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On n-circled H*°-domains of holomorphy

by MAREK JARNICKI (Krakéw) and PETER PFLUG (Oldenburg)

Abstract. We present various characterizations of n-circled domains of holomorphy
G C C™ with respect to some subspaces of H*(G).

Introduction. We say that a domain G' C C" is n-circled if (e?1zy, ...
., €% 2.) € G for arbitrary (21,...,2,) € G and (04,...,0,) € R™.
Put log G := {(x1,...,2,) € R™ : (™*,..., ") € G}.
If X C R™ is a convex domain, then £(X) denotes the largest vector
subspace F' C R” such that X + F' = X.
A vector subspace F' C R" is said to be of rational type if F' is spanned

by FNZ".
Let
L} (@) := O(G) N L*(G)
and
A¥(G) = {f € O(G) : Yoe(z, ), |o1<k Ip,ec@) : fo = 0°f in G},
k S Z+ U {OO},
where

. olel
07 = 027 ... 0zpn
For a = (aq,...,a,) € R™ put
Q2(a) == {(21,-,2n) €C" : Vje1,..ny 1 a5 < 0= 2z; # 0}

A domain G C C" is said to be an F(G)-domain of holomorphy (F(G) C
O(@Q)) if for any pair of domains Gy, G C C™ with 0 # Gy C éﬂG, G ¢ G,
there exists a function f € F(G) such that f|g, is not the restriction of a
function f € O(G).

o=(01,...,0n) € (Z4)".
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The following results are known.

ProOPOSITION 1 ([Jar-Pfl 1]). Let G C C™ be an n-circled domain of
holomorphy. Then the following conditions are equivalent:
(i) G is fat (i.e. G =int G) and the space E(log G) is of rational type;
(ii) there exist A C Z™ and a function ¢ : A — Rsq such that
G =int m {z € 2a): 2% <cla)};
acA
(iii) G is an H*(G)-domain of holomorphy.
PROPOSITION 2 ([Jar—Pfl 1]). Let G & C" be a fat n-circled domain of
holomorphy. Then the following conditions are equivalent:
(i) £(log G) = {0};
(i) L7 (G) # {0};
(iii) G is an L?(G)-domain of holomorphy.
PROPOSITION 3 ([Sib]). Let G = {(21,22) € C? : |21] < |22 < 1} (the
Hartogs triangle). Then:
(a) G is an A¥(G)-domain of holomorphy for arbitrary k € 7.,
(b) G is not an A*(G)-domain of holomorphy.

The aim of this paper is to generalize Propositions 1, 2, 3. The starting
point of these investigations was our attempt to understand the general
situation behind Proposition 3.

PROPOSITION 4. Let G C C™ be a fat n-circled domain of holomorphy.
Then G is an A*(G)-domain of holomorphy for arbitrary k € 7. .

Let
Vor={(z1...,2n) €C" 1 2y - ... 2, =0}
and
H>®(G,loc) :={f € OG) :
for any bounded domain D C C", f € H*(GN D)}.

Remark 5. Let G C C" be an n-circled domain of holomorphy. Then
(int G)\G C Vg (cf. [Jar—Pfl 1]). In particular, if G is an H*°(G, loc)-domain
of holomorphy (e.g. G is an A"(G)-domain of holomorphy), then G is fat.

For j=1,...,nlet
Vi={(z1,...,2,) € C" : 2; =0},
GU) .= {(21,- -+, 2j—1, A2, Zj41s s 2n) €EC" 1 (21,...,2,) € G, X € E},
where E denotes the unit disc. Define
H(G,loc) == {f € O(G) : Ve, y» : 0° f € H(G,loc)}.
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PROPOSITION 6. Let G C C™ be an n-circled domain of holomorphy.
Then the following conditions are equivalent:

(i) G is fat and
(%) Ve, m: (0G)NV; #0 = GY c G;

(ii) G is an H™>°(G,loc)-domain of holomorphy;
(iii) G is an A>(G)-domain of holomorphy;

(iv) G is an O(G)-domain of holomorphy.

Moreover, if G is an H*(G)-domain of holomorphy, then each of the
above conditions is equivalent to the following one:

(v) G is an H*(G) N O(G)-domain of holomorphy.

Remark 7. (a) The Hartogs triangle does not satisfy (*) and therefore
Proposition 3 follows from Propositions 4 and 6.

(b) It is clear that if G is complete, then (x) is automatically satisfied.

(c) One can prove (cf. [Fu]) that (x) is satisfied whenever 0G is C*.

