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Univalent harmonic mappings 11

by ALBERT E. LIvINGSTON (Newark, Del.)

Abstract. Let a < 0 < band 2(a,b) = C—((—o0,a]U[b,+00)) and U = {z : |z| < 1}.
We consider the class Sy (U, £2(a,b)) of functions f which are univalent, harmonic and
sense-preserving with f(U) = 2 and satisfying f(0) =0, f-(0) > 0 and fz(0) = 0.

1.Introduction. Let Sy be the class of functions f which are univalent,
sense-preserving, harmonic mappings of the unit disk U = {z : |z| < 1}
and satisfy f(0) = 0 and f,(0) > 0. Let F' and G be analytic in U with
F(0) = G(0) = 0 and Re f(2) = Re F(z) and Im f(z) = Re G(z) for z in U.
Then h = (F+iG)/2 and g = (F —iG)/2 are analytic in U and f = h+g. f
is locally one-to-one and sense-preserving if and only if |¢’(z)| < |h/(z)| for z
in U (cf. [4]). Ifh(z) =a1z+as2%+..., a1 >0, and g(z) = byz+baz? +. ..
for z in U, it follows that |b;| < a; and hence a; f — by f also belongs to Sy.
Thus consideration is often restricted to the subclass S% of Sy consisting
of those functions in Sy with fz(0) = 0.

Various authors have studied subclasses of SY consisting of functions
mapping U onto a specific simply connected domain. See for example Hen-
gartner and Schober [5], Abu-Muhanna and Schober [1], and Cima and the
author [2], [3]. Recently the author [7] studied the subclass of S consisting
of functions mapping U onto the plane with the interval (—oo,a], a < 0,
removed. See also Hengartner and Schober [6]. In the present paper we con-
sider the case when f(U) is C' — ((—o0,a] U [b,4+0)), a < 0 < b.

Let a < 0 < band £2(a,b) = C—((—o0, a]U[b, +00)). Then Sy (U, 2(a,b))
is the class of functions f in SY% with f(U) = 2(a,b). Without loss of
generality, we assume that a + b > 0.

In the sequel F' and G will be functions analytic in U with F'(0) = G(0) =
0, Ref(z) =ReF(z) and Im f(2) =ReG(z) for zin U. If h = (F +iG)/2
and g = (F —iG)/2, then f = h+g and |¢'(2)| < |h/(2)] for z in U.
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2. Preliminary lemmas. Let P be the class of functions P(z) which are
analytic in U with P(0) =1 and Re P(z) > 0 for z in U. To get an integral
representation of functions in Sy (U, £2(a,b)) we require a few lemmas.

LEMMA 1. Let

cl a(l+1)? b(1 — t)2
(2.1) + dt
=3 (% )

14+t +2)2 " (1 — ot +t2

and
1

a(l—1t)? b(1+1)?
(2.2) S(x) = + dt
§ <( ) )

14+t +12)2 ' (1 — ot +t2)2

where a <0< b, a+b>0 and —2 < x < 2. There exist unique numbers
c1 and ¢y with —2 < ¢ <0 < ¢y < 2 so0 that S(c1) = T(cz) = 0. Moreover,
T(x) <0< S(x) if and only if c1 <z < ca.

Proof. We note that

; —2at 2bt
S(w) ~T(@) = § ((1 Tt 22 (1 xt+t2)2>dt =0

Thus T'(z) < S(x) for —2 < x < 2. Also, it is easily checked that 7"(z) > 0
and S'(x) > 0 for —2 < & < 2. Thus T(z) and S(x) are both strictly
increasing. Since lim,_,_o T'(x) = lim,_._2 S(z) = —oo0 and lim,_,» T'(z) =
lim, .o S(z) = +o0, it follows that there exist unique ¢; and ¢ so that
S(c1) = T(c2) = 0 and that ¢; < ¢a. Moreover, S(0) > 0, thus ¢; < 0 and
T(x) <0< S(z)if and only if ¢y <z < co.

LEMMA 2. Let P(z) be in P and

R
(2.3) aé e > Re P(t) dt
1
1—¢2
. _ReP(-t)dt
+b§(1—xt—|—t2) ReP(—t)d

where a < 0 < b, a+b >0 and -2 < x < 2. There exists a unique
¢, —2< <2, s0 that Q(c) =

Proof. It is easily checked that Q'(z) > 0 for —2 < 2 < 2, lim,_,_5 Q(x)
= —oo and lim, 5 Q(x) = +o00. The lemma then follows.

