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Riemann problem on the double of

a multiply connected circular region

by V. V. Mityushev (S lupsk)

Abstract. The Riemann problem has been solved in [9] for an arbitrary closed Rie-
mann surface in terms of the principal functionals. This paper is devoted to solution of
the problem only for the double of a multiply connected region and can be treated as
complementary to [9,1]. We obtain a complete solution of the Riemann problem in that
particular case. The solution is given in analytic form by a Poincaré series.

1. Introduction. Consider mutually disjoint discs Dk := {z ∈ C :
|z−ak|<rk} (k = 0, 1, . . . , n) on the complex plane C. Let D := C\⋃n

k=0
Dk

be a multiply connected region, and D∗ be a copy of D. Let the boundary
of D and the boundary of D∗ be identified by the projection along ∂Dk :=
{|t− ak| = rk} (k = 0, 1, . . . , n). As a result we have a Riemann surface R
which is called the double of the region D. Consider a contour Γ on R which
consists of simple closed smooth curves. The Riemann problem consists in
finding a function Φ±(p) analytic in R\Γ and Hölder-continuous on Γ with
the boundary condition [9]

(1.1) Φ+(p) = G(p)Φ−(p) + g(p), p ∈ Γ.

Here G(p) and g(p) are known functions satisfying the Hölder condition,
and G(p) 6= 0.

If Γ = ∂D = −⋃n
k=0

∂Dk then Φ(t) on the second sheet can be repre-
sented in the form

(1.2) Φ(t) = G(t)Ψ(t) + g(t), t ∈ ∂D.
Noether’s theory of the last problem has been constructed by B. Bojarski [1].
If D is a simply connected region for which the conformal mapping onto the
unit disc is known, then (1.2) has been solved in closed form [1]. If, moreover,
|G(t)| = 1 and G(t)g(t)+g(t) ≡ 0 on ∂D, then Ω(z) = 1

2
[Φ(z)+Ψ(z)], z ∈ D,

1991 Mathematics Subject Classification: Primary 30E25.
Key words and phrases: boundary value problems on Riemann surfaces, functional

equation.

[1]



2 V. V. Mityushev

solves the Hilbert problem

(1.3) Ω(t) = G(t)Ω(t) + g(t), t ∈ ∂D.

Conversely, if Ω(z) satisfies (1.3) then Φ(z) = Ψ(z) = Ω(z) satisfies (1.2).
Assuming that G(t) = −1 and g(t) is a real-valued function in (1.3) we
arrive at the Schwarz problem

(1.4) Ω(t) +Ω(t) = g(t), t ∈ ∂D.

The problems (1.3) and (1.4) for a multiply connected region have been
studied in [3, 4, 9]. The final solution in closed form is given in [7].

The problem (1.1) has been solved in [9] for an arbitrary closed Rie-
mann surface in terms of the principal functionals. This paper is devoted
to solution of (1.1) on the special Riemann surface R and can be treated
as complementary to [9, 1]. We obtain a complete solution of the Riemann
problem (1.1) in that particular case. In this paper the special case when
0 ≤ κ := indΓ G(p) ≤ n is investigated. Solution of (1.1) is given in analytic
form by a Poincaré series.

2. Reducing the Riemann problem with constant coefficients
to a system of functional equations. Consider B. Bojarski’s problem on
C (see [1])

(2.1) φ(t) = λkψ(t) + gk(t), |t− ak| = rk, k = 0, 1, . . . , n,

where the unknown functions φ(z) and ψ(z) are analytic in D and continu-
ously differentiable in D, λk are given constants, gk(t) are given functions,
gk ∈ C1

α. Here C1
α is the space of differentiable functions on |t−ak| = rk with

Hölder derivatives. The problem (2.1) is a particular case of (1.1), where
Γ =

⋃n
k=0

{|t − ak| = rk} and G(p) is constant over each circumference.
Rewrite the boundary value problem (2.1) in the form

(2.2) GkΦ(t) +GkΦ(t) = GkHk(t), |t− ak| = rk,

where

Φ(z) :=

(
φ(z)
ψ(z)

)
= (φ(z), ψ(z))T , Gk :=

(
1 −λk

i iλk

)
,

Hk(t) :=

(
gk(t)

−(1/λk)gk(t)

)
.