For p € [1,00], k € Z let
LyM(G) = {f € O(G) : Vjg1<k : 07 f € LP(G)},
LhG) = L30(G),  HMG) =L (G),
Ly*G)y = () Ly*G).
pE[L,00]

Remark 8. (a) We have LZ’k C H™*(G), k € Z. Moreover, equality
holds for one k (and then for all k) iff G has finite volume.

(b) If G is bounded, then A*(G) c H>®*(G).

(c) We will show (Lemma 18) that if G is n-circled, then H**(GQ) C
AF~1(@). Observe that for G = {(z1,22) € E? : |21| < |22|} the function
f(2) := 2% /2% belongs to H°*(G), but not to A*(G).

PrOPOSITION 9. Let G C C™ be an n-circled domain of holomorphy.
Then the following conditions are equivalent:

(i) G is fat and E(log G) = {0};

(i) G is fat and there exists p € [1,00) such that LY (G) # {0};

(iii) G & C™ and for each k € Z the domain G is an LZ’k(G)-domam
of holomorphy.

Remark 10. Condition (iii) is equivalent (cf. Remark 8(c)) to the
following one:

(iv) G G C™ and for each k € Z the domain G is an LY*(G) N AF(G)-
domain of holomorphy.

In particular, if G is bounded we get another proof of Proposition 4.
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PrOPOSITION 11. Let G C C™ be an n-circled domain of holomorphy.
Then the following conditions are equivalent:

(i) G is fat and there exist 0 < m < n and a permutation of coordinates

such that G = D x C"~™ with &(log D) = {0};

(i) G is an H>Y(G)-domain of holomorphy;

(iii) G is an H**(G)-domain of holomorphy for any k € Z, .

Let

H®> = {f € O(G) : Voex : 0°f € H®(Q)}, X C (Z,)",
Yp={oe(Zy)" :|o| =k}, keZ;.

Let eq,...,e, denote the canonical basis of R™.

PROPOSITION 12. Let G C C™ be an n-circled domain. Then the follow-
ing conditions are equivalent:

(i) G is an H™*1(G)-domain of holomorphy;

(ii) there exist A C Z™ and functions by, ..., b, : A — Rsq such that

(1) G=int ﬂ {ze V) Ve, .ny v #0= 2779 < bi(v)}
veEA
EXAMPLE 13. Let G C C? be a 2-circled H°**1 (G)-domain of holomor-
phy. Assume that £(log G) # {0} and that G is not a Cartesian product of
two plane domains. Then, by Proposition 12,

G = {(21,22) c (C2 : ‘2’1’ < ’22‘}

up to a permutation and rescaling of coordinates.
Note that G is not an H°*'!(G)-domain of holomorphy (Proposition 11).
This example shows that there are domains G and Fréchet spaces Fi(G)
and F»(G) of holomorphic functions on G such that G is an F;(G)-domain
of holomorphy, 7 = 1,2, but not an F;(G) N F2(G)-domain of holomorphy.

Remark 14. Let F(G) be one of the spaces
ANG), HEEG), IRNG), LG

Then F(G) has a natural structure of a Fréchet space. Consequently, G is
an F(G)-domain of holomorphy iff there exists a function f € F(G) such
that G is the domain of existence of f.

In [Sic 1,2] J. Siciak characterized those balanced domains of holomorphy
G C C™ which are H*(G) (resp. H*(G)N.A>*(G))-domains of holomorphy.
Moreover, it is known that any bounded balanced domain of holomorphy
G C C" is an L?(G)-domain of holomorphy (cf. [Jar-Pfl 2]). A general
discussion for balanced domains of holomorphy (like the above for n-circled
domains) is still lacking.
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Proof of Proposition 4
LEMMA 15. Let a = (v, ...,a,) € (R\ {0})",
(2)  D.:={(z1,...,2n) € 2(c) : |z1|* - ... |z|* <1+4¢}, € >0.

Then for any € > 0 there exists a neighborhood U of the set (0Dg) \ D such
that

(3) dp,(z) > 22|, zeUn Dy,

where dp denotes the distance to 0D with respect to the maximum norm,
i.e. dp(z) =sup{r >0: P(z,r) C D}, z € D (where P(z,r) is the polydisc
with center at z and radius r), 2 := (2,...,2) € N".