LemMA 3. With the same hypotheses as in Lemma 2 and with a and b
fized we have ¢ < ¢ < cg where ¢1 and co are given in Lemma 1. The range
for ¢ is sharp in the sense that for each ¢, ¢y < ¢ < ca, there exists P(z) in
P such that the corresponding @Q given by (2.3) satisfies Q(c) =
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Proof. Let P(z) be in P and the corresponding @ in (2.3) satisfy Q(c)
= 0. Using the inequalities (1 —|z])/(1+|z]) < Re P(z) < (1+]z])/(1 —|z])
for z in U, we obtain

(1-1)? < (1 —t*)Re P(t)
(I+ct+12)2 = (1+ct+2)?2
(1 —1t)? - (1 —t2)Re P(—t)
(I—ct+1t2)2 ~ (1—ct+1t?)?
Since a < 0 < b, this gives

1
a(l+t)? b(1 —t)?
§<a+mt+ﬁp*‘u—ct+ﬁy>“

(1+1)?

(14 ct+t2)2’
(1+1)2

(1 —ct+1t2)?"

<

<

1

a(l —t)? b(1 + 1)
< Q) < (S] <(1 F ot +12)2 + = ct+t2)2>dt'

Thus T'(¢) < 0 < S(c) where T and S are given in Lemma 1. From Lemma 2
we have ¢ < ¢ < ¢g.

To see that the range of ¢ is sharp, we note that Q(c;) = 0 when P(z) =
(1—2)/(142) and Q(c2) =0 when P(z) = (14+2)/(1 —2). If c; < ¢ < ¢
then T'(¢) < 0 < S(c). That is,

1

2.4 §<(Ml+ﬂ . bﬂ—t)y>ﬁ

o\t +t2)?  (L—ct+1t?

1
a(l —t)? b(1+t)?
<0< § ((1+ct—|—t2)2 + (1 —ct+t2)2>dt'

With c¢ fixed, let
1

$(P) =a

1

(1 —t?)Re P(t) it bS
0

(1+ ct +12)2

(1 —t2)Re P(—t)
(1 —ct+12)?

dt;

then ¢ is a real-valued continuous functional on the convex space P. From

(2.4) it follows that
142 1-2
<0<
qﬁ(l—z) ¢<1—|—z>

1—=2 142
¢<>\1—|—z+(1_)\)1—z>

is a real-valued continuous function of A for 0 < A < 1, with ¢(0) < 0 < ¢(1).
Then there is A1 so that ¢(A1) = 0. The function Pi(z) = A1 (1 —2)/(1+ 2)
+(1—=X1)(1+2)/(1—2) is a member of P and the corresponding @) defined
by (2.3) satisfies Q(c) = 0.

For 0 < A <1,
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3. The class Sy (U, 2(a,b)). In the sequel the numbers ¢, ¢; and ¢y are
those given by Lemmas 1-3.
Let F(a,b) be the class of functions which have the form

[ A=PO e :

where
B 2)Re P(t)
b/S 1+Ct+t2) dt

with P(z) in P and c is chosen so that ¢; < ¢ < ¢y and

2)Re P(t) (1= #2)Re P(t)

(3:2) b/§ 1+ct+t2) :a/§ Aretree

We note that by Lemmas 1-3, for each P in P there is a unique ¢, ¢; <
¢ < ¢y, for which (3.2) is satisfied.

THEOREM 1. If f is a member of F(a,b), then f is harmonic, sense-
preserving and univalent in U. Moreover, f(U) is convez in the direction

of the real axis and f(U) C §2(a,b).
Proof. Let f =h+g=ReF +iReG; then

A1 =P _ i

Since
g (z) F'(z2)—iG'(z) P(z)—1
B (z)  F'(2) +iG'(z)  P(z)+1’
it follows that |¢'(z)| < |h/(z)| for z in U. Thus f is locally one-to-one and
sense preserving in U.
Also,

Az
h(z) —g(2) =iG(z) = T~

maps U onto a domain which is convex in the direction of the real axis. By
a theorem of Clunie and Sheil-Small [4], f is univalent and f(U) is convex
in the direction of the real axis. Also, f(z) is real if and only if z is real.
Since A > 0 and Re P(z) > 0, it follows that f(r) = Re F'(r) is increasing in
[—1,1] and by (3.2), lim,_, 1+ f(r) = a and lim, ;- f(r) = b. Thus f(U)
omits (—o0,a] and [b, +00). Hence f(U) C £2(a,b).