The problem (2.2) is a vector-matrix Hilbert problem for the multiply con-
nected region D. Let us also consider the problem

(2.3) GkΦ(t) +GkΦ(t) = γk, |t− ak| = rk,

where Φ(z) is unknown together with the constant vectors γk.
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Lemma 1. If Φ ∈ C1(D) then the problem (2.3) has only a constant

solution.

P r o o f. Let Φ 6= const. We rewrite (2.3) in the form

(2.4)
u1 = (Reλk)u2 − (Imλk)v2 + Re gk,

v1 = (Imλk)u2 + (Reλk)v2 + Im gk,

where φ = u1 + iv1 and ψ = u2 + iv2. Geometrically (2.4) is the equation of
a real two-dimensional plane in C

2 ∼= R
4. The vector-function Φ(z) transfers

the circumferences |t− ak| = rk to the planes (2.4). Let Φ(D) be the image

of D in C
2.

We now show that interior points of D correspond to interior points
of Φ(D). Let z0 ∈ D, Φ(z0) = w0, where w0 = (φ(z0), ψ(z0))T is not an
interior point of Φ(D). Let ∂Φ(D) be the boundary of Φ(D). We know that
Φ : D → Φ(D) is continuously differentiable. If ∞2 6∈ Φ(D), then ∂Φ(D) is
a three-dimensional surface. Assume that w0 is not a flex point of ∂Φ(D).
Then, by a rotation and parallel translation A : R

4 →R
4 the set Φ(D) can

be set in such a way that the plane ṽ1 = ũ1 = 0, containing the point w̃0 :=
Aw0, locally separates points belonging and not belonging to Φ(D). More-

over, the coordinates of A◦Φ=(φ̃, ψ̃)T are analytic in D. Also φ̃, ψ̃∈C1(D).
Every rotation in R

4 consists of two rotations in the planes u1 = v1 = 0 and
u2 = v2 = 0, and it is associated with multiplication by a complex number,
i.e. it is a conformal mapping. Taking into account properties of scalar ana-
lytic functions we can find an open set U such that z0 ∈ U ⊂ D and φ̃(U) is

an open subset of the complex plane (ũ1 + iṽ1). But the set (φ̃(U), ψ̃(U))T

is on one side of the plane ũ2 = ṽ2 = 0, i.e. the projection of A ◦ Φ(U) on

the plane ũ1 = ṽ1 = 0 cannot be φ̃(U). We obtain a contradiction.
Hence, points of ∂Φ(D) can be flex points or can belong to the planes

(2.4). But Φ ∈ C1(D). This means that flex points have dimension no more
than two. Hence, ∂Φ(D) has dimension no more than two. Thus, (∞,∞)T ∈
Φ(D). The last assertion contradicts the boundedness of Φ on D. Hence,
Φ = const.

This proves the above lemma.

Let us consider another boundary value problem

(2.5) Φ(t) = Φk(t) − λΛkΦk(t) + γk, |t− ak| = rk, k = 0, 1, . . . , n,

where the unknown vector-functions Φ(z), Φk(z) are analytic in D,Dk re-
spectively and are continuously differentiable in D,Dk. Here λ is a constant,

Λk = G−1

k Gk =

(
0 −λk

−λ−1

k 0

)
,

γk is a constant vector. To solve the problem (2.5) we shall follow [8].
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Lemma 2. If |λ| < 1 then the problem (2.5) has only constant solutions.

P r o o f. We shall use the idea of B. Bojarski [2]. Let us put

U(z) =

{
Φ(z), z ∈ D,
Φk(z) − λΛkΦk(z) + γk, z ∈ Dk.

Then the vector-function U(z) is a solution of the partial differential equa-
tion

(2.6) Uz +QUz = 0, z ∈ C \
n⋃

k=0

∂Dk,

where

Q =

{
0, z ∈ D,
λΛk, z ∈ Dk.

The system (2.6) is elliptic because Uz = 0 in D, and we can rewrite (2.6)
in Dk in the form of two scalar elliptic equations

(GkU)z + λ(GkU)z = 0.

The condition U+ = U− holds on ∂Dk. The boundary values U± are in
L2(∂Dk). Hence by [2], (2.6) is valid in C. By the general Liouville theorem
we get the equality U = const. Therefore, the problem (2.5) for |λ| < 1 has
only constant solutions.

The lemma is proved.