Proof. We may assume that aq,...,as >0, ag41,...,0, <0 for some
0 <s<mn Fixe>0and a= (ay,...,a,) € (0Dg) \ De. Note that
a1 ... Qs = Qgy1 ° n = 0.
We have to prove that there exists a neighborhood U of a such that
P(z,|22|) C D, for any z € U N Dqy \ Vp.
Let U be a neighborhood of a such that [227%| <1, j =1,...,n, and

s

n
H(l—i—\zz “1) H (1—[227%9)% <1+ 2z€U.

j=1 Jj=s+1
Then
S n
[T0z1+ 1220 T (21— 122)% <1+ z€UnNDy,
Jj=1 Jj=s+1

and therefore P(z,|22]) C De, 2€ UN Do\ Vp. =

Remark 16. The proof shows that, under the assumptions of the
lemma, the following slightly stronger assertion holds:

For any € > 0, n > 1, there exists a neighborhood U of the set (0Dg)\ De
such that

dp.(z) > |z1-...-za|", 2= 1(21,...,20) €UNDy.

We pass to the proof of Proposition 4. Fix a k € Z,. Since G is a fat
n-circled domain of holomorphy, there exist a family A C R™ and a function
c¢: A — Ryg such that

(4) G =int ﬂ {z € 2(a): |z1|™ - ... - |za]|? < c(a)}.
acA

Consequently, it suffices to consider the case

G={z€ 2a): || ... |zp|* < ¢}
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for some a € R™ and ¢ > 0. Furthermore, we may also assume that o €
(R \ {0})" (otherwise we can pass to C"~!) and that ¢ = 1. Thus we may
assume that G = Dy, where Dy is as in (2).

Suppose that G is not an A*(G)-domain of holomorphy and let Go, G
be domains such that () # Goq C GNnG, G ¢ G, and for each f € A*(Q)
there exists f € O(é) with f: f on Gy. Since G is fat, we may assume
that GNVy = 0 and that G ¢ G. Let € > 0 be such that G ¢ D. (D, is
given by (2)) and let U be as in Lemma 15.

It is known (cf. [Pfl]) that there exist N > 0 and a function g € O(D,)
such that D, is the domain of existence of g and 5%8 lg| <1, where

. . 1
6D5 (Z) = min { dlStDE (Z), THZHQ},

distp, denoting the distance to 0D, with respect to the Euclidean norm.
(In fact, we know (cf. [Jar-Pfl 1]) that such a function exists for arbitrary
N > 0.) Let u € N be such that u > 2N + 3k + 1. We will show that

f= 2gle € A¥(G) (1 := (1,...,1) € N"). Then the function 21 f €
O(G) extends g and this will be a contradiction.
It suffices to prove that

lim 2M'7797g(2) =0, a€ (0G)\ D., o,7 € (Z)", |o| +|7] < k.

Goz—a
Fix an a € (0G) \ D.. It may be easily proved (cf. [Fer]) that

65:_]6’879’ < ¢, ‘T’ < k?

where ¢y depends only on n, N, and k. Then, by virtue of (3), for z € GNU,
Zz near a, we get

#7707 g(2)| < col= 7105 (2)
< cl‘zulfa’dB£N+k)(Z) < cl‘zulfaf2(N+k)1‘ < 02’21‘7

where ¢q, co are independent of z. The proof of Proposition 4 is complete. m

Proof of Proposition 6

LEMMA 17. Let D G C™ be n-circled and X C (Z4)™ be such that there
exists ko € Z, with Xy, C X. Assume that D is an H**(D)-domain
of holomorphy. Then there exist A C Z™ and functions a : A — Rsg,

b: X — Ry such that
v _
J!< >z” 7
o

(5) D =int N {z e Q) :
Moreover, if ¥ = (Z4)", then D satisfies (x).

< a(u)b(a)}.

(v,0)EAX E:(;)#O
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Proof. Let f € H°*(D) be such that D is the domain of existence
of f (cf. Remark 14). Write

flz) = Z a,z”, zé€D,

veEA
where A C Z" is such that a, # 0 for v € A. Note that

v

a — ' Vv—o

(6) 97 f(2) Za.<0>ayz , z€D,oceX.
veA

Put a(v) := 1/|ay|, v € A, b(o) := [|07 || (D), 0 € £. By the Cauchy

inequalities, we get

14 _
o! 2V
o

Thus D C D, where D is the domain defined by the right side of (5).

It is clear that for each o € X the series (6) is convergent in D. Suppose
that D ng). Since D is connected, there exist a € D, r > 0 such that
P(a,r) C D but P(a,r) ¢ D.