THEOREM 2. Sy (U, 2(a,b)) C F(a,b).

Proof. Let f be a member of Sy (U, 2(a,b)) and f = h + g. Since
2(a,b) is convex in the direction of the real axis, by a result of Clunie and
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Sheil-Small [4], h — g = iG is univalent and convex in the direction of the
real axis. Thus G is convex in the direction of the imaginary axis.

Let h(z) = a1z +as2® +..., ay >0, and g(z) = bpz? + b3z +...; then
G = —i(h—g) = —ajiz+... Since f(U) = 2(a,b), it follows that Re G(z) =
Im f(2) is 0 on the boundary of U. Since G is convex in the direction of the
imaginary axis, it follows that G(U) is C slit along one or two infinite rays
along the imaginary axis. Thus G(z)/(—ai) maps U into C slit along one or
two infinite rays along the real axis. However, G(z)/(—ayi) is a member of
the class S of functions ¢(z) analytic and univalent in U and normalized by
q(0) = ¢’(0) —1 = 0. Making use of subordination arguments, it follows that
G(2)/(—ayi) = z/(1 + cz + 2?), =2 < ¢ < 2. Hence, Im f(r) = ReG(r) =
for —1 < r < 1. Since f is one-to-one and f,(0) > 0, the function f(r) is
increasing on (—1,1). Thus lim,_,_;+ f(r) = @ and lim,_,;- f(r) = b.

Since |¢'(z)/h (2)| < 1, it follows that

P(z) = ((2) + ¢'(2))/ (W (2) = ¢'(2))
is in P. Thus, h/(2) + ¢'(2) = (k' (2) — ¢'(2))P(z) = iG'(2)P(z).

Hence,
o { 1=¢)P©)
F(z) = h(z) + 9(z) = [S)ZG (QP(C)d¢ =ay (S) T+ 022 dc.
Therefore,
[ (1-¢)PEQ) : z
[Reé 1+l +C2)2 d“”mm}
for some ¢, —2<e¢ < 1.
Since a = lim,_, 1+ f(r) and b = lim,_,;- f(r), we have
1 1
o (1 —t%)Re P(t) (1 —t*)Re P(t) G—b.

(14 ct +12)2

dt =a and als 0t ct+ )
0

0
Thus ¢ must be such that

)dt:O.

(3.3)

S(l—t2)ReP b§ (1—t2)Re P(—
(14 ct+1t2)? ) (1 —ct+12)?

By Lemmas 2 and 3 there is a unique ¢, ¢; < ¢ < ¢, satisfying (3.3).
Thus f is a member of F(a,b).

LEMMA 4. F(a,b) is closed.

Proof. Let f,, be asequence in F(a,b) with f,, converging to f uniformly
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on compact subsets of U. Suppose

(i =t)?RePy(t) N\
f"(z)_b<§ (1+dnt—|—t2)2 dt)

z
1+d<+<2) 1+dpz+ 22

where P, is in P and d,, satisfies (3.2) with ¢; < d,, < ¢o. Since P is normal
and ¢; <d, < cg we may assume that P, converges uniformly on compact
subsets of U to P(z) in P and d,, converges to some c. It follows that (3.2)
is satisfied for this ¢ and P(z) and that f has the form (3.1) and hence is a
member of F(a,b).

THEOREM 3. Sy (U, 2(a,b)) = F(a,b).

Proof. Let f(z) have the form (3.1) where (3.2) is satisfied and let r,, be
a sequence with 0 < r, < 1 and limr,, = 1. Let P,(z) = P(r,z) and denote
by fn(z) the function obtained from (3.1) and (3.2) by replacing P(z) with
P,(z). Let ¢, be the value of ¢ satisfying (3.2) when P is replaced by P,.
We claim that f,, is a member of Sy (U, £2(a,b)). To see this let

1 z
_ (1 B C2)Pn(C) _ (1 - CQ)Pn(C)
bR e trop t B = A ey

Let s, = [—cn, +iy/4 — 2 ]/2; then (14 ¢,( +¢?) = (¢ — s,)(¢ — 5,). Since

P, is analytic for |z| < 1, there exists § > 0 so that for |z — s,| < 4,

Py (sn)
2

[Rei iy d¢ + ¢Im
0

dc.

