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Univalent harmonic mappings II
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Abstract. Let a < 0 < b and Ω(a, b) = C−((−∞, a]∪[b,+∞)) and U = {z : |z| < 1}.
We consider the class SH(U,Ω(a, b)) of functions f which are univalent, harmonic and
sense-preserving with f(U) = Ω and satisfying f(0) = 0, fz(0) > 0 and fz̄(0) = 0.

1. Introduction. Let SH be the class of functions f which are univalent,
sense-preserving, harmonic mappings of the unit disk U = {z : |z| < 1}
and satisfy f(0) = 0 and fz(0) > 0. Let F and G be analytic in U with
F (0) = G(0) = 0 and Re f(z) = Re F (z) and Im f(z) = Re G(z) for z in U .
Then h = (F + iG)/2 and g = (F − iG)/2 are analytic in U and f = h+g. f
is locally one-to-one and sense-preserving if and only if |g′(z)| < |h′(z)| for z
in U (cf. [4]). If h(z) = a1z +a2z

2 + . . . , a1 > 0, and g(z) = b1z + b2z
2 + . . .

for z in U , it follows that |b1| < a1 and hence a1f − b1f also belongs to SH .
Thus consideration is often restricted to the subclass S0

H of SH consisting
of those functions in SH with fz̄(0) = 0.

Various authors have studied subclasses of S0
H consisting of functions

mapping U onto a specific simply connected domain. See for example Hen-
gartner and Schober [5], Abu-Muhanna and Schober [1], and Cima and the
author [2], [3]. Recently the author [7] studied the subclass of S0

H consisting
of functions mapping U onto the plane with the interval (−∞, a], a < 0,
removed. See also Hengartner and Schober [6]. In the present paper we con-
sider the case when f(U) is C − ((−∞, a] ∪ [b,+∞)), a < 0 < b.

Let a < 0 < b and Ω(a, b) = C−((−∞, a]∪[b,+∞)). Then SH(U,Ω(a, b))
is the class of functions f in S0

H with f(U) = Ω(a, b). Without loss of
generality, we assume that a + b ≥ 0.

In the sequel F and G will be functions analytic in U with F (0) = G(0) =
0, Re f(z) = ReF (z) and Im f(z) = Re G(z) for z in U . If h = (F + iG)/2
and g = (F − iG)/2, then f = h + g and |g′(z)| < |h′(z)| for z in U .
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2.Preliminary lemmas. Let P be the class of functions P (z) which are
analytic in U with P (0) = 1 and ReP (z) > 0 for z in U . To get an integral
representation of functions in SH(U,Ω(a, b)) we require a few lemmas.

Lemma 1. Let

T (x) =

1\
0

(

a(1 + t)2

(1 + xt + t2)2
+

b(1 − t)2

(1 − xt + t2)2

)

dt(2.1)

and

S(x) =

1\
0

(

a(1 − t)2

(1 + xt + t2)2
+

b(1 + t)2

(1 − xt + t2)2

)

dt(2.2)

where a < 0 < b, a + b ≥ 0 and −2 < x < 2. There exist unique numbers

c1 and c2 with −2 < c1 < 0 < c2 < 2 so that S(c1) = T (c2) = 0. Moreover ,
T (x) ≤ 0 ≤ S(x) if and only if c1 ≤ x ≤ c2.

P r o o f. We note that

S(x) − T (x) =

1\
0

(

−2at

(1 + xt + t2)2
+

2bt

(1 − xt + t2)2

)

dt ≥ 0.

Thus T (x) ≤ S(x) for −2 < x < 2. Also, it is easily checked that T ′(x) > 0
and S′(x) > 0 for −2 < x < 2. Thus T (x) and S(x) are both strictly
increasing. Since limx→−2 T (x) = limx→−2 S(x) = −∞ and limx→2 T (x) =
limx→2 S(x) = +∞, it follows that there exist unique c1 and c2 so that
S(c1) = T (c2) = 0 and that c1 < c2. Moreover, S(0) > 0, thus c1 < 0 and
T (x) ≤ 0 ≤ S(x) if and only if c1 ≤ x ≤ c2.

Lemma 2. Let P (z) be in P and

Q(x) = a

1\
0

1 − t2

(1 + xt + t2)2
Re P (t) dt(2.3)

+ b

1\
0

1 − t2

(1 − xt + t2)2
Re P (−t) dt

where a < 0 < b, a + b ≥ 0 and −2 < x < 2. There exists a unique

c, −2 < c < 2, so that Q(c) = 0.

