G) ⊂ Σ;
(iii) ψ ∈ C1,A(B), ψ−1 ∈ C1,A(B′);
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(iv) ‖ψ‖1,A;B ≤ K, ‖ψ−1‖1,A;B′ ≤ K.

It is not difficult to see that for y = ψ(x) one has

(1.8) K−1|y − y′| ≤ |x− x′| ≤ K|y − y′|, ∀x, x′ ∈ B.

Lemma [8, Sec. 7, (iv)]. Let A be an α-function and f ∈ C0,A(B),
ψ−1 ∈ C1,A(B′). Then f ◦ ψ−1 ∈ C1,A(B) and

(1.9) [f ◦ ψ−1]A;B ≤ Kα[f ]A;B.

2. Dini estimates of the first derivatives for the generalized

Newtonian potential (cf. [5, Ch. 4]). We shall consider the Dirichlet prob-
lem for the Poisson equation

(PE)





∆v = G +

n∑

j=1

DjF
j , x ∈ G,

v(x) = 0, x ∈ ∂G.

Let Γ (x− y) be the normalized fundamental solution of Laplace’s equa-
tion. The following estimates are known (see e.g. [5, (2.12), (2.14)]):

(2.1)

|Γ (x− y)| = |x− y|2−n/(n(n− 2)ωn), n ≥ 3,

|DiΓ (x− y)| ≤ |x− y|1−n/(nωn),

|DijΓ (x− y)| ≤ |x− y|−n/ωn,

|DβΓ (x− y)| ≤ C(n, β)|x− y|2−n−|β|.

We define the functions

(2.2) z(x) =
\
G

Γ (x− y)G(y) dy, w(x) = Dj

\
G

Γ (x− y)Fj(y) dy,

assuming that the functions G(x) and Fj(x), j = 1, . . . , n, are integrable
on G. The function z is called the Newtonian potential with density func-
tion G, and w is called the generalized Newtonian potential with density
function divF . We now give estimates for these potentials.

Let B1 = BR(x0), B2 = B2R(x0) be concentric balls in R
n and z, w be

Newtonian potentials in B2.

Lemma 1. Suppose G ∈ Lp(B2), p > n/2, and Fj ∈ L∞(B2), j =
1, . . . , n. Then

(2.3)
|z|0;B1

≤ c(p)R2/p′

ln1/p′

(1/(2R)) G p;B2
, n = 2,

|z|0;B1
≤ c(p, n)R2−n+n/p′

G p;B2
, n ≥ 3,
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(2.4) |w|0;B1
≤ 2R

n∑

j=1

|Fj |0;B2
,

where 1/p + 1/p′ = 1.

P r o o f. The estimates follow from inequalities (2.1), Hölder’s inequality
and [5, Lemma 4.1].

In the following the D operator is always taken with respect to the x
variable.

Lemma 2 [5, Lemmas 4.1, 4.2]. Let ∂G ∈ C1,A, G ∈ Lp(G), p > n,
Fj ∈ C0,A(G), where A is an α-function Dini continuous at zero. Then for

any x ∈ G,

Diz(x) =
\
G

DiΓ (x− y)G(y) dy,(2.5)

Diw(x) =
\

G0

DijΓ (x− y)(Fj(y) −Fj(x)) dy(2.6)

−Fj(x)
\

∂G0

DiΓ (x− y)νj dyσ

(i = 1, . . . , n); here G0 is any domain containing G for which the Gauss

divergence theorem holds and Fj are extended to vanish outside G.

Lemma 3 (cf. [5, Lemma 4.4]). Let G ∈ Lp(B2), p > n, Fj ∈ C0,A(B2),
where A is an α-function Dini continuous at zero. Then z,w ∈ C1,B(B1)
and

‖z‖1,B;B1
≤ c(n, p,R,A−1(2R)) G p;B2

,(2.7)

‖w‖1,B;B1
≤ c(n, p, α,R,A−1(2R),B(2R))

n∑

j=1

‖Fj‖0,A;B2
.(2.8)

P r o o f. Let x, x∈B1 and G = B2. By formulas (2.5), (2.6), taking into
account (2.1) and Hölder’s inequality and setting |x − y| = t, y − x = tω,
dy = tn−1dt dΩ, we have

|Diz| ≤ (nωn)−1
\

B2

|x− y|1−n|G(y)| dy(2.9)

≤ (nωn)−1 G p;B2

{ \
B2

|x− y|(1−n)p′

dy
}1/p′

=
p− 1

p− n
(2R)(p−n)/(p−1) G p;B2

,

|Diw(x)| ≤ (nωn)−1R1−n
n∑

j=1

|Fj(x)|
\

∂B2

dyσ(2.10)
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+ ω−1
n

n∑

j=1

[Fj ]A,x

\
B2

A(x− y)

|x− y|n
dy

≤ 2n−1
n∑

j=1

|Fj(x)| + n

n∑

j=1

[Fj ]A,x

2R\
0

A(t)

t
dt

≤ c(n)B(2R)

n∑

j=1

(|Fj(x)| + [Fj ]A,x).

Taking into account (2.5) we obtain by subtraction

|Diz(x) −Diz(x)| ≤
\

B2

|DiΓ (x− y) −DiΓ (x− y)| · |G(y)| dy.