P,(2) = Py(sy) + Pl (sn) (2 — sp) + (z—sp)* + ...

Thus, for 0 < |z — s,| < 0,
A,(1—22)P,(2)
(z —3,)%(z — sn)?
B_» 1
"l(z=5,)2  (2—sn)
Let D={z:]z 58, <8} —{2:2 =85, +tel¥@8sn (<t <5} If
20 = Sy +1e!¥85n 5 <t <0, 2 fixed, then for z € D,

F(z) =

=A

+Bo+Bl(Z—Sn)+... .

z

Fo(z) — Fu(20) = S F(¢)d¢

20

where the path of integration is in D. Thus for z in D,

Fo(z) = An[ d-1

zZ— Sp

+dbgz—&»+«a}
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where ¢(z) is analytic at z = s,,, and

1— 2
d_, = -—"n

g P, (sp).

Thus Red_1 > 0. We take the branch of log such that for z in D,
log(z — sp) =1In|z — s,| +iarg(z — sp)

where arg s, < arg(z — s,) < arg s, + 27. Thus for z in D,

Re fn(z) = Re F,(z) = A, [Re d + (Red)In |z — s,

— (Imd) arg(z — s,,) + Re q(z)} .

We want to prove that f,(z) cannot have a finite cluster point at z = s,,.
Let z; = s, + tjeiej be in U N D with ¢t; > 0 and lim¢; = 0 and such
that

5.
34 lim Im( ——2— | =1.
(3.4) j—o0 ((1+cnzj +z§)>
Straightforward computation gives
Im 2 _ —2(Im s,,) Re(sne*ief) +t;T;
1+ cnzj+ 25 t;|2iIm s,, +t;e?% |2

where T is bounded. Because of (3.4), we must have

lim Re(spe %) = 0.
j—00

We now note that
(1—s2)e %P, (s,) (1/8n — 8n)8ne” % P, (s,,)

d_ —i0; _ —
1e 4—c2 4—c2
~ (Gn— 5p)sne %P, (s,) B —2i(Im 8,,) 8,6~ %% P, (s,,)
B 4—c2 B 4—c2 '
Thus,

2(Im s,,) Im(s,,=% P, (s,,))
4—c2
Im(s,e~% P, (s,))

Vi =2
Since lim;_, o Re(s,e~%7) =0, it follows that the only possible accumulation
points of {s,e”%} are +i. Thus the only possible accumulation points of
{5,679 P,(s,)} are +iP,(s,). Moreover, Im(£iP,(s,))=%Re P,(s,)#0.
Thus Re(d_1e7 %) is bounded away from 0.

Re(d_je ") =
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It now follows that

[Re fn(z))]
= [Re F},(2;)|
Re(d_,e~%%) 0.
= A, — — + (Red)In(t;) — (Imd) arg(tje ") + Req(z;)
J
_ A, Re(d_1e7%) + (Re d)t; 111('75]4) —t;(Imd) arg(t;je~ %) +Req(z;)
j

approaches oo as j — oo. Thus f,, has no finite cluster points at z = s,,.

Similarly, f,, has no finite cluster points at z = 5,,. At all other points of
|z] = 1, the finite cluster points of f,,(z) are real. Since f,,(U) C §2(a,b) and
lim,_,_1+ fn(r) = a and lim,_ ;- f,(r) = b, it follows that f,,(U) = 2(a,b).

Thus for each n, f, is a member of Sy (U, 2(a,b)). We know that the
P,, converge to P uniformly on compact subsets of U. There exists a sub-
sequence ¢,, convergent to some s. But then (3.2) will be satisfied with ¢
replaced by s. Since the solution to (3.2) is unique, we must have s = c.
Thus f,,, converges to f uniformly on compact subsets of U. Therefore, f
is a member of Sy (U, 2(a,b)) and F(a,b) C Sy (U, 2(a,b)). Since F(a,b)
is closed and Sy (U, {2(a,b)) C F(a,b), we have Sy (U, 2(a,b)) C F(a,b).
Thus F(a,b) = Su (U, £2(a,b)).