P r o o f. It is easily checked that Q′(x) > 0 for −2 < x < 2, limx→−2 Q(x)
= −∞ and limx→2 Q(x) = +∞. The lemma then follows.

Lemma 3. With the same hypotheses as in Lemma 2 and with a and b
fixed we have c1 ≤ c ≤ c2 where c1 and c2 are given in Lemma 1. The range

for c is sharp in the sense that for each c, c1 ≤ c ≤ c2, there exists P (z) in

P such that the corresponding Q given by (2.3) satisfies Q(c) = 0.
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P r o o f. Let P (z) be in P and the corresponding Q in (2.3) satisfy Q(c)
= 0. Using the inequalities (1− |z|)/(1+ |z|) ≤ Re P (z) ≤ (1+ |z|)/(1− |z|)
for z in U , we obtain

(1 − t)2

(1 + ct + t2)2
≤

(1 − t2)Re P (t)

(1 + ct + t2)2
≤

(1 + t)2

(1 + ct + t2)2
,

(1 − t)2

(1 − ct + t2)2
≤

(1 − t2)Re P (−t)

(1 − ct + t2)2
≤

(1 + t)2

(1 − ct + t2)2
.

Since a < 0 < b, this gives

1\
0

(

a(1 + t)2

(1 + ct + t2)2
+

b(1 − t)2

(1 − ct + t2)2

)

dt

≤ Q(c) ≤

1\
0

(

a(1 − t)2

(1 + ct + t2)2
+

b(1 + t)2

(1 − ct + t2)2

)

dt.

Thus T (c) ≤ 0 ≤ S(c) where T and S are given in Lemma 1. From Lemma 2
we have c1 ≤ c ≤ c2.

To see that the range of c is sharp, we note that Q(c1) = 0 when P (z) =
(1 − z)/(1 + z) and Q(c2) = 0 when P (z) = (1 + z)/(1 − z). If c1 < c < c2

then T (c) < 0 < S(c). That is,

(2.4)

1\
0

(

a(1 + t)2

(1 + ct + t2)2
+

b(1 − t2)

(1 − ct + t2)2

)

dt

< 0 <

1\
0

(

a(1 − t)2

(1 + ct + t2)2
+

b(1 + t)2

(1 − ct + t2)2

)

dt.

With c fixed, let

φ(P ) = a

1\
0

(1 − t2)Re P (t)

(1 + ct + t2)2
dt + b

1\
0

(1 − t2)Re P (−t)

(1 − ct + t2)2
dt;

then φ is a real-valued continuous functional on the convex space P. From
(2.4) it follows that

φ

(

1 + z

1 − z

)

< 0 < φ

(

1 − z

1 + z

)

For 0 ≤ λ ≤ 1,

φ

(

λ
1 − z

1 + z
+ (1 − λ)

1 + z

1 − z

)

is a real-valued continuous function of λ for 0 ≤ λ ≤ 1, with φ(0) < 0 < φ(1).
Then there is λ1 so that φ(λ1) = 0. The function P1(z) = λ1(1− z)/(1 + z)
+ (1−λ1)(1+ z)/(1− z) is a member of P and the corresponding Q defined
by (2.3) satisfies Q(c) = 0.
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3. The class SH(U,Ω(a, b)). In the sequel the numbers c, c1 and c2 are
those given by Lemmas 1–3.

Let F(a, b) be the class of functions which have the form

(3.1) f(z) = A

[

Re

z\
0

(1 − ζ2)P (ζ)

2(1 + cζ + ζ2)2
dζ + i Im

z

(1 + cz + z2)2

]

where

A = b
/

1\
0

(1 − t2)ReP (t)

(1 + ct + t2)2
dt

with P (z) in P and c is chosen so that c1 ≤ c ≤ c2 and

(3.2) b
/

1\
0

(1 − t2)Re P (t)

(1 + ct + t2)2
dt = a

/

−1\
0

(1 − t2)Re P (t)

(1 + ct + t2)2
dt.

We note that by Lemmas 1–3, for each P in P there is a unique c, c1 ≤
c ≤ c2, for which (3.2) is satisfied.