We set δ = |x−x|, ξ = 1
2
(x−x) and write B2 = Bδ(ξ)∪{B2 \Bδ(ξ)}. Then

(2.11)
\

Bδ(ξ)

|DiΓ (x− y) −DiΓ (x− y)| · |G(y)| dy

≤
\

Bδ(ξ)

|DiΓ (x− y)| · |G(y)| dy +
\

Bδ(ξ)

|DiΓ (x− y)| · |G(y)| dy

≤ (nωn)−1
{ \

Bδ(ξ)

|x− y|1−n|G(y)| dy +
\

Bδ(ξ)

|x− y|1−n|G(y)| dy
}

≤ 2(nωn)−1
\

B3δ/2(x)

|x− y|1−n|G(y)| dy

≤ 2(nωn)−1 G p;B2

( \
B3δ/2(x)

|x− y|(1−n)p′

dy
)1/p′

≤ 2(nωn)−1/p G p;B2

(
3δ

2

)1−n/p

{n + (1 − n)p′}−1/p′

≤
2(nωn)−1/p(2R)1−n/p

{n+ (1 − n)p′}−1/p′
·
A(|x− x|)

A(2R)
G p;B2

, 1/p + 1/p′ = 1

(here we take into account that δα ≤ (2R)αA(δ)/A(2R) for all α > 0 by
(1.1), since δ ≤ 2R). Similarly,

(2.12)
\

B2\Bδ(ξ)

|DiΓ (x− y) −DiΓ (x− y)| · |G(y)| dy

≤ |x− x|
\

B2\Bδ(ξ)

|DDiΓ (x̃− y)| · |G(y)| dy

(for some x̃ between x and x)



136 M. Borsuk

≤ δω−1
n

\
|y−ξ|≥δ

|y − x̃|−n|G(y)| dy

≤ 2nδω−1
n

\
|y−ξ|≥δ

|y − ξ|−n|G(y)| dy (since |y − ξ| ≤ 2|y − x̃|)

≤ 2nδω−1
n G p;B2

( \
|y−ξ|≥δ

|y − ξ|−np′

dy
)1/p′

≤ 2nω−1/p
n (p− 1)1/p′

δ1−n/p G p;B2

≤ 2nω−1/p
n (p− 1)1/p′

(2R)1−n/p A(|x− x|)

A(2R)
G p;B2

.

From (2.11) and (2.12), taking into account (1.3), we obtain

(2.13) |Diz(x) −Diz(x)|

≤ c(n, p,R)A−1(2R) G p;B2
A(|x− x|)

≤ c(n, p,R)A−1(2R) G p;B2
B(|x− x|), ∀x, x ∈ B1.

The first of the required estimates, (2.7), follows from (2.3) and (2.13).
Now we derive the estimate (2.8).

By (2.6) for all x, x ∈ B1 we have

(2.14) Diw(x) −Diw(x)

=

n∑

j=1

(Fj(x)J1j + (Fj(x) −Fj(x))J2j) + J3

+ J4 +

n∑

j=1

(Fj(x) −Fj(x))J5j + J6,

where

J1j =
\

∂B2

(DiΓ (x− y) −DiΓ (x− y))νj(y) dyσ,

J2j =
\

∂B2

DiΓ (x− y)νj(y) dyσ,

J3 =
\

Bδ(ξ)

DijΓ (x− y)(Fj(x) −Fj(y)) dy,

J4 =
\

Bδ(ξ)

DijΓ (x− y)(Fj(y) −Fj(x)) dy,

J5j =
\

B2\Bδ(ξ)

DijΓ (x− y) dy,
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J6 =
\

B2\Bδ(ξ)

(DijΓ (x− y) −DijΓ (x− y))(Fj(x) −Fj(y)) dy.

(Here we set again δ = |x− x|, ξ = 1
2 (x− x) and write B2 = Bδ(ξ) ∪ {B2 \

Bδ(ξ)}.)

We estimate these integrals by analogy with [5, pp. 58–59]:

|J1j | ≤ |x− x|
\

∂B2

|DDiΓ (x̃− y)| dyσ

(for some point x̃ between x and x)

≤ |x− x|nω−1
n

\
∂B2

|x̃− y|−ndyσ

≤ n22n−1|x− x|R−1 (since |x̃− y| ≥ R for y ∈ ∂B2)

≤ n22n−1A(|x− x|)R−1δ/A(δ)

≤ n22nA(|x− x|)/A(2R)

(since δ = |x− x| ≤ 2R and δ/A(δ) ≤ 2R/A(2R) by (1.1))

≤ n22nαB(δ)/A(2R) (by (1.3)).

Next,

|J2j | ≤ 2n−1,

|J3| ≤ ω−1
n [Fj ]A,x

\
Bδ(ξ)

|x− y|−nA(|x− y|) dy

≤ ω−1
n [Fj ]A,x

\
B3δ/2(x)

|x− y|−nA(|x− y|) dy

= n[Fj ]A,x

3δ/2\
0

t−1A(t) dt

≤ (3/2)αn[Fj ]A,xB(δ) (by (1.2)).

By analogy with the estimate for J3 we obtain

|J4| ≤ (3/2)αn[Fj ]A,xB(δ), |J5j | ≤ 2n (see [5, p. 59]),

and

|J6| ≤ |x− x|
\

B2\Bδ(ξ)

|DDijΓ (x̃− y)| · |Fj(x) −Fj(y)| dy

(for some x̃ between x and x)

≤ |x− x|c(n)
\

|y−ξ|≥δ

|Fj(x) −Fj(y)| · |x̃− y|−n−1 dy
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≤ c(n)δ[Fj ]A,x

\
|y−ξ|≥δ

A(|x− y|)|x̃− y|−n−1 dy

≤ 2n+1c(n)δ[Fj ]A,x

\
|y−ξ|≥δ

A((3/2)|ξ − y|)|ξ − y|−n−1 dy

(since |x− y| ≤ (3/2)|ξ − y| ≤ 3|x− ỹ|)

≤ 2n+1nωnc(n)(3/2)αδ[Fj ]A,x

R\
δ

t−2A(t) dt

(since A((3/2)t) ≤ (3/2)αA(t) by (1.2))

≤
α

1 − α
(3/2)αnωn2n+1c(n)[Fj ]A,xB(δ) (by (1.4)).