4. The case a=—b. Referring to the proof of Lemma 1, if a = —b then

—4bt

rO=1aseyp

dt < 0.

O ey

Thus ¢z > 0. Moreover, since S(—z) = —T'(x), we have ¢; = —ca.

Since Sy (U, 2(—b,b)) are the only classes that contain odd functions,
we will be interested in f in F(—b,b) and f odd.

LEMMA 5. Let f € F(—b,b) and be odd. If f(z) = h(z) + g(z), then both
h and g are odd.

Proof. Since f(—z) = —f(z), we have h(z)+g(2) = —(h(—2)+g(—=2)).
Thus h(z) + h(—2) = —g(z) + g(—=2). It follows that h(z) + h(—z) and
h(z) + h(—z) are both analytic in U. Thus h(z) + h(—z) is constant. Since
its value is 0 at z = 0, we have h(z) = —h(—z). Similarly, g(z) is odd.

LEMMA 6. If f € F(—b,b) and f is odd then in the representation (3.1),
P(z) is even and ¢ = 0.
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Proof. Let h(z) = a1z + azz? +...; then

F et _aff 0-Qrg :
(

M= =5 ) TreC+E T

1+cz+ 22

139

where ¢ and P satisfy (3.2). Since (1—22)/(1+cz+2%)? = (z/(1+cz+2%)),

this can be written as

2
ey — 9§ L= CPEQ) +1)

(1+cC+¢?)?

ax
2

dc.

O e N

By Lemma 5, h(z) = —h(—z). Thus,

(A-APO+1) . TA-G)(PEQ)+ 1
| d¢ = — dc.
VIt P ) T 7
Let z=r, 0 <r < 1; then
c (1=t (P@t)+1) ¢ (1=t (P(—t) +1)
| dt =\ dt.
o (et +t2)? ) (L—ct+2)?
Taking real parts, we get
’S" (1—12)(Re P(t § (L-)ReP(D)+1)
) 1+ct+t2 o (Lt 12)? '
Letting r — 1, since —2 < —cp < ¢ < 9 < 2, we obtain
1 1
1—¢2 P(t (1—1¢2 P +1
ay (0o [P )
] (1+ct+t2 ] 1—ct+t2)

But (3.2) with a = —b gives

(1—t2)Re P(— )dt:§(1—t2)ReP(t)

(1—ct+1t2)? o (et +12)?

(4.2) dt.

O ey

Equalities (4.1) and (4.2) imply

i 1—¢2 i -
0 1+ct+t2 0 1—Ct+t2
Thus 1/(2+¢) =1/(2 — ¢). Hence ¢ = 0.
We now have
< (1-C)P(¢) z
d
[(S) (1+¢2)2 <—1—14-22
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and h(z) is odd. Thus
i )
U
Tt )2
o + <

is odd. Hence ¢'(z) = (1 — 2?)P(2)/(1 + 2?)? is even and thus P(z) is even.

LEMMA 7. Let f € F(—b,b) with representation (3.1). If P(z) is even,
then ¢ =0 and [ is odd.

Proof. If P(z) is even, then Q(x) defined by (2.3), with a = —b, satisfies

1 1
(1 —t3)Re P(t) (1 —t2)Re P(—t)
\ e § 1+ 22

But the ¢ given in Lemma 2 is unique. Thus ¢ = 0. Therefore

§ (1-¢*)P(C) z
Vv T2
and since P(z) is even, it is easily checked that f(—z) = —f(2).

Q(0) = — dt = 0.

d¢ + ¢Im

(4.3) £(2) = a [Re

We now let
G(=b,b) ={f € F(—=b,b) : f is odd}.

If f € G(—b,b), then f has the representation (4.3) with P(z) in P and
P(z) even. Also,

(1 —t*)Re P(t)
(14 t2)2

(4.4) =b/ dt.