Theorem 1. If f is a member of F(a, b), then f is harmonic, sense-

preserving and univalent in U . Moreover , f(U) is convex in the direction

of the real axis and f(U) ⊂ Ω(a, b).

P r o o f. Let f = h + g = ReF + iRe G; then

F (z) = A

z\
0

(1 − ζ)2P (ζ)

(1 + cζ + ζ2)2
dζ and G(z) =

−iAz

1 + cz + t2
.

Since
g′(z)

h′(z)
=

F ′(z) − iG′(z)

F ′(z) + iG′(z)
=

P (z) − 1

P (z) + 1
,

it follows that |g′(z)| < |h′(z)| for z in U . Thus f is locally one-to-one and
sense preserving in U .

Also,

h(z) − g(z) = iG(z) =
Az

1 + cz + z2

maps U onto a domain which is convex in the direction of the real axis. By
a theorem of Clunie and Sheil-Small [4], f is univalent and f(U) is convex
in the direction of the real axis. Also, f(z) is real if and only if z is real.
Since A > 0 and Re P (z) > 0, it follows that f(r) = ReF (r) is increasing in
[−1, 1] and by (3.2), limr→−1+ f(r) = a and limr→1− f(r) = b. Thus f(U)
omits (−∞, a] and [b,+∞). Hence f(U) ⊂ Ω(a, b).

Theorem 2. SH(U,Ω(a, b)) ⊂ F(a, b).

P r o o f. Let f be a member of SH(U,Ω(a, b)) and f = h + g. Since
Ω(a, b) is convex in the direction of the real axis, by a result of Clunie and
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Sheil-Small [4], h − g = iG is univalent and convex in the direction of the
real axis. Thus G is convex in the direction of the imaginary axis.

Let h(z) = a1z + a2z
2 + . . . , a1 > 0, and g(z) = b2z

2 + b3z
3 + . . . ; then

G = −i(h−g) = −a1iz+ . . . Since f(U) = Ω(a, b), it follows that ReG(z) =
Im f(z) is 0 on the boundary of U . Since G is convex in the direction of the
imaginary axis, it follows that G(U) is C slit along one or two infinite rays
along the imaginary axis. Thus G(z)/(−a1i) maps U into C slit along one or
two infinite rays along the real axis. However, G(z)/(−a1i) is a member of
the class S of functions q(z) analytic and univalent in U and normalized by
q(0) = q′(0)−1 = 0. Making use of subordination arguments, it follows that
G(z)/(−a1i) = z/(1 + cz + z2), −2 ≤ c ≤ 2. Hence, Im f(r) = ReG(r) = 0
for −1 < r < 1. Since f is one-to-one and fz(0) > 0, the function f(r) is
increasing on (−1, 1). Thus limr→−1+ f(r) = a and limr→1− f(r) = b.

Since |g′(z)/h′(z)| < 1, it follows that

P (z) = (h′(z) + g′(z))/(h′(z) − g′(z))

is in P. Thus, h′(z) + g′(z) = (h′(z) − g′(z))P (z) = iG′(z)P (z).

Hence,

F (z) = h(z) + g(z) =

z\
0

iG′(ζ)P (ζ) dζ = a1

z\
0

(1 − ζ2)P (ζ)

(1 + cζ + ζ2)2
dζ.

Therefore,

f(z) = a1

[

Re

z\
0

(1 − ζ2)P (ζ)

(1 + cζ + ζ2)2
dζ + i Im

z

1 + cz + z2

]

for some c, −2 ≤ c ≤ 1.

Since a = limr→−1+ f(r) and b = limr→1− f(r), we have

a1

−1\
0

(1 − t2)Re P (t)

(1 + ct + t2)2
dt = a and a1

1\
0

(1 − t2)Re P (t)

(1 + ct + t2)2
dt = b.

Thus c must be such that

(3.3) a

1\
0

(1 − t2)Re P (t)

(1 + ct + t2)2
dt + b

1\
0

(1 − t2)Re P (−t)

(1 − ct + t2)2
dt = 0.

By Lemmas 2 and 3 there is a unique c, c1 ≤ c ≤ c2, satisfying (3.3).
Thus f is a member of F(a, b).

Lemma 4. F(a, b) is closed.