Now from (2.14) and the above estimates we obtain

(2.15) |Diw(x) −Diw(x)|

≤ c(n, α)
n∑

j=1

(|Fj(x)|A−1(2R) + [Fj ]A,x + [Fj ]A,x)B(|x− x|),

∀x, x ∈ B1.

Finally, from (2.10) and (2.15) it follows that w ∈ C1,B(B1) and the
estimate (2.8) holds. Lemma 3 is proved.

Theorem 1. Let v be a generalized solution of equation (PE) in B+
2

with G ∈ Ln/(1−α)(B
+
2 ), Fj ∈ C0,A(B+

2 ), where A is an α-function satisfy-

ing the Dini condition at zero, and let v = 0 on B2∩Σ. Then v ∈ C1,B(B+
1 )

and

‖v‖1,B;B+

1

≤ c
(
|v|0;B+

2

+ G n/(1−α);B+

2

+

n∑

j=1

‖Fj‖0,A;B+

2

)
,

where c = c(n, α,R,A−1(2R),B(2R)).

Theorem 1 follows from (2.7), (2.8), representation of solutions of (PE)
by means of the fundamental solution and by the same argument as in [5,
4.4–4.5] (see also [5, 8.11]).

3. Dini continuity near a smooth portion of the boundary

Theorem 2 (cf. [5, Corollary 8.36]). Let A be an α-Dini function (0 <
α < 1) satisfying the condition (1.5). Let T ⊂ ∂G be of class C1,A. Let

u ∈ W 1(G) be a weak solution of the problem (DL) with ϕ ∈ C1,A(∂G).
Suppose the coefficients of the equation in (DL) satisfy the conditions
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aij(x)ξiξj ≥ ν|ξ|2, ∀x ∈ G, ξ ∈ R
n,

aij , ai, f i ∈ C0,A(G) (i, j = 1, . . . , n),

bi, c ∈ L∞(G), g ∈ Ln/(1−α)(G).

Then u ∈ C1,B(G ∪ T ) and for every G′
⋐ G ∪ T ,

‖u‖1,B;G′ ≤ c(n, T, ν, k, d′)
(
|u|0;G + g n/(1−α);G(3.1)

+
n∑

i=1

‖f i‖0,A;G + ‖ϕ‖1,A;∂G

)
,

where d′ = dist(G′, ∂G \ T ) and

k = max
i,j=1,...,n

{‖aij , ai‖0,A;G, |b
i, c|0;G}.

P r o o f. We use the perturbation method. We freeze the leading coeffi-
cients aij(x) at x0 ∈ G∪T by setting, without loss of generality, aij(x0) = δj

i

(see [5, Lemma 6.1]), and rewrite the equation of (DL) in the form (PE) for
the function v(x) = u(x) − ϕ(x) with

G(x) = g(x) − bi(x)(Div +Diϕ) − c(x)(v(x) + ϕ(x)),(3.2)

F i(x) = (aij(x0) − aij(x))Djv − aij(x)Djϕ(3.3)

− ai(x)(v(x) + ϕ(x)) + f i(x) (i = 1, . . . , n).

It is not difficult to observe that the conditions on the coefficients of the
equation and on T are invariant under maps of class C1,A. Therefore after
a preliminary rectification of T by means of a diffeomorphism ψ ∈ C1,A it is
sufficient to prove the theorem in the case T ⊂ Σ. This is carried out using
Theorem 1 in a standard way (see [5, Chs. 6, 8]). In this connection we use
the following estimates for the functions (3.2), (3.3):

(3.4) G n/(1−α);B+

2

≤ g n/(1−α);B+

2

+ k
( n∑

i=1

|Div|0;B+

2

+ |v|0;B+

2

+
n∑

i=1

|Diϕ|0;B+

2

+ |ϕ|0,B+

2

)

≤ g n/(1−α);B+

2

+ k
(
ε

n∑

i=1

[Div]A;B+

2

+ cε|v|0;B+

2

+ |ϕ|1,B+

2

)
(by (1.7)),
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(3.5)

n∑

j=1

‖Fj‖0,A;B+

2

≤ nkA(2R)‖∇v‖0,A;B+

2

+ k

n∑

i=1

|Div|0,B+

2

+ c(k)(|v|0;B+

2

+ ‖ϕ‖1,A;B+

2

) +

n∑

j=1

‖f j‖0,A;B+

2

.

Taking into account once more the inequality (1.7) and the condition (1.5)
that ensures the equivalence [ ]A ∼ [ ]B, from (3.4)–(3.5) we finally obtain

(3.6) G n/(1−α);B+

2

+
n∑

j=1

‖Fj‖0,A;B+

2

≤ k(ε + nA(2R))‖v‖1,B;B+

2

+ cε(k)(|v|0;B+

2

+ ‖ϕ‖1,A;B+

2

)

+

n∑

j=1

‖f j‖0,A;B+

2

+ g n/(1−α);B+

2

for all ε > 0.

Since A is continuous, choosing ε,R > 0 sufficiently small we obtain the
desired assertion and the estimate (3.1) in a standard way from (2.16) and
(3.6).