The problem (2.2) is equivalent to the following R-linear boundary value
problem:

(2.7) Φ(t) = Φk(t) − ΛkΦk(t) +H+

k (t), |t− ak| = rk,

where

Hk(z) :=

(
g+

k (z)

(1/λk)g−k (z∗k)

)
,

gk(t) = g+

k (t)−g−k (t) is the representation of gk(t) in the form of a difference
of analytic functions by Sokhotski’s formulas, and z∗k := r2k/(z − ak) + ak

is the inversion of z with respect to the circumference ∂Dk. We take an
orientation of ∂Dk such that Dk is located to the left of ∂Dk. The unknown
vector-function Φk(z) is analytic in Dk and is continuously differentiable
in Dk. If Φ(z) is a solution of (2.7), then Φ(z) is a solution of (2.2). If Φ(z)
is a solution of (2.2), then Φk(z) can be found from the Schwarz problem

2 ImGkΦk(t) = ImGk(Φ(t) −H+

k (t)), |t− ak| = rk.

Actually, these are two scalar problems. Their solution depends additively
on the vector G−1

k γk, where γk is an arbitrary real constant vector [4]. The
function Φk(z) and the initial function Φ(z) satisfy (2.7).
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Let us consider the vector-function

Ω(z) :=





Φk(z) +
n∑

m=0
m 6=k

ΛmΦm(z∗m) +H+

k (z), |z − ak| ≤ rk,

k = 0, 1, . . . , n,

Φ(z) +

n∑

m=0

ΛmΦm(z∗m) +H+

k (z), z ∈ D.

Let us show that Ω(z) is analytic in C. From (2.7) we obtain

Ω+(t) −Ω−(t) = Φk(t) +H+

k (t) − Φ(t) − ΛkΦk(t) = 0, |t− ak| = rk.

By the principle of analytic continuation and the Liouville theorem we get

Ω(z) = q +

n∑

m=0

ΛmΦm(z∗m) = const,

where w is a fixed point belonging to D \ {∞}, and

Φ(w) =

(
φ(w)
ψ(w)

)
=:

(
q1
q2

)
= q.

From the definition of Ω(z) in Dk we obtain the following relations:

(2.8) Φk(z) = −
n∑

m=0
m 6=k

Λm(Φm(z∗m) − Φm(w∗
m)) + ΛkΦk(w∗

k) −H+

k (z) + q,

|z − ak| ≤ rk, k = 0, 1, . . . , n,

These relations constitute a system of n linear functional equations for n
unknown functions Φk(z) (k = 0, 1, . . . , n) which are analytic in Dk and are
continuously differentiable in Dk.

Consider the Banach space C consisting of all functions continuous on⋃n
k=0

∂Dk with the norm

‖Ψ‖ := max
0≤k≤n

max
∂Dk

(|Ψ1(t)|2 + |Ψ2(t)|2)1/2, where Ψ = (Ψ1, Ψ2)T .

We introduce the subspace C+ ⊂ C, which consists of all vector-functions
analytic in each Dk. We differentiate the system (2.8):

(2.9) Ψk(z) = −
n∑

m=0
m 6=k

Λm ( z∗m )′ Ψm(z∗m) −H+

k
′(z), |z − ak| ≤ rk.

Let us rewrite the last system in the form of the equation

(2.10) Ψ(z) = AΨ(z) −H ′(z)

in the space C+, where the operator A is defined by the right hand side
of the system (2.9), Ψ(z) := Ψk(z), H(z) := H+

k
′(z) when |z − ak| ≤ rk;

Ψ,H ′ ∈ C+.
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Lemma 3. The homogeneous equation (2.10) (H ′(z) ≡ 0) has the zero

solution only.

P r o o f. By integrating the homogeneous system (2.9) we obtain

(2.11) Φk(z) = −
n∑

m=0
m 6=k

ΛmΦm(z∗m) + γk, |z − ak| ≤ rk,

where γk is a constant. Let us introduce the vector-function

Φ(z) := −
n∑

m=0

ΛmΦm(z∗m),

which is analytic in D. From (2.11) we obtain

Φ(t) = Φk(t) − ΛkΦk(t) + γk, |t− ak| = rk.

It follows from Lemma 1 that Φ(z) ≡ const. Hence Φk = const and Ψk(z) =
Φ′

k(z) ≡ 0. This proves the lemma.

Lemma 4. The equation (2.10) has a unique solution in C+. This solu-

tion can be found by the method of successive approximations in C+.