P r o o f. Let fn be a sequence in F(a, b) with fn converging to f uniformly
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on compact subsets of U . Suppose

fn(z) = b

( 1\
0

(1 − t)2 RePn(t)

(1 + dnt + t2)2
dt

)

−1

×

[

Re

z\
0

(1 − ζ2)Pn(ζ)

(1 + dnζ + ζ2)2
dζ + i Im

z

1 + dnz + z2

]

,

where Pn is in P and dn satisfies (3.2) with c1 ≤ dn ≤ c2. Since P is normal
and c1 ≤ dn ≤ c2 we may assume that Pn converges uniformly on compact
subsets of U to P (z) in P and dn converges to some c. It follows that (3.2)
is satisfied for this c and P (z) and that f has the form (3.1) and hence is a
member of F(a, b).

Theorem 3. SH(U,Ω(a, b)) = F(a, b).

P r o o f. Let f(z) have the form (3.1) where (3.2) is satisfied and let rn be
a sequence with 0 < rn < 1 and lim rn = 1. Let Pn(z) = P (rnz) and denote
by fn(z) the function obtained from (3.1) and (3.2) by replacing P (z) with
Pn(z). Let cn be the value of c satisfying (3.2) when P is replaced by Pn.
We claim that fn is a member of SH(U,Ω(a, b)). To see this let

An = b
/

Re

1\
0

(1 − ζ2)Pn(ζ)

(1 + cnζ + ζ2)2
dζ, Fn(z) = An

z\
0

(1 − ζ2)Pn(ζ)

(1 + cnζ + ζ2)2
dζ.

Let sn = [−cn + i
√

4 − c2
n ]/2; then (1 + cnζ + ζ2) = (ζ − sn)(ζ − sn). Since

Pn is analytic for |z| ≤ 1, there exists δ > 0 so that for |z − sn| < δ,

Pn(z) = Pn(sn) + P ′

n(sn)(z − sn) +
P ′′

n (sn)

2
(z − sn)2 + . . .

Thus, for 0 < |z − sn| < δ,

F ′

n(z) =
An(1 − z2)Pn(z)

(z − sn)2(z − sn)2

= An

[

B−2

(z − sn)2
+

B−1

(z − sn)
+ B0 + B1(z − sn) + . . .

]

.

Let D = {z : |z − sn| < δ} − {z : z = sn + tei arg sn , 0 ≤ t ≤ δ}. If
z0 = sn + tei arg sn , −δ < t < 0, z0 fixed, then for z ∈ D,

Fn(z) − Fn(z0) =

z\
z0

F ′

n(ζ) dζ

where the path of integration is in D. Thus for z in D,

Fn(z) = An

[

d−1

z − sn

+ d log(z − sn) + q(z)

]
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where q(z) is analytic at z = sn, and

d−1 =
1 − s2

n

4 − c2
n

Pn(sn).

Thus Re d−1 > 0. We take the branch of log such that for z in D,

log(z − sn) = ln |z − sn| + i arg(z − sn)

where arg sn < arg(z − sn) < arg sn + 2π. Thus for z in D,

Re fn(z) = ReFn(z) = An

[

Re
d1

z − sn

+ (Re d) ln |z − sn|

− (Im d) arg(z − sn) + Re q(z)

]

.

We want to prove that fn(z) cannot have a finite cluster point at z = sn.
Let zj = sn + tje

iθj be in U ∩ D with tj > 0 and lim tj = 0 and such
that

(3.4) lim
j→∞

Im

(

zj

(1 + cnzj + z2
j )

)

= l.

Straightforward computation gives

Im

[

zj

1 + cnzj + z2
j

]

=
−2(Im sn)Re(sne−iθj ) + tjTj

tj |2i Im sn + tjeiθj |2

where Tj is bounded. Because of (3.4), we must have

lim
j→∞

Re(sne−iθj ) = 0.

We now note that

d−1e
−iθj =

(1 − s2
n)e−iθjPn(sn)

4 − c2
n

=
(1/sn − sn)sne−iθjPn(sn)

4 − c2
n

=
(sn − sn)sne−iθjPn(sn)

4 − c2
n

=
−2i(Im sn)sne−iθjPn(sn)

4 − c2
n

.

Thus,

Re(d−1e
−iθj ) =

2(Im sn) Im(sne−iθjPn(sn))

4 − c2
n

=
Im(sne−iθjPn(sn))

√

4 − c2
n

.