4. Dini continuity near the conical point. We consider the problem
(DL) under the following assumptions:

(i) ∂G is a Dini–Lyapunov surface with conical point O;
(ii) the uniform ellipticity holds:

νξ2 ≤ aij(x)ξiξj ≤ µξ2, ∀x ∈ G, ξ ∈ R
n,

where ν, µ = const > 0 and aij(0) = δj
i (i, j = 1, . . . , n);

(iii) aij , ai ∈ C0,A(G) (i, j = 1, . . . , n) where A is an α-Dini function on
(0, d], α ∈ (0, 1), satisfying the conditions (1.5)–(1.6) and also

(4.1) sup
0<̺≤1

̺λ−1/A(̺) ≤ const,

|x|
( ∑

(bi(x))2
)1/2

+ |x|2|c(x)| ≤ A(|x|);

(iv) g ∈ Ln/(1−α)(G), ϕ ∈ C1,A(∂G), f j ∈ C0,A(G), j = 1, . . . , n;

(v)
\
G

r4−n−2λH−1(r)g2(x) dx <∞,\
G

r2−n−2λH−1(r)
( n∑

j=1

|f j |2 + |∇Φ|2 + r−2Φ2
)
dx <∞,

where H is a continuous increasing function satisfying the Dini condition at
t = 0.
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Theorem 3. Let u be a generalized solution of (DL) and suppose that

assumptions (i)–(v) are satisfied. Then there exist d > 0 and a constant

c > 0 independent of u and depending only on parameters and norms of the

given functions appearing in assumptions (i)–(v), such that

|u(x)| ≤ c|x|A(|x|)
(
g n/(1−α);G +

n∑

i=1

‖f i‖0,A;G + ‖ϕ‖1,A;∂G(4.2)

+
{ \

G

(
r4−n−2λH−1(r)g2(x) + r2−n−2λH−1(r)

×

n∑

i=1

|f i(x)|2 + r2−n−2λH−1(r)|∇Φ|2

+ |u|2 + |∇u|2
)
dx

}1/2)
, ∀x ∈ Gd

0,

|∇u(x)| ≤ cA(|x|)
(
g n/(1−α);G +

n∑

i=1

‖f i‖0,A;G + ‖ϕ‖1,A;∂G(4.3)

+
{ \

G

(
r4−n−2λH−1(r)g2(x) + r2−n−2λH−1(r)

×

n∑

i=1

|f i(x)|2 + r2−n−2λH−1(r)|∇Φ|2

+ |u|2 + |∇u|2
)
dx

}1/2)
, ∀x ∈ Gd

0.

P r o o f. We use Kondrat’ev’s method of layers: we move away from
the conical point of ̺ > 0 and work in G2̺

̺/4; after the change of variables

x = ̺x′ the layer G2̺
̺/4 takes the position of a fixed domain G2

1/4 with smooth

boundary.

1o. We consider a solution u in the domain G2d
0 with some positive d≪ 1;

then u is a weak solution in G2d
0 of the problem

(DL)0,2d





∂

∂xi
(aij(x)uxj

+ ai(x)u) + bi(x)uxi
+ c(x)u

= g(x) +
∂f j

∂xj
, x ∈ G2d

0 ,

u(x) = ϕ(x), x ∈ Γ 2d
0 ⊂ ∂G2d

0 .

We make the change of variables x = ̺x′ and set v(x′) = ̺−1A−1(̺)u(̺x′),



142 M. Borsuk

̺ ∈ (0, d), 0 < d≪ 1. Then v satisfies in G2
1/4 the problem





∂

∂x′i
(aij(̺x′)vx′

j
+ ̺ai(̺x′)v) + ̺bi(̺x′)vx′

i
+ ̺2c(̺x′)v

= A−1(̺)
n∑

j=1

∂f j(̺x′)

∂x′j
+ ̺A−1(̺)g(̺x′), x′ ∈ G2

1/4,

v(x′) = ̺−1A−1(̺)ϕ(̺x′), x′ ∈ Γ 2
1/4.

To solve this problem we use Theorem 2. We check its assumptions. Since
under assumption (ii), A is increasing, ̺ ∈ (0, d) and 0 < d ≪ 1, from the
inequality ̺−1|x− y| ≥ |x− y| for ̺ ∈ (0, d) it follows that

A(|x′ − y′|) = A(̺−1|x− y|) ≥ A(|x− y|)

and by (iii) we have
∑

i,j

‖aij(̺ ·)‖0,A;G2

1/4
+ ̺

∑

i

‖ai(̺ ·)‖0,A;G2

1/4

≤
∑

i,j

‖aij‖0,A;G2̺

̺/4

+ d
∑

i

‖ai‖0,A;G2̺

̺/4

<∞.

Further, let Φ be a regularity preserving extension of the boundary func-
tion ϕ into a domain Gd

ε for ε > 0 (such an extension exists; see e.g. [5,
Lemma 6.38]).

Since ϕ ∈ C1,A(∂G) we have

‖Φ‖1,A;G2̺

̺/4

≤ c(G)‖ϕ‖1,A;Γ 2̺

̺/4

≤ const.

By definition of the norm in C1,A we obtain

(4.4) sup
x,y∈G2̺

̺/4

x6=y

|∇Φ(x) −∇Φ(y)|

A(|x− y|)
≤ ‖Φ‖1,A;G2̺

̺/4

≤ c(G)‖ϕ‖1,A;Γ 2̺

̺/4

.

Now we show that by (v) and the smoothness of ϕ,

(4.5) |ϕ(x)| ≤ c|x|A(|x|), |∇Φ(x)| ≤ cA(|x|), ∀x ∈ G2̺
̺/4.

Indeed, from

ϕ(x) − ϕ(0) =

1\
0

d

dτ
Φ(τx) dτ = xi

1\
0

∂Φ(τx)

∂(τxi)
dτ

by Hölder’s inequality we have

(4.6) |ϕ(x) − ϕ(0)| ≤ r|∇Φ|.
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From (iv) it follows that

(4.7)
\

G̺
0

(r2−n|∇Φ|2 + r−n|ϕ|2) dx

=
\

G̺
0

(r2−n−2λH−1(r)|∇Φ|2 + r−n−2λH−1(r)|ϕ|2)(r2λH(r)) dx

≤ const ̺2λH(̺).

Since |ϕ(0)| ≤ |ϕ(x)| + |ϕ(x) − ϕ(0)|, by (4.6) we obtain

|ϕ(0)| ≤ |ϕ(x)| + r|∇Φ|.