P r o o f. Let us rewrite the system (2.10) on ∂Dk in the form of a system
of integral equations:

Ψk(t) = −
n∑

m=0
m 6=k

(t∗m)′Λm
1

2πi

\
∂Dm

Ψm(τ∗m)

τ − t∗m
dτ −H+′

k (t), |t− ak| = rk.

It can be written as an equation in C+:

(2.12) Ψ(t) = AΨ(t) −H ′(t).

Since integral operators are compact in C and multiplication by the matrix
(t∗m)′Λm and complex conjugation are bounded in C, it follows that A is a
compact operator in C. If Ψ is a solution of (2.12) in C, then Ψ ∈ C+. This
follows from the properties of the Cauchy integral. Therefore, the equation
(2.12) in C and the equation (2.10) in C+ are equivalent when H ′ ∈ C+.
It follows from Lemma 3 that the homogeneous equation Ψ = AΨ has the
zero solution only. Then the Fredholm theorem implies that the system
(2.12) or the system (2.10) has a unique solution.

Let us demonstrate the convergence of the successive approximations.
It is sufficient to prove the inequality ̺(A) < 1, where ̺(A) is the spectral
radius of A. The spectrum of the compact operator A consists of eigenvalues
only [6]. The inequality ̺(A) < 1 is satisfied iff there exists a complex
number λ such that |λ| ≤ 1 and the equation

Ψ(t) = λAΨ(t)
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has the zero solution only. This equation can be written in the form

(2.13) Ψk(z) = −λ
n∑

m=0
m 6=k

Λm ( z∗m )′ Ψm(z∗m), |z − ak| ≤ rk.

Let |λ| < 1. Then integrating (2.13) we obtain

Φk(z) = −λ
n∑

m=0
m 6=k

ΛmΦm(z∗m) + γk, |z − ak| ≤ rk,

where Φ′
k(z) = Ψk(z) and γk are arbitrary constant vectors. Introduce the

vector-function

Φ(z) := −λ
n∑

m=0

ΛmΦm(z∗m),

which is analytic in D. Then Φ(z) and Φk(z) satisfy the R-linear boundary
value problem

Φ(t) = Φk(t) − λΛkΦk(t) − γk, |t− ak| = rk.

It follows from Lemma 2 that this problem has constant solutions only. Thus
Φ′

k(z) = Ψk(z) = 0.

Let |λ| = 1. Then, changing the variable z =
√
λZ, the system (2.13) is

reduced to the same system with λ = 1, the constants ak =
√
λAk and the

functions Ωk(Z) := Ψk(z). It follows from Lemma 3 that Ωk(Z) = Ψk(z) =
0. Hence, ̺(A) < 1. This inequality proves the lemma.

Let us introduce the mappings

z∗kmkm−1...k1
:= (z∗km−1...k1

)∗km
.

In the sequence k1, . . . , km no two neighboring numbers are equal. When
m is even, these are Möbius transformations in z. If m is odd, we have
transformations in z. The number m is called the level of the mapping. The
mapping can be written in the form

γj(z) = (âjz + bj)/(cjz + dj), m is even,

γj(z) = (âjz + bj)/(cjz + dj), m is odd,

where âjdj − cjbj = 1. Here γ0(z) := z, γ1(z) := z∗0 , γ2(z) := z∗1 , . . .
. . . , γn+1(z) := z∗n, γn+2(z) := z∗01, γn+3(z) := z∗02, and so on. The indices
j of γj are fixed in such a way that the level is increasing. The functions γj

generate a Kleinian group [7].

Let us investigate the vector systems (2.8) and (2.9) as scalar systems.
Let Φk(z) = (φk(z), ψk(z))T . Then from (2.8) and (2.9) we have, for
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|z − ak| ≤ rk, k = 0, 1, . . . , n,

(2.14)

φk(z) = −
n∑

m=0
m 6=k

λm(ψm(z∗m) − ψm(w∗
m))

− λkψk(w∗
k) − g+

k (z) + q1,

ψk(z) = −
n∑

m=0
m 6=k

1

λm

(φm(z∗m) − φm(w∗
m))

− 1

λk

φk(w∗
k) − 1

λk

g−k (z∗k) + q2,

φ′k(z) = −
n∑

m=0
m 6=k

λm(ψm(z∗m))′ − (g+

k (z))′,

ψ′
k(z) = −

n∑

m=0
m 6=k

1

λm

(φm(z∗m))′ −
(

1

λk

g−k (z∗k)

)′

.