Since limj→∞ Re(sne−iθj )=0, it follows that the only possible accumulation
points of {sne−iθj} are ±i. Thus the only possible accumulation points of
{sne−iθjPn(sn)} are ±iPn(sn). Moreover, Im(±iPn(sn))=±RePn(sn) 6=0.
Thus Re(d−1e

−iθj ) is bounded away from 0.
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It now follows that

|Re fn(zj)|

= |ReFn(zj)|

= An

∣

∣

∣

∣

Re(d−1e
−iθj )

tj
+ (Re d) ln(tj) − (Im d) arg(tje

−iθj ) + Re q(zj)

∣

∣

∣

∣

= An

∣

∣

∣

∣

Re(d−1e
−iθj ) + (Re d)tj ln(tj) − tj(Im d) arg(tje

−iθj )

tj
+ Re q(zj)

∣

∣

∣

∣

approaches ∞ as j → ∞. Thus fn has no finite cluster points at z = sn.

Similarly, fn has no finite cluster points at z = sn. At all other points of
|z| = 1, the finite cluster points of fn(z) are real. Since fn(U) ⊂ Ω(a, b) and
limr→−1+ fn(r) = a and limr→1− fn(r) = b, it follows that fn(U) = Ω(a, b).

Thus for each n, fn is a member of SH(U,Ω(a, b)). We know that the
Pn converge to P uniformly on compact subsets of U . There exists a sub-
sequence cnk

convergent to some s. But then (3.2) will be satisfied with c
replaced by s. Since the solution to (3.2) is unique, we must have s = c.
Thus fnk

converges to f uniformly on compact subsets of U . Therefore, f

is a member of SH(U,Ω(a, b)) and F(a, b) ⊂ SH(U,Ω(a, b)). Since F(a, b)
is closed and SH(U,Ω(a, b)) ⊂ F(a, b), we have SH(U,Ω(a, b)) ⊂ F(a, b).

Thus F(a, b) = SH(U,Ω(a, b)).

4. The case a=−b. Referring to the proof of Lemma 1, if a = −b then

T (0) =

1\
0

−4bt

(1 + t2)2
dt < 0.

Thus c2 > 0. Moreover, since S(−x) = −T (x), we have c1 = −c2.

Since SH(U,Ω(−b, b)) are the only classes that contain odd functions,
we will be interested in f in F(−b, b) and f odd.

Lemma 5. Let f ∈ F(−b, b) and be odd. If f(z) = h(z) + g(z), then both

h and g are odd.

P r o o f. Since f(−z) = −f(z), we have h(z)+g(z) = −(h(−z)+g(−z)).

Thus h(z) + h(−z) = −g(z) + g(−z). It follows that h(z) + h(−z) and

h(z) + h(−z) are both analytic in U . Thus h(z) + h(−z) is constant. Since
its value is 0 at z = 0, we have h(z) = −h(−z). Similarly, g(z) is odd.

Lemma 6. If f ∈ F(−b, b) and f is odd then in the representation (3.1),
P (z) is even and c = 0.
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P r o o f. Let h(z) = a1z + a2z
2 + . . . ; then

h(z) =
F (z) + iG(z)

2
=

a1

2

[ z\
0

(1 − ζ2)P (ζ)

(1 + cζ + ζ2)2
dζ +

z

1 + cz + z2

]

where c and P satisfy (3.2). Since (1−z2)/(1+cz+z2)2 = (z/(1+cz+z2))′,
this can be written as

h(z) =
a1

2

z\
0

(1 − ζ2)(P (ζ) + 1)

(1 + cζ + ζ2)2
dζ.

By Lemma 5, h(z) = −h(−z). Thus,

z\
0

(1 − ζ2)(P (ζ) + 1)

(1 + cζ + ζ2)2
dζ = −

−z\
0

(1 − ζ2)(P (ζ) + 1)

(1 + cζ + ζ2)2
dζ.

Let z = r, 0 < r < 1; then

r\
0

(1 − t2)(P (t) + 1)

(1 + ct + t2)2
dt =

r\
0

(1 − t2)(P (−t) + 1)

(1 − ct + t2)2
dt.

Taking real parts, we get

r\
0

(1 − t2)(Re P (t) + 1)

(1 + ct + t2)2
dt =

1\
0

(1 − t2)(Re P (−t) + 1)

(1 − ct + t2)2
dt.