Squaring both sides, multiplying by r−n and integrating over G̺
0 we obtain

(4.8) ϕ2(0)
\

G̺
0

r−n dx ≤ 2
\

G̺
0

(r−nϕ2(x) + r2−n|∇Φ|2) dx <∞

by (4.7). Since \
G̺

0

r−n dx = mesΩ
\̺
0

dr

r
= ∞,

the assumption ϕ(0) 6= 0 contradicts (4.8). Thus ϕ(0) = 0. Then from (4.4)
we have

|∇Φ(x) −∇Φ(y)| ≤ constA(|x− y|)‖ϕ‖1,A;Γ 2̺

̺/4

, ∀x, y ∈ G2̺
̺/4,

|∇Φ(y)| ≤ |∇Φ(x) −∇Φ(y)| + |∇Φ(x)|

≤ cA(|x− y|)‖ϕ‖1,A;Γ 2̺

̺/4

+ |∇Φ(x)|.

Hence considering y to be fixed in G2̺
̺/4 and x variable, we get

|∇Φ(y)|2
\

G2̺

̺/4

r2−n dx ≤ 2c2‖ϕ‖1,A;Γ 2̺

̺/4

\
G2̺

̺/4

r2−nA2(|x− y|) dx

+ 2
\

G2̺

̺/4

r2−n|∇Φ(x)|2 dx

or by (4.7),

̺2|∇Φ(y)|2 ≤ c(mesΩ, k1)(̺
2A2(̺) + ̺2λH(̺)), ∀y ∈ G2̺

̺/4.

Hence the assumption (4.1) yields the second inequality of (4.5). Now the
first inequality of (4.5) follows from (4.6) and ϕ(0) = 0. Thus (4.5) is proved.
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Now we obtain

(4.9) ̺−1A−1(̺)‖ϕ(̺ ·)‖1,A;Γ 2

1/4

≤ c̺−1A−1(̺)‖Φ(̺ ·)‖1,A;G2

1/4

= c̺−1A−1(̺)

{
sup

x′∈G2

1/4

|Φ(̺x′)| + sup
x′∈G2

1/4

|∇′Φ(̺x′)|

+ sup
x′,y′∈G2

1/4

x′ 6=y′

|∇′Φ(̺x′) −∇′Φ(̺y′)|

A(|x′ − y′|)

}

≤ c1 + cA−1(̺) sup
x,y∈G2̺

̺/4

|∇Φ(x) −∇Φ(y)|

A(̺−1|x− y|)

= c1 + c[∇Φ]0,A;G2̺

̺/4

A−1(̺) sup
0<t<4̺

A(t)

A(̺−1t)

≤ const, ∀̺ ∈ (0, d),

by (4.5), since by (1.6),

sup
0<t<4̺

A(t)

A(̺−1t)
= sup

0<τ<4

A(τ̺)

A(τ)
≤ cA(̺).

In the same way we have

(4.10) A−1(̺)‖f j‖0,A;G2

1/4

= A−1(̺)

(
|f j |0;G2̺

̺/4

+ sup
x,y∈G2̺

̺/4

x6=y

|f j(x) − f j(y)|

A(̺−1|x− y|)

)
.

Since f j ∈ C0,A(G), we get

|f j(x) − f j(y)| ≤ c̃jA(|x− y|), ∀x, y ∈ G2̺
̺/4,(4.11) \

G̺
0

r2−n|f j(x)|2 dx =
\

G̺
0

(r2−n−2λH−1(r)|f j(x)|2)(H(r)r2λ) dx(4.12)

≤ const ̺2λH(̺)

by (v). Now fix y in G2̺
̺/4. Then

|f j(y)| ≤ |f j(x)| + |f j(x) − f j(y)| ≤ |f j(x)| + c̃jA(|x− y|).

Hence

|f j(y)|2
\

G2̺

̺/4

r2−n dx ≤ 2
\

G2̺

̺/4

r2−n|f j(x)|2 dx+ 2c̃ 2
j

\
G2̺

̺/4

r2−nA2(|x− y|) dx.
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Calculations and (4.12) give

̺2|f j(y)|2 ≤ c(c̃j , k1,mesΩ)(̺2A2(̺) + ̺2λH(̺)), ∀y ∈ G2̺
̺/4.

Hence by the assumption (4.1) it follows that

(4.13) |f j(x)| ≤ cjA(̺), ∀x ∈ G2̺
̺/4, j = 1, . . . , n.

Further, in the same way as in the proof of (4.9),

sup
x,y∈G2̺

̺/4

x6=y

|f j(x) − f j(y)|

A(̺−1|x− y|)
≤ [f j]0,A;G2̺

̺/4

sup
0<t<4̺

A(t)

A(̺−1t)
(4.14)

≤ cA(̺)[f j ]0,A;G2̺

̺/4

.

Now from (4.10), (4.13) and (4.14) we obtain

(4.15) A−1(̺)
n∑

j=1

|f j |0,A;G2

1/4
≤ const.

It remains to verify the finiteness of ̺A(̺)−1g(̺x′) n/(1−α);G2

1/4
. We

have

̺A−1(̺)
( \

G2

1/4

|g(̺x′)|n/(1−α) dx′
)(1−α)/n

= ̺αA−1(̺)
( \

G2̺

̺/4

|g(x)|n/(1−α) dx
)(1−α)/n

≤ dαA−1(d)
( \

G2̺

̺/4

|g(x)|n/(1−α) dx
)(1−α)/n

≤ const, ∀̺ ∈ (0, d),

by the condition (1.1). Thus the conditions of Theorem 2 are satisfied.