It follows from Lemma 4 that we can apply the method of successive ap-
proximations. Thus, for |z − ak| ≤ rk,

(2.15)

φ′k(z) = − (g+

k (z))′ +

n∑

k1=0

k1 6=k

(g−k1
(z∗k1

))′

+
n∑

k1=0

k1 6=k

n∑

k2=0

k2 6=k

λk1

λk2

(g+

k2
(z∗k2k1

))′

−
n∑

k1=0

k1 6=k

n∑

k2=0

k2 6=k

n∑

k3=0

k3 6=k

λk1

λk2

(g−k3
(z∗k2k1

))′ − . . . ,

ψ′
k(z) =

1

λk

(
− (g−k (z∗k))′ +

n∑

k1=0

k1 6=k

λk

λk1

(g+

k1
(z∗k1

))′

+

n∑

k1=0

k1 6=k

n∑

k2=0

k2 6=k

λk

λk1

(g−k2
(z∗k2k1

))′

−
n∑

k1=0

k1 6=k

n∑

k2=0

k2 6=k

n∑

k3=0

k3 6=k

λk2

λk1

· λk

λk3

(g+

k3
(z∗k3k2k1

))′ − . . .

)
.
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From the definition of Ω(z) we obtain, for z ∈ D,

φ(z) = q1 +

n∑

k=0

λk(ψk(z∗k) − ψk(w∗
k)) = q1 +

n∑

k=0

z\
w

λk(ψk(z∗k))′ dz,

ψ(z) = q2 +
n∑

k=0

1

λk

(φk(z∗k) − φk(w∗
k)) = q2 +

n∑

k=0

z\
w

1

λk

(φk(z∗k))′ dz.

The series (2.15) converge in C+, i.e. uniformly. Then, calculating the last
integrals term, by term we get

(2.16)

φ(z) = q1 −
n∑

k=0

[g−k (z) − g−k (w)]

+

n∑

k=0

n∑

k1=0

k1 6=k

λk

λk1

[g+

k1
(z∗k1k) − g+

k1
(w∗

k1k)]

+
n∑

k=0

n∑

k1=0

k1 6=k

n∑

k2=0

k2 6=k1

λk

λk1

[g−k2
(z∗k1k) − g−k2

(w∗
k1k)]

−
n∑

k=0

n∑

k1=0

k1 6=k

n∑

k2=0

k2 6=k1

n∑

k3=0

k3 6=k2

λk2

λk1

· λk

λk3

[g+

k3
(z∗k3k2k1k)

− g+

k3
(w∗

k3k2k1k)] − . . .

ψ(z) = q2 −
n∑

k=0

1

λk

[g+

k (z∗k) − g+

k (w∗
k)]

+
n∑

k=0

n∑

k1=0

k1 6=k

1

λk

[g−k1
(z∗k1

) − g−k1
(w∗

k1
)]

+

n∑

k=0

n∑

k1=0

k1 6=k

n∑

k2=0

k2 6=k1

λk1

λkλk2

[g+

k2
(z∗k2k1k) − g+

k2
(w∗

k2k1k)]

−
n∑

k=0

n∑

k1=0

k1 6=k

n∑

k2=0

k2 6=k1

n∑

k3=0

k3 6=k2

λk1

λkλk2

[g−k3
(z∗k2k1k)

− g−k3
(w∗

k2k1k)] − . . .

The functions (2.16) are solutions of the problem (2.1) if and only if the sys-
tem of functional equations (2.14) is solvable. We get solvability conditions
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if we set z = w∗
k in (2.14):

(2.17)

φk(z∗k) =

n∑

m=0
m 6=k

λmPkm − λkψk(w∗
k) − g+

k (w∗
k) + q1,

ψk(z∗k) =

n∑

m=0
m 6=k

1

λm

Rkm − 1

λk

φk(w∗
k) − 1

λk

g−k (w∗
k) + q2,

for k = 0, 1, . . . , n, where Pkm = ψm(w∗
mk)−ψm(w∗

m) andRkm = φm(w∗
mk)−

φm(w∗
m). Here, for example, Rkm :=

Tw∗

k

w
(z∗m)′φ′m(z∗m) dz, and the functions

φ′m(z) have the form (2.15). The relations (2.17) hold if and only if, for
k = 0, 1, . . . , n,

(2.18) q1 − λkq2 +
n∑

m=0
m 6=k

λmPkm − g+

k (w∗
k) =

n∑

m=0
m 6=k

λk

λm
Rkm − g−k (w).