Letting r → 1, since −2 < −c2 ≤ c ≤ c2 < 2, we obtain

(4.1)

1\
0

(1 − t2)(Re P (t) + 1)

(1 + ct + t2)2
dt =

1\
0

(1 − t2)(Re P (−t) + 1)

(1 − ct + t2)2
dt.

But (3.2) with a = −b gives

(4.2)

1\
0

(1 − t2)Re P (−t)

(1 − ct + t2)2
dt =

1\
0

(1 − t2)Re P (t)

(1 + ct + t2)2
dt.

Equalities (4.1) and (4.2) imply

1\
0

1 − t2

(1 + ct + t2)2
dt =

1\
0

1 − t2

(1 − ct + t2)2
dt.

Thus 1/(2 + c) = 1/(2 − c). Hence c = 0.

We now have

h(z) =
a1

2

[ z\
0

(1 − ζ2)P (ζ)

(1 + ζ2)2
dζ +

z

1 + z2

]
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and h(z) is odd. Thus

q(z) =

z\
0

(1 − ζ2)P (ζ)

(1 + ζ2)2
dζ

is odd. Hence q′(z) = (1− z2)P (z)/(1 + z2)2 is even and thus P (z) is even.

Lemma 7. Let f ∈ F(−b, b) with representation (3.1). If P (z) is even,
then c = 0 and f is odd.

P r o o f. If P (z) is even, then Q(x) defined by (2.3), with a = −b, satisfies

Q(0) = −

1\
0

(1 − t2)Re P (t)

(1 + t2)2
dt +

1\
0

(1 − t2)Re P (−t)

(1 + t2)2
dt = 0.

But the c given in Lemma 2 is unique. Thus c = 0. Therefore

(4.3) f(z) = a1

[

Re

z\
0

(1 − ζ2)P (ζ)

(1 + ζ2)2
dζ + i Im

z

(1 + z2)

]

,

and since P (z) is even, it is easily checked that f(−z) = −f(z).

We now let

G(−b, b) = {f ∈ F(−b, b) : f is odd}.

If f ∈ G(−b, b), then f has the representation (4.3) with P (z) in P and
P (z) even. Also,

(4.4) a1 = b
/

1\
0

(1 − t2)Re P (t)

(1 + t2)2
dt.

We now easily obtain

Theorem 4. If f ∈ G(−b, b), then

(4.5)
4b

π
≤ a1 ≤

8b

π
and the inequalities are sharp.

P r o o f. Since P ∈ P and P is even, (1 − |z|2)/(1 + |z|2) ≤ ReP (z) ≤
(1 + |z|2)/(1 − |z|2). Thus

π

8
=

1\
0

(1 − t2)2

(1 + t2)3
dt ≤

1\
0

(1 − t2)Re P (t)

(1 + t2)2
dt ≤

1\
0

dt

1 + t2
=

π

4

and the result follows from (4.4). Equality is attained on the right side of
(4.5) when P (z) = (1 − z2)/(1 + z2) and on the left side when P (z) =
(1 + z2)/(1 − z2). The corresponding extremal functions are

(4.6) f1(z) =
8b

π

[

Re

[

z(1 − z2)

2(1 + z2)2
+

1

2
arctan z

]

+ i Im
z

1 + z2

]
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and

(4.7) f2(z) =
4b

π

[

Re(arctan(z)) + i Im
z

1 + z2

]

.

We find in Section 5 that f1(z) is actually a member of SH(U,Ω(−b, b)).
Thus the right side of (4.5) is sharp for odd functions in SH(U,Ω(−b, b)).

Theorem 5. Let f(z) = h(z) + g(z) be in G(−b, b) and suppose

h(z) =

∞
∑

n=0

a2n+1z
2n+1 and g(z) =

∞
∑

n=1

b2n+1z
2n+1.

Then

|a2n+1| ≤
(n + 1)2

2n + 1
|a1|, n = 0, 1, 2, . . . ,(4.8)

|b2n+1| ≤
n2

2n + 1
|a1|, n = 1, 2, . . . ,(4.9)

and

(4.10) |a2n+1 − b2n+1| = |a1|

and the inequalities are sharp in SH(U,Ω(−b, b)).