Observe that if g € O(D) is such that each derivative 0g/0z; extends to
a function g; € O(P(a,7)), j = 1,...,n, then the function g itself extends
to P(a,r). Indeed, the extension may be given by the formula

<a(v)b(o), ze€D, (v,o) e Ax X, ( >7é0.

14
g

9(z) =gla) + Z(Zj — a;) ng(a +t(z—a))dt, =z P(a,r).
j=1 0

The above property and the fact that X3, C X easily imply that the
function f extends to P(a,r); a contradiction.
Now, suppose that X = (Zy)" and that 0D NV, # 0 for some

jo € {1,...,n}. By virtue of (5), to prove that Do) = D it suffices to

show that vj, > 0 for any v € A. Fix av € A and let 0 = (01,...,0,),
oj :=max{0,v;}, 7 =1,...,n. Observe that (Z) =# 0 and therefore
SV H Z;/j
;<0

is bounded on D. In particular, Vi, > 0. m

The implications (v)=-(iv)=-(iii)=-(ii) in Proposition 6 are evident.

(i))=(i). Itis clear that G is fat (cf. Remark 5). Suppose that 0GNVj, #0
for some jo € {1,...,n}. Then for any » > 0 the domain D, := G N
P(0,7) is an H°>>Z+)" (D,.)-domain of holomorphy. Hence, by Lemma 17, if
D, NV;, # 0, then DY) = p,. Consequently, GU0) = G.

(i)=(iv) (resp. (i)=-(v) provided that G is an H*(G)-domain of holo-

morphy). Suppose that G is not an O(G) (resp. H*(G) N O(G))-domain of
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holomorphy and let Go, G be domains such that_@ # Gy C GN G, G Z G,
and for each f € O(G) (resp. f € H*>(G) N O(G)) there exists f € O(G)
with f = f on Gy. We know that G may be represented in the form (4) with
A CR" (resp. ACZ"™). Let a € A, ¢ >0, ¢ > 0 be such that
GC{ze a):|z]|" ... |z < ¢}

CD.:={z€2():|z|*...-|z|* < (1+¢e)}, G¢D..
Observe that D is a domain of holomorphy (resp. D is an H>*(D;)-domain
of holomorphy). If we prove that G C D., then we get a contradiction.

Obviously, G\ Vo C D.. Suppose that (0G) NV;, # 0 for some jo €
{1,...,n}. Since G satisfies (x), we get

Ao fa |zl <o, z€ G, AEE.

Consequently, a;, > 0. Thus (0G) NV, C D..
The proof of Proposition 6 is complete. m

Proof of Proposition 9

LEMMA 18. Let D C C" be n-circled. Then H*>*'(D) C A%(D). In
particular, H>®*(D) c A*~Y(D), k € N.

Proof. Note that D has univalent H*(D)-envelope of holomorphy.
Therefore, we may assume that D is a domain of holomorphy. Fix f €
H>>*1(D). Let op denote the arc-length distance on D. Obviously,

F(z') = ()] < Sgg{\\f'(Z)H} cop(#,2"), 22" eD.

For J = (j1,.--,Js), 1 < j1 < ... < js < n with 0 < s < n, let
ps : C" — C® denote the natural projection (z1,...,2,) — (2j,,.-.,%2.),
where pg := 0.

To show that f extends continuously to D it suffices to prove that for any
point a = (ay,...,a,) € D there exist a constant ¢ > 0 and a neighborhood
U of a such that

op(?,2") < e(llz" = 2" + lps () + s (D, 22" eUND,

where J is such that a; = 0 iff j € J. Fix an a. We may assume that
J=(1,...,8). Let w' := (|21|,...,|2L|, 26415 2,). Since D is n-circled,
w' € D and

op(2',w') < 2m(lz4] + ...+ [z).
Let w” be defined in the same way for z”/. Thus it remains to prove that
there exist a constant ¢’ > 0 and a neighborhood U of a such that

op(w',w") <d|Z =2"||, Z.,2"eUnD.
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By continuity, it suffices to consider only the case where 0 # |2%| # |27] # 0,
j=1,...,n. Let Ly = ... = Ly := Log = the principal branch of the
logarithm. Furthermore, for j > s+ 1, let L; be a branch of the logarithm.
Put 7 = (y1,- -, 7m) : [0,1] = €, 5 (t) = exp((1 — )L (wh) + tL;(w!)).
j=1,...,n. Since D is logarithmically convex, v([0,1]) C D. We only need
to show that for each j there exists ¢; > 0 such that the length I; of v; is
< cj|2} — 27| provided that z7, 2/ are near a;.