Definition (see [4]). If λk = λ for every k = 0, 1, . . . , n, then we shall
say that the conditions of single-valuedness hold . If there exist k and m such
that λk 6= λm, then we say that the conditions of single-valuedness do not

hold .

If the conditions of single-valuedness hold, then the constant p :=
q1 − λq2 is defined from (2.18) for k = 0. The other n relations give nec-
essary and sufficient solvability conditions for (2.1). The solution of (2.1)
has the form (2.16), where the arbitrary constants q1 and q2 are related
by p = q1 − λq2. If the conditions of single-valuedness do not hold, then
two equalities of (2.18) define q1 and q2 and the other n− 1 equalities give
necessary and sufficient solvability conditions for (2.1). The solution of (2.1)
has the form (2.16).

3. Solution of the Riemann problem for circumferences. Con-
sider the following boundary value problem on C:

(3.1) φ(t) = λk(t)ψ(t) + gk(t), |t− ak| = rk, k = 0, 1, . . . , n,

where λk(t) are Hölder-continuous functions, λk(t) 6= 0. There exists a com-
plete Noether theory for (3.1) (see [1]). But we construct the solution of
(3.1) in analytic form. Set

κk := ind
∂Dk

λk(t), R(z) :=

n∏

m=0

(z − am)−κm , κ :=

n∑

m=0

κm.
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Let κ ≥ 0. Let us introduce the function

(3.2) ω(z) :=
ψ(z)

R(z)
−

κ∑

s=1

δsz
s

(
∑0

s=1
:= 0), where

∑κ
s=1

δsz
s is the principle part of ψ(z)/R(z) at infinity.

Then (3.1) transforms to

(3.3) φ(t) = λk(t)R(t)ψ(t) + λk(t)

κ∑

s=1

δst
sR(t) + gk(t), |t− ak| = rk.

Let us apply the factorization method [4] to the problem (3.3). We consider
the auxiliary problem

X1(t) −X2(t) = lnλk(t)R(t) + ck, |t− ak| = rk,

X1(w) = X2(w) = 0,

where ck are unknown complex constants. Since ind∂Dk
λk(t)R(t) = 0, the

logarithms are correctly defined. If ck are fixed, then the problem (3.3) is
a particular case of the problem (2.1) for λk = 1. From the necessary and
sufficient solvability conditions for (2.18) we obtain

(3.4) ck =
n∑

m=0
m 6=k

(Pkm −Rkm), k = 0, 1, . . . , n.

The solution has the form (2.16), where q1 = q2 = 0, λk = 1, φ(z) =
X1(z), ψ(z) = X2(z) and lnλk(t)R(t) = g+

k (t) − g−k (t).
Let us introduce the auxiliary unknown functions

α(z) := φ(z) exp(−X1(z)), β(z) := ω(z) exp(−X2(z)),

satisfying the following boundary value problem:

(3.5) α(t) = µkβ(t) + fk(t), |t− ak| = rk,

where µk := exp ck, ck has the form (3.4),

fk0(t) := gk(t) exp(−X1(t)), fks(t) := λk(t)tsR(t) exp(−X1(t)),

fk(t) := fk0(t) +

κ∑

s=1

fks(t)δs.

The necessary and sufficient solvability conditions for (3.5),

(3.6) q1 − µkq2 +

n∑

m=0
m 6=k

(
µmPkm − λk

λm
Rkm

)

= f+

k0
(w∗

k) − f−
k0

(w) +

κ∑

s=1

f+

ks(w∗
k)δs −

κ∑

s=1

f−
ks(w)δs = 0, k = 0, 1, . . . , n,
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form a system of 2(n+ 1) R-linear algebraic equations for the 2(κ+ 2) real
quantities Re δs, Im δs, Re q1, Im q2 (s = 1, . . . , κ). Here fks(t) = f+

ks(t) −
f−

ks(t), |t− ak| = rk.

Theorem 1 (index κ ≥ 0). The problem (3.1) is solvable if and only if

the system (3.6) is solvable. If (3.6) is solvable then the solution

φ(z) := α(z) exp(X1(z)),

ψ(z) :=
[
β(z) exp

(
X2(z) +

κ∑

s=1

δsz
s
)]
R(z), z ∈ D,

depends on the constants Re δs, Im δs, Re q1, Im q2, which are arbitrary

solutions of the system (3.6). The functions X1(z),X2(z) have the form

(2.16). The functions α(z) and β(z) have the same form as φ(z) and ψ(z),
respectively , with λk = µk, fk(t) = g+

k (t) − g−k (t), |t− ak| = rk.