By this theorem we have

(4.16) ‖v‖1,B;G1

1/2

≤ c{n, ν,G, max
i,j=1,...,n

(‖aij(̺ ·)‖0,A;G2

1/4
, ̺‖ai(̺ ·)‖0,A;G2

1/4
),A(2̺)}

×
(
|v|0;G2

1/4
+ ̺−1A−1(̺)‖ϕ(̺ ·)‖1,A;Γ 2

1/4
+ ̺A−1(̺) g(̺ ·) n/(1−α);G2

1/4

+ A−1(̺)
n∑

j=1

‖f j(̺ ·)‖0,A;G2

1/4

)
, ∀̺ ∈ (0, d).
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2o. To estimate |v|0;G2

1/4
we use the local estimate at the boundary of

the maximum of the modulus of a solution [5, Theorem 8.25]. We check the
assumptions of that theorem. To this end, set

z(x′) = v(x′) − ̺−1A−1(̺)Φ(̺x′)

and write the problem for the function z:




∂

∂x′i
(aij(̺x′)zx′

j
+ ̺ai(̺x′)z) + ̺bi(̺x′)zx′

i
+ ̺2c(̺x′)z

= G(x′) +
∂F j(x′)

∂x′j
, x′ ∈ G2

1/4,

z(x′) = 0, x′ ∈ Γ 2
1/4,

where

G(x′) ≡ ̺A−1(̺)g(̺x′) −A−1(̺)bi(̺x′)Φx′

i
(̺x′)(4.17)

− ̺A−1(̺)c(̺x′)Φ(̺x′),

F i(x′) ≡ A−1(̺)f i(̺x′) − ̺−1A−1(̺)aij(̺x′)Φx′

j
(̺x′)(4.18)

−A−1(̺)ai(̺x′)Φ(̺x′) (i = 1, . . . , n).

First we verify the smoothness of the coefficients (see the remark at the end
of [5, 8.10]). Let q > n. We have\

G2

1/4

|̺ai(̺x′)|q dx′ = ̺q−n
\

G2̺

̺/4

|ai(x)|q dx(4.19)

≤ c2(G)dq‖ai‖q
0,A;G, ∀̺ ∈ (0, d).

By (iii) we also obtain\
G2

1/4

|̺bi(̺x′)|q dx′ = ̺q−n
\

G2̺

̺/4

|bi(x)|q dx ≤ 4q̺−n
\

G2̺

̺/4

|rbi(x)|q dx(4.20)

≤ 4q̺−n
\

G2̺

̺/4

Aq(r) dx ≤ 2n+2q
\

G2̺

̺/4

r−nAq(r) dx

= 2n+2q mesΩ

2\̺
̺/4

Aq(r)

r
dr

≤ 2n+2q mesΩ · Aq−1(2d)

2d\
0

A(r)

r
dr,\

G2

1/4

|̺2c(̺x′)|q/2 dx′ = ̺q−n
\

G2̺

̺/4

|c(x)|q/2 dx(4.21)
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≤ 4q̺−n
\

G2̺

̺/4

|r2c(x)|q/2 dx

≤ 22q+n
\

G2̺

̺/4

r−nAq/2(r) dx

≤ 22q+n mesΩ · A(q−2)/2(2d)

2d\
0

A(r)

r
dr,

for q > n and all ̺ ∈ (0, d).

In the same way from (4.17) we get

(4.22) ̺A−1(̺) G(x′) q/2;G2

1/4

= ̺A−1(̺)
( \

G2̺

̺/4

̺−n
{
|g(x)|q/2

+
( n∑

i=1

|bi(x)|
)q/2

|∇Φ|q/2 + |c(x)|q/2|Φ(x)|q/2
}
dx

)2/q

.

By (iv) setting q = n/(1 − α) > n and applying Hölder’s inequality we
obtain

(4.23) ̺A−1(̺)
( \

G2̺

̺/4

̺−n|g(x)|q/2 dx
)2/q

≤ c̺αA−1(̺)
( \

G2̺

̺/4

̺−n/2|g(x)|q/2 dx
)2/q

≤ c̺αA−1(̺) g q;G2̺

̺/4

(mesΩ ln 8)1/q

≤ c(d, α, q,mesΩ,A(d)) g q;G2̺

̺/4

,

since by (1.1), ̺αA−1(̺) ≤ dαA−1(d) for all ̺ ∈ (0, d). Similarly,

(4.24) ̺A−1(̺)
( \

G2̺

̺/4

r−n

×
{( n∑

i=1

|bi(x)|
)q/2

|∇Φ|q/2 + |c(x)|q/2|Φ(x)|q/2
}
dx

)2/q

≤ c(mesΩ)2/q‖ϕ‖1,A;G2̺

̺/4

A(q−2)/q(̺)

2\̺
̺/4

A(r)

r
dr.
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From (4.22)–(4.24) we obtain

(4.25) G(̺ ·) q/2;G2

1/4

≤ const

(
q, α, d,mesΩ,A(d),

2\̺
̺/4

A(r)

r
dr

)

× ( g q;G2̺

̺/4

+ ‖ϕ‖1,A;Γ 2̺

̺/4

), q = n/(1 − α) > n.

Finally, in the same way from (4.18) we have

(4.26)
n∑

i=1

\
G2

1/4

|F i(x′)|q dx′

≤ c
(
q,G, max

j=1,...,n

{ n∑

i=1

‖aij‖q
0,A;G,

n∑

i=1

‖ai‖q
0,A;G

})

×
\

G2̺

̺/4

r−nA−q(r)
( n∑

i=1

|f i(x)|q + |∇Φ|q + |Φ|q
)
dx.

It follows from (4.5) as ̺→ +0 that |∇Φ(0)| = 0. Therefore

|∇Φ(x)| = |∇Φ(x) −∇Φ(0)| ≤ A(|x|)‖ϕ‖1,A;Γ 2̺

̺/4

, ∀x ∈ G2̺
̺/4,

and hence

|Φ(x)| ≤ r|∇Φ| ≤ |x|A(|x|)‖ϕ‖1,A;Γ 2̺

̺/4

, ∀x ∈ G2̺
̺/4.