P r o o f. We have

(4.11) h(z) =
a1

2

[ z\
0

(1 − ζ2)P (ζ)

(1 + ζ2)2
dζ +

z

1 + z2

]

where P (z) is in P and is even. Let P (z) = 1 +
∑

∞

n=1 p2nz2n; then for
|z| < 1,

1 − z2

(1 + z2)2
P (z) = 1 +

∞
∑

n=1

d2nz2n

where

d2n =
n

∑

k=0

(−1)k(2k + 1)p2(n−k) and p0 = 1.

Then (4.11) gives

2a2n+1

a1
=

1

2n + 1

n
∑

k=0

(−1)k(2k + 1)p2(n−k) + (−1)n(4.12)

=
1

2n + 1

n−1
∑

k=0

(−1)k(2k + 1)p2(n−k) + 2(−1)n.
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Since |pn| ≤ 2 for all n, we have

2|a2n+1|

|a1|
≤

2

2n + 1

n−1
∑

k=0

(2k + 1) + 2 =
2n2

2n + 1
+ 2 =

2(n + 1)2

2n + 1
,

giving (4.8).

To see the sharpness, let P (z) = (1 − z2)/(1 + z2). With this choice of
P , we have p2n = 2(−1)n and from (4.12),

2a2n+1

a1
=

1

2n + 1

n−1
∑

k=0

(−1)k(2k + 1)(−1)n−k · 2 + 2(−1)n

= (−1)n

[

2

(2n + 1)

n−1
∑

k=0

(2k + 1) + 2

]

=
2(−1)n(n + 1)2

2n + 1
,

giving equality in (4.8). The extremal function is the f1(z) given in (4.6).

Next we have

g(z) =
a1

2

[ z\
0

(1 − ζ2)P (ζ)

(1 + ζ2)2
dζ −

z

1 + z2

]

.

If g(z) =
∑

∞

n=1 b2n+1z
2n+1, then

(4.13)
2b2n+2

a1
=

1

2n + 1

n−1
∑

k=0

(−1)k(2k + 1)p2(n−k).

Thus

2|b2n+1|

|a1|
≤

2

2n + 1

n−1
∑

k=0

(2k + 1) =
2n2

2n + 1
,

giving (4.9). Equality again occurs when P (z) = (1− z2)/(1+ z2) and f1(z)
is given in (4.6).

Finally, from (4.10) and (4.11),

|a2n+1 − b2n+1| = |(−1)na1| = |a1|.

We remark that the inequalities involved are actually sharp for odd func-
tions in SH(U,Ω(−b, b)) since f1 ∈ SH(U,Ω(−b, b)).

Theorem 6. Let f(z) = h(z) + g(z) be a member of G(−b, b). Then for

|z| = r < 1,

(4.14)
|a1|(1 − r2)

(1 + r2)3
≤ |fz(z)| ≤

|a1|(1 + r2)

(1 − r2)3

and the inequalities are sharp.
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P r o o f. We have

h(z) =
a1

2

[ z\
0

(1 − ζ2)P (ζ)

(1 + ζ2)2
dζ +

z

1 + z2

]

.

Thus,

(4.15) fz = h′(z) =
a1(1 − z2)

2(1 + z2)2
(P (z) + 1).

Since P (z) is in P and is even, we can write P (z) = (1 − w(z))/(1 + w(z))
where w(z) = d2z

2 + . . . is analytic in U and |w(z)| ≤ |z|2 for z in U . Thus
P (z) + 1 = 2/(1 + w(z)). Hence

(4.16)
2

1 + r2
≤

2

1 + |w(z)|
≤ |P (z) + 1| ≤

2

1 − |w(z)|
≤

2

1 − r2
.

Using (4.10) and (4.15) we obtain the inequalities (4.14). Equality on the
right side of (4.14) is attained by f1(z) at z = ±ir and equality on the left
side of (4.14) is attained by f1(z) when z = ±r.

5. The extremal functions. We now verify that the extremal function
f1(z) given by (4.6) is actually a member of SH(U,Ω(−b, b)), while the
function f2(z) given by (4.7) maps U into the strip {z : −b < Re z < b} and
hence is a member of G(−b, b) − SH(U,Ω(−b, b)).

To see this we first prove that f1(z) has no non-real finite cluster points
at z = i. Let zj = i + tje

iθj be such that 0 < tj , π < θj < 2π, |zj | < 1,
and limj→∞ Im(zj/(1+z2

j )) = l 6= 0. Necessarily l > 0. A brief computation
gives

Aj = Im

(

zj

1 + z2
j

)

=
−(tj + 2 sin θj)(1 + tj sin θj)

tj |zj + i|2
.