R e m a r k. It follows from the general theory [9] that if κ ≥ n, then the
system (3.6) is solvable. The number of linearly independent solutions is
l = 2(κ − n+ 1).

Let κ < 0. Then we put ω(z) := ψ(z)[R(z)]−1. Analogously, we obtain
the boundary value problem

φ(t) = λk(t)R(t)ω(t) + gk(t), |t− ak| = rk.

That problem is solved like (3.1). We have

ψ(z) = R(z)ω(z),

where R(z) has a pole at z = ∞. The order of the pole is −κ. Since ψ(z)
has to be analytic at z = ∞, the function ω(z) has a zero. The order of the
zero is no less than −κ:

(3.7) res
z=∞

zsω(z) = 0, s = 0, 1, . . . ,−κ− 1.

Theorem 2 (index κ < 0). Suppose the conditions of single-valuedness

hold (µk = µ, k = 0, 1, . . . , n). Then the problem (20) is solvable if and

only if n of the conditions (3.6) are satisfied. The remaining condition of

(3.6) defines the constant p := q1 −µq2. Necessary and sufficient solvability

conditions for (3.1) have the form (3.6) and (3.7). When (3.6) and (3.7) hold

the solution of (3.1) has the form

(3.8) φ(z) := α(z) exp(X1(z)), ψ(z) := β(z) exp(X2(z)),

depending on the arbitrary complex constant q1. The functions α(z), β(z),
X1(z), X2(z) have the form (2.16).

If the conditions of single-valuedness do not hold then the problem (3.1) is

solvable when n−1 conditions (3.6) are satisfied. The other two conditions of
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(3.6) define the constants q1 and q2. When (3.6) and (3.7) hold the problem

(3.1) has the unique solution (3.8).

4. Solution of the Riemann problem (1.1). According to the clas-
sical scheme [9], we shall transfer the boundary conditions from Γ to ∂Dk.
Let some components of Γ lie in D and D∗ simultaneously. Let us continue
these components in D and D∗ in the disc |z − ak| < rk up to ak. Denote
the resulting contour by Γ0 and Γ ∗

0 on D and D∗ respectively. Consider the
following Riemann problem:

(4.1) F+
1 (t) = G(t)F−

1 (t), t ∈ Γ0,

on the complex plane C. Here G(t) = 1 when t 6∈ Γ . We assume that F1(z)
can have singularities at z = ak of order such that the problem (4.1) has
a solution. Let F1(z) be a solution of (4.1). One can find identities for the
function F1(z) in [4]. Let us introduce an auxiliary unknown function on the
first sheet of R:

(4.2) φ(z) = Φ(z)/F1(z) − g1(z), z ∈ D,

where

g1(z) =
1

2πi

\
Γ

g(τ)

F1(τ)(τ − z)
dτ.

The function g(τ) is extended to Γ0 \ Γ in such a way that it is Hölder-
continuous. Analogously we introduce a function on the second sheet of R:

(4.3) φ1(z) = Φ(z)/F2(z) − g2(z), z ∈ D.

It follows from (1.1) and (4.1) that φ+(t) = φ−(t), φ+

1 (t) = φ−1 (t), t ∈ Γ .
Let us find φ(z) and φ1(z) on ∂Dk. We use the condition Φ+(p) = Φ−(p),
where p is the local parameter of R on the circumference: p = t on the first
sheet, p = t on the second sheet. As a result we obtain the problem

(4.4) φ(t) =
F2(t)

F1(t)
ψ(t) +

F2(t)

F1(t)
g2(t) − g1(t), |t− ak| = rk,

where ψ(z) := φ1(z), z ∈ D.

Let us apply Theorems 1 or 2 to the problem (4.4). If the necessary and
sufficient conditions hold and we have φ(z) and ψ(z) then the function Φ(z)
is found from the relations (4.2) and (4.3):

Φ(z) =

{
F1(z)(φ(z) − g1(z)) on the first sheet,

F2(z)(ψ(z) − g2(z)) on the second sheet.

It is easy to verify the identity

ind
p∈Γ

G(p) = ind
t∈∂D

F2(t)/F1(t),
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where on the left hand side the index is calculated on the Riemann surface R,
and on the right hand side on the plane C.
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