O ey

We now easily obtain

THEOREM 4. If f € G(—b,b), then
4
T T
and the inequalities are sharp.
Proof. Since P € P and P is even, (1 — |2]?)/(1 + |2|?) < Re P(z) <
(1+12|%)/(1 — |z|*). Thus

o (1—12)? t(1—t)ReP(t Cod 0
§:§21+§233dt<8( (flt2)2()dt<s =

1+¢2 4

and the result follows from (4.4). Equality is attained on the right side of
(4.5) when P(z) = (1 — 22)/(1 + 2?) and on the left side when P(z) =
(1+ 22)/(1 — 2?). The corresponding extremal functions are

.2
(4.6) fi(z) = %b [Re [% + % arctan z] + i Im | —Ezz}
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and

(4.7) fa(z) = 16 [Re(arctan( )) +ilm ] —522]

™

We find in Section 5 that fi(z) is actually a member of Sy (U, £2(—b,b)).
Thus the right side of (4.5) is sharp for odd functions in Sy (U, £2(—b,0)).

THEOREM 5. Let f(2) = h(2) + g(2) be in G(—b,b) and suppose

oo
Z) = Z a2n+122n+1 and 9 Z b2n+1z2n+1

Then
(n+1)2

4.8 \ wr ey —-0,1,2,...,
(4.8) |az+1|_2+1|1| n

2

n
4.9 Do 1| < , -1,2,...,
(4.9) |2+1|_2n+1|a1| n
and
(4.10) lazn41 — bant1| = |ad |

and the inequalities are sharp in Sy (U, 2(—b,b)).
Proof. We have

(4.11) h(z) = % [

a¢ +

§ (1-¢)P) z ]
(1+¢2)2 1+ 22

0

where P(z) is in P and is even. Let P(z) = 1+ > °7 | p2,2?"; then for
2] < 1,

1— 22
i —”Zd%z

where
n

don = Y (~1)¥(2k + D)pa(—ry and po=1.

k=0
Then (4.11) gives
(a12)  emer_ 1 Zn:(—l)'“(%Jr Dpan—ry + (=1)"
a 2n+1 P
1 n—1

o1 Z(—l)k(% + Dpagn—ry +2(=1)".
k=0
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Since |p,| < 2 for all n, we have

n—1

2|agn+1] 2n’ 2(n +1)2

2
< 2k +1 2= 2= 7
lai]| _2n+1k§:0( T+ 2n+1+ 2n+1 "’

giving (4.8).
To see the sharpness, let P(z) = (1 — 22)/(1 + 2?). With this choice of
P, we have py, = 2(—1)" and from (4.12),

n—1
= D)2k +1)(—=1)" - 24 2(-1)"
2 = g DR DD 22

w2 & _2(=1)"(n+ 1)
= (-1) [7(2714‘1) ];)(2k—|—1)+2]— ol

giving equality in (4.8). The extremal function is the fi(z) given in (4.6).
Next we have

9(z) =

ar [ (1= ¢)PQ) z
%[é (1+¢2)2 dC_1+z2]'

If g(2) = >0 | bopy122" T, then

n—1
2bop 42 1 &
4.13 = > " (—1)F(2k + Dpagn-)-
( ) a 2n+1k_0( )" (2k + 1)pagn—)
Thus
—1
2|bop 1] 2% 2n?
< 2k+1) = ———
la] _2n+1I;]( +1) 2n+1’

giving (4.9). Equality again occurs when P(2) = (1 —22)/(1+22%) and f1(2)
is given in (4.6).

Finally, from (4.10) and (4.11),

azn+1 — bant1| = |[(=1)"a1| = |a1].

We remark that the inequalities involved are actually sharp for odd func-
tions in Sy (U, £2(—b,b)) since f1 € Sy (U, £2(—b,b)).

THEOREM 6. Let f(z) = h(z) + g(z) be a member of G(—b,b). Then for
|z =7 < 1,
Jaa|(1 —r?)

(141r2)3

and the inequalities are sharp.

lay|(1+72)

(4.14) L

<I[f2(2)| <
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Proof. We have

a1 [ (1=C*P z
hk%zé{é(uiz%gnx+1+z2‘
Thus,
o ar(1=27)
(4.15) fa=N(z) = m(P(Z) +1).

Since P(z) is in P and is even, we can write P(z) = (1 —w(z))/(1 + w(z))
where w(z) = dg2? + ... is analytic in U and |w(z)| < |z|? for z in U. Thus
P(z)+1=2/(1+w(z)). Hence
2 2 2 2

< <|P 1| < .
T2 S Tag S PO s S 1=
Using (4.10) and (4.15) we obtain the inequalities (4.14). Equality on the
right side of (4.14) is attained by f1(z) at z = +ir and equality on the left
side of (4.14) is attained by fi(z) when z = +£r.