If j <s, then [; < |[2}| — [27| < |2} — 27|

If 5 > s+ 1, then let U; be a neighborhood of a; such that |z; — a;| <

la;|/2, z € U;. Consequently, for 2%, 2] € U; we get

1

(&) dt = Y1251~z 111 Ly (=) — L(=f)l dt
0

< 2la;|(2/la; Dlzj — 27| = 4125 — 2j|. =

||
OMH

(iii)=-(ii) in Proposition 9 follows from Remark 5.
(ii)=(). Let f =3, cpm a2z’ € L1(G), f #0. Then

1 C) P v+1

— | = d{‘ PPt A, (r)
(27i) "le|:7"j (vt
J=L4..,m

< @0 § (] 176e?)]da. ) dan()
|G| [0,27]"
< VY )P dano)rt daa(r)
|G| [0,27]™
= S |f|pd/12n7
G

where |G| := {(|z1],.--,]2n]) : (21,...,2n) € G} and A,, denotes Lebesgue
measure in R™. Consequently, there exists vy € Z™ such that 20 € L¥(G).

Suppose that F := £(log G) # {0}. Let m := dim F and let Y C F* be
a convex domain such that logG =Y 4+ F. We have

S ‘Zuo‘p d/lgn(z) — (271')” S e{®pro+2) d/ln(a;)
G log G

— S e<1’/7p”0+2> d/ln,m(x’) S 6<I”,pllo+2) d/lm(x”) — 0,
Y F

| lay2”|P dAz, (2) = (2m)" |
G |G|

where ( , ) is the Euclidean scalar product in R™. We have got a contradic-
tion.

(i)=(iii). Fix k€Z,. Suppose that there exist domains Gg, G cC" such
that ) # GoC 1GNG, G ¢ G, and for each fGLZ’k(G) there exists f € O(G)
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with f: f on Gg. We may assume that G ¢ G and that GNVy=0.
Since £(log G) = {0} and G is fat, there exist R-linearly independent
vectors aj = (0 1,...,05,) € Z", j=1,...,n, and ¢ > 0 such that

GCDy:={z€2:|2%<¢, j=1,...,n}
CD.i={ze:|2%|<(1+4¢e)c, j=1,...,n}, G¢ D.,

where 2:= 2(a1)N...N2(a) (cf. [Jar-Pfl 1]). We may assume that c=1.
Fix an a € G\ D, and let jo € {1,...,n} be such that |a®o| > 1+ .
Put o :=a1+...+a,. For N € N define

ZNa

In(z) = e S € D..

Obviously, fn € O(DE)N. We will show that there exists N € N such that
fn € LZ’k(Dg). Then fy(z)(z%0 —a%o) = 2N® 2 € G, which will give a
contradiction.

Observe that any derivative 07 fn, o € (Z4)", |o| < k, is a finite sum of

terms of the form
ZNO"HO‘m —0

(Zo‘fo — a%o )H‘l ’

where d€Z, 1€{0, ..., k}. Thus it suffices to find N such that |2V~ 7| s (p,)
<l lol<k 1<p<oco
Let

A= [ajJ]j’l:l,myn, B = Ail,
Tj(z) :== (zB); = ZBl,jxlv j=1,...,n, x = (x1,...,2,) € R"™.
=1
For p € [1,00) and v € Z™ we have
| 12 dAon(2) = (2m)" | el da, (a)
Dy log Dg

=(@2m)" | ePOP T2 det Bl dA,(€)
{¢<0}
B (2m)™
C|det ATy (pr +2) - ... T (pv + 2)
provided that T;(pr 4+ 2) > 0, j = 1...,n. In particular, if

1 27
T; > —F —T,(2 i =1,...
](V) = p<]detA]1/“ J( )>7 J ’ , 1,

then [|2”[|z»(p,) < 1. Hence, if v = Na — o and if
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1 27

j=1,...,n, 0 € (Zy)", |o| <k, p€ [1,00)},

then |2V~ 7| 1o(py) < 1 for arbitrary p € [1,00) and |o| < k.
Moreover, Ny > Tj(0), j = 1,...,n, and therefore N — 0 € Riog +
...+ Ry, which shows that ||z ||y (py) < 1 for arbitrary |o| < k. m

Proof of Proposition 11. (i)=-(iii) follows from Proposition 9.
(iii)=(ii) is trivial.

(ii)=(i). Let F' := E(log G), m := codim F'. The cases m =0 and m =n
are trivial. Assume 1 <m <n —1. By Lemma 