Similarly it follows from (4.13) as ̺→ +0 that f j(0) = 0 for j = 1, . . . , n.
Therefore we have for all x ∈ G2̺

̺/4,

|f j(x)| = |f j(x) − f j(0)| ≤ A(r)[f j]0,A;G2̺

̺/4

.

Consequently, estimating the right side of (4.26) and taking into account
the inequalities obtained, we have

n∑

i=1

F i
q;G2

1/4
≤ c

(
q,G, max

j=1,...,n

{ n∑

i=1

‖aij‖0,A;G,
n∑

i=1

‖ai‖0,A;G

})
(4.27)

× mesΩ ·
( n∑

i=1

‖f i‖0,A;G2̺

̺/4

+ ‖ϕ‖1,A;Γ 2̺

̺/4

)
.

So all conditions of [5, Theorem 8.25] are satisfied. By this theorem we get
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(4.28) sup
x′∈G1

1/2

|z(x′)|

≤ c
(
z 2;G2

1/4
+ G n/(2(1−α));G2

1/4
+

n∑

i=1

F i
n/(1−α);G2

1/4

)

≤ c
(
z 2;G2

1/4
+ g n/(1−α);G2̺

̺/4

+

n∑

i=1

‖f i‖0,A;G2̺

̺/4

+ ‖ϕ‖1,A;Γ 2̺

̺/4

)
.

Setting w(x) = u(x) − ϕ(x) we have for w(x) the problem

(DL)0,2d





∂

∂xi
(aij(x)wxj

+ ai(x)w) + bi(x)wxi
+ c(x)w

= G(x) +
∂F j

∂xj
, x ∈ G2d

0 ,

w(x) = 0, x ∈ Γ 2d
0 ⊂ ∂G2d

0 ,

where

G(x) = g(x) − bi(x)Φxi
− c(x)Φ(x),

F i(x) = f i(x) − aij(x)Φxj
− ai(x)Φ(x).

Moreover, by assumptions (i), (ii),

|aij(x) − δj
i | ≤ ‖aij‖0,A;GA(|x|), x ∈ G.

By [6, Theorem 1] there is a constant c > 0 independent of w, G, F i such
that \

G̺
0

r2−n|∇w|2 dx ≤ c̺2λ
\

G2d
0

{
|w(x)|2 + |∇w|2 +G2(x) +

n∑

i=1

|F i(x)|2(4.29)

+ r4−n−2λH−1(r)G2(x) + r2−n−2λ

×H−1(r)

n∑

i=1

|F i(x)|2
}
dx, ∀̺ ∈ (0, d).

Our assumptions guarantee that the integral on the right side is finite. Since
z(x′) = ̺−1A−1(̺)w(̺x′) we obtain from (4.29),\

G2

1/4

|∇′z|2 dx′ ≤ 2n−2̺−2A−2(̺)
\

G2̺

̺/4

r2−n|∇w|2 dx(4.30)

≤ c̺2λ−2A−2(̺)
\
G

{
|w|2 + |∇w|2 +G2(x)
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+

n∑

i=1

|F i(x)|2 + r4−n−2λH−1(r)G2(x)

+ r2−n−2λH−1(r)
n∑

i=1

|F i(x)|2
}
dx.

By assumptions (i)–(iv) we have

(4.31)

|G(x)|2 ≤ c{|g|2 + A2(r)(r−2|∇Φ|2 + r−4Φ2)},

n∑

i=1

|F i(x)|2 ≤ c
{ n∑

i=1

|f i(x)|2

+ max
i,j=1,...,n

(‖aij‖0,A;G, ‖a
i‖0,A;G)(|∇Φ|2 + Φ2)

}
.

Applying now the Friedrichs inequality and taking into account (4.1), we
obtain from (4.30), (4.31),

z 2
2;G2

1/4

≤ c0 ∇′z 2
2;G2

1/4

(4.32)

≤ c̺2λ−2A−2(̺)
\
G

{
|w|2 + |∇w|2 + g2(x)

+

n∑

i=1

|f i(x)|2 + |∇Φ|2 + Φ2 + r4−n−2λH−1(r)g2(x)

+ r2−n−2λH−1(r)

n∑

i=1

|f i(x)|2

+ r2−n−2λH−1(r)|∇Φ|2 + r−2A2(r)|∇Φ|2
}
dx

≤ const
{
g 2

n/(1−α);G +

n∑

i=1

‖f i‖2
0,A;G + ‖ϕ‖2

1,A;G

+
\
G

(
|w|2 + |∇w|2 + r4−n−2λH−1(r)g2(x)

+ r2−n−2λH−1(r)

n∑

i=1

|f i(x)|2

+ r2−n−2λH−1(r)|∇Φ|2
)
dx

}

by assumptions (iii)–(v). By the definition of z(x′), inequalities (4.28), (4.32)
and assumptions (i)–(v) we finally obtain

|v|0;G2

1/4
≤ |z|0;G2

1/4
+ ̺−1A−1(̺)|ϕ(̺ ·)|0;G2

1/4
(4.33)
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≤ c
(
g n/(1−α);G +

n∑

i=1

‖f i‖0,A;G + ‖ϕ‖1,A;∂G

+
{ \

G

(
|w|2 + |∇w|2 + r4−n−2λH−1(r)g2(x)

+ r2−n−2λH−1(r)

n∑

i=1

|f i(x)|2

+ r2−n−2λH−1(r)|∇Φ|2
)
dx

}1/2)
.