Thus −(tj + 2 sin θj)(1 + tj sin θj) = tj |zj + i|2Aj = tjBj where lim Bj =
4l > 0. Hence

−2 sin θj [1 + tj sin θj ] = tjBj + tj [1 + tj sin θj ] = tjcj ,

where lim cj = 4l + 1. Therefore

(5.1) sin θj =
tjcj

−2(1 + tj sin θj)
= tjDj

where lim Dj = −(4l +1)/2. In particular, lim sin θj = 0, so lim |cos θj | = 1.
Let

T (z) =
z(1 − z2)

(z − i)2(z + i)2
;

then in a neighborhood of z = i,

T (z) =
−i

2(z − i)2
−

1

2(z − i)
+ q(z)
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where q(z) is analytic at z = i. Further,

T (zj) =
−ie−i2θj

2t2j
−

e−iθj

2tj
+ q(zj).

Using (5.1), we can write

Re T (zj) =
sin θj cos θj

t2j
−

cos θj

2tj
+ Re q(zj)

=
−Dj cos θj

tj
−

cos θj

2tj
+ Re q(zj) =

− cos θj(2Dj + 1)

2tj
+ Re q(zj).

Since lim(2Dj+1)=−4l 6= 0 and lim |cos θj | = 1 it follows that lim |Re T (zj)|
= ∞ and hence lim |Re f1(zj)| = ∞. Thus f1 has only real cluster points at
z = i. Since f1(z) is odd, it has only real cluster points at z = −i as well.
If z0 6= ±i and |z0| = 1, then limz→z0

f1(z) = ±b. Since f1(U) ⊂ Ω(−b, b)
and since the interval (−b, b) is covered by f1(U), it follows that f1(U) =
Ω(−b, b). Thus f1 is a member of SH(U,Ω(−b, b)).

We now prove that f2(U) = {z : −b < Re z < b} where f2(z) is given by
(4.7). We have

Re f2(z) =
4b

π
Re(arctan z) =

4b

π
Re

(

i

2
log

1 − iz

1 + iz

)

=
−2b

π
arg

(

1 − iz

1 + iz

)

.

Since Re[(1 − iz)/(1 + iz)] > 0, it follows that

|Re f2(z)| =
2b

π

∣

∣

∣

∣

arg
1 − iz

1 + iz

∣

∣

∣

∣

<
2b

π
·
π

2
= b.

We claim that the cluster points of f1(z) at z = ±i form the two lines
Re z = ±b. To see this, let l > 0. We can choose a sequence zj = i + tje

−iθj

with π < θj < 2π, tj > 0 and lim tj = 0, such that

lim
j→∞

Im
zj

1 + z2
j

= l.

As in the previous example, lim sin θj = 0 and lim |cos θj | = 1. We have

Re f2(zj) = −
2b

π
arg

(

1 − izj

1 + izj

)

.

Moreover,

tan

[

arg

(

1 − izj

1 + izj

)]

=
−2Re zj

1 − |zj |2
=

−2tj cos θj

−2tj sin θj − t2j
=

2cos θj

2 sin θj + tj
.

Making use of computations from the last example, we get

tan

[

arg

(

1 − izj

1 + izj

)]

=
2cos θj

2tjDj + tj
=

2cos θj

tj(2Dj + 1)

where lim 2Dj + 1 = −4l < 0.
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If θj is chosen so that lim θj = π then tan(arg((1 − izj)/(1 + izj)))
tends to ∞ and arg((1 − izj)/(1 + izj)) tends to π/2, and thus Re f2(zj)
tends to −b. Hence −b + il, l > 0, is a cluster point. If θj is chosen so that
lim θj = 2π, then we see that b+ il, l > 0, is a cluster point. Since f2 is odd,
it follows that ±b + il, l < 0, are cluster points at z = −i. It now follows
that f2(U) = {z : −b < Re(z) < b}.
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[7] A. E. Liv ingston, Univalent harmonic mappings, Ann. Polon. Math. 57 (1992),

57–70.

Department of Mathematics
University of Delaware
Newark, Delaware 19716
U.S.A.
E-mail: livingst@math.udel.edu
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