(4.16)

5. The extremal functions. We now verify that the extremal function
fi(z) given by (4.6) is actually a member of Sy (U, $2(—b,b)), while the
function fa(z) given by (4.7) maps U into the strip {z : —b < Rez < b} and
hence is a member of G(—b,b) — Sy (U, £2(—b,b)).

To see this we first prove that fi(z) has no non-real finite cluster points
at 2 = i. Let z; = i +t;e'% be such that 0 < t;, 7 < 6; < 2m, |z;] < 1,
and lim; o, Im(z;/(1+27)) = I # 0. Necessarily I > 0. A brief computation
gives

A:Im< Zj > o —(tj—l—ZSin@j)(l—l—thinHj)
J 2 a4 412
1+ 2 tilzj + 1
Thus —(t; 4+ 2sin;)(1 + t;siné;) = tj]z; + i|*4; = t;B; where lim B; =
41 > 0. Hence

—2sin 9]' [1 +1; sin 9]] = thj + tj[l + sin 0]] = t;cy,
where lim ¢; = 41 + 1. Therefore

tic;

(5-1) T (Tt tysingy) Y
where lim D; = —(40+1)/2. In particular, limsin6; = 0, so lim |cos §;| = 1.
Let

2(1 — 2?)
T(z) = ;
G = e
then in a neighborhood of z = 1,
—1 1
T(z) = - ~ +q(2)
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where ¢(z) is analytic at z = i. Further,

_Z‘e—iQOj e—i@j
J
Using (5.1), we can write
in 0 cos 6, 0,
ReT(z)) = 25—~ — —=1 + Req(2;)
J .7
—Dj cos b, 6, 0;(2D; +1
= % TP | Req(z) = —— i(2D; + 1) + Re q(z;).
t; 2, 2,

Since lim(2D;+1)=—4l # 0 and lim |cos #;| = 1 it follows that lim |Re T'(2;)|
= oo and hence lim [Re f1(z;)| = co. Thus f; has only real cluster points at
z = 1. Since f1(z) is odd, it has only real cluster points at z = —i as well.
If zp # i and |zo| = 1, then lim,_,., f1(2) = %b. Since f1(U) C £2(—b,b)
and since the interval (—b,b) is covered by f1(U), it follows that f1(U) =
Q2(=b,b). Thus f; is a member of Sy (U, 2(—b,b)).

We now prove that fo(U) = {z: —b < Rez < b} where f5(z) is given by
(4.7). We have

4b 4b ) 1—1 —2b 1—1
Re fa(z) = — Re(arctan z) = — Re <1 log ZZ) = arg ( ZZ)

2 1+1iz 0 1+1iz
Since Re[(1 —iz)/(1 4 iz)] > 0, it follows that
1—1iz 2b ™
R = — - —=b.
[Re fa(z ' &1 + iz T 2

We claim that the cluster points of fi(z) at z = 4i¢ form the two lines
Re z = £b. To see this, let [ > 0. We can choose a sequence z; = Z'—I—tjeﬂej
with m < 0; < 2w, t; > 0 and lim¢; = 0, such that

2
lim I J _ — .
JLHO]O m 1+z]2-

As in the previous example, limsinf; = 0 and lim|cos #;| = 1. We have

2 1—1iz;
Ref2<zj>=—;barg< )

1 +ZZ]‘
Moreover,
1~z —2Rez; —2t; cosb); 2cos 6,
tan |arg ﬁ = ez; _ ?COS j o= .cos i
1+1iz; 1 — |z —2t;sinf; —t7  2sinf; +1;

Making use of computations from the last example, we get
1 —iz; 2cos 0 2cos 0
tan |arg - = =
where im2D; +1 = —41 < 0.
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If 0; is chosen so that lim§; = = then tan(arg((1 — iz;)/(1 + iz;)))
tends to oo and arg((1 —iz;)/(1 + iz;)) tends to 7/2, and thus Re fa(z;)
tends to —b. Hence —b+il, [ > 0, is a cluster point. If §; is chosen so that
lim 6; = 2, then we see that b+il, [ > 0, is a cluster point. Since f; is odd,
it follows that 4+b 4 il, [ < 0, are cluster points at z = —i. It now follows
that fo(U) = {z: —b < Re(z) < b}.
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