3o. Returning to the variables x, u(x), we now obtain from inequalities
(4.16), (4.33),

(4.34) ̺−1A−1(̺) sup
x∈G̺

̺/2

|u(x)| + A−1(̺) sup
x∈G̺

̺/2

|∇u(x)|

+ sup
x,y∈G̺

̺/2

x6=y

|∇u(x) −∇u(y)|

A(̺)B(|x− y|)

≤ c
(
g n/(1−α);G +

n∑

i=1

‖f i‖0,A;G + ‖ϕ‖1,A;∂G

+
{ \

G

(
|u|2 + |∇u|2 + r4−n−2λH−1(r)g2(x)

+ r2−n−2λH−1(r)

n∑

i=1

|f i(x)|2

+ r2−n−2λH−1(r)|∇Φ|2
)
dx

}1/2)
.

Setting |x|=2̺/3 we deduce from (4.34) the validity of (4.2), (4.3). This
completes the proof of Theorem 3.

Remark. As an example of A that satisfies all the conditions of Theo-
rem 3, besides the function rα, one may take A(r) = rα ln(1/r), provided
λ ≥ 1+α. In the case of A(r) = rα the result of [1] follows from Theorem 3
for a single equation and the estimate (4.2) coincides with [6, (10)].

5. Global regularity and solvability

Theorem 4. Let A be an α-Dini function (0 < α < 1) that satisfies

the conditions (1.5), (1.6), (4.1). Let G\{O} be a domain of class C1,A, and
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O ∈ ∂G be a conical point of G. Suppose that assumptions (i)–(iv) are valid

and

(vi)
\
G

(c(x)η − ai(x)Diη) dx ≤ 0, ∀η ≥ 0, η ∈ C1
0 (G).

Then the generalized problem (DL) has a unique solution u ∈ C1,A(G) and

we have the estimate

‖u‖1,A;G ≤ c
(
g n/(1−α);G +

n∑

i=1

‖f i‖0,A;G + ‖ϕ‖1,A;∂G(5.1)

+
{ \

G

(
r4−n−2λH−1(r)g2(x)

+ r2−n−2λH−1(r)

n∑

i=1

|f i(x)|2

+ r2−n−2λH−1(r)|∇Φ|2
)
dx

}1/2)
.

P r o o f. The inequality (4.34) implies that

(5.2) |∇u(x) −∇u(y)|

≤ cB(|x− y|)
(
g n/(1−α);G +

n∑

i=1

‖f i‖0,A;G

+ ‖ϕ‖1,A;∂G +
{ \

G

(
|u|2 + |∇u|2 + r4−n−2λH−1(r)g2(x)

+ r2−n−2λH−1(r)

n∑

i=1

|f i(x)|2 + r2−n−2λH−1(r)|∇Φ|2
)
dx

}1/2)

for all x, y ∈ G̺
̺/2 and all ̺ ∈ (0, d).

From (4.34), (5.2) we now infer that u ∈ C1,B(Gd
0). Indeed, let x, y ∈ Gd

0

and ̺ ∈ (0, d). If x, y ∈ G̺
̺/2 then (5.2) holds. If |x− y| > |̺| = |x| then by

(4.34) we obtain

|∇u(x) −∇u(y)|

B(|x− y|)

≤ 2cA(|x|)B−1(|x|)
(
g n/(1−α);G + ‖ϕ‖1,A;∂G

+

n∑

i=1

‖f i‖0,A;G +
{ \

G

(
|u|2 + |∇u|2 + r4−n−2λH−1(r)g2(x)
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+ r2−n−2λH−1(r)

n∑

i=1

|f i(x)|2 + r2−n−2λH−1(r)|∇Φ|2
)
dx

}1/2)

≤ 2cα
(
g n/(1−α);G + ‖ϕ‖1,A;∂G +

n∑

i=1

‖f i‖0,A;G

+
{ \

G

(
|u|2 + |∇u|2 + r4−n−2λH−1(r)g2(x)

+ r2−n−2λH−1(r)

n∑

i=1

|f i(x)|2 + r2−n−2λH−1(r)|∇Φ|2
)
dx

}1/2)

in view of (1.3). Because of the condition (1.5) for the equivalence of A and

B, we derive u ∈ C1,A(Gd
0) and the estimate

‖u‖1,A;Gd
0
≤ c

(
g n/(1−α);G +

n∑

i=1

‖f i‖0,A;G + ‖ϕ‖1,A;∂G(5.3)

+
{ \

G

(
|u|2 + |∇u|2 + r4−n−2λH−1(r)g2(x)

+ r2−n−2λH−1(r)
n∑

i=1

|f i(x)|2

+ r2−n−2λH−1(r)|∇Φ|2
)
dx

}1/2)
,

following from the above arguments.
By means of a partition of unity, from the bounds (3.1) of Theorem 2

and (5.3) we derive

‖u‖1,A;G ≤ c
(
g n/(1−α);G +

n∑

i=1

‖f i‖0,A;G + ‖ϕ‖1,A;∂G(5.4)

+ |u|0;G +
{ \

G

(
|u|2 + |∇u|2 + r4−n−2λH−1(r)g2(x)

+ r2−n−2λH−1(r)

n∑

i=1

|f i(x)|2

+ r2−n−2λH−1(r)|∇Φ|2
)
dx

}1/2)
.

By the assumption (vi) that guarantees the uniqueness of the solution
for the problem (DL), we have the bound [5, Corollary 8.7]\

G

(|u|2 + |∇u|2) dx ≤ C
\
G

(
g2 +

n∑

i=1

|f i|2 + |∇Φ|2 + Φ2
)
dx,
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which together with the global boundedness of weak solutions [5, Theorem
8.16], and the bound (5.4), leads to the desired estimate (5.1).

Finally, the global estimate (5.1) leads to the assertion on the unique
solvability in C1,A(G). This is proved by an approximation argument using
the relevant propositions from [8] in the same way as in [5, Theorem 8.34].

Remark. The conclusion of Theorem 4 is best possible. This is shown
for A(r) = rα, λ ≥ 1 + α, α ∈ (0, 1), in [6] (see also examples in [2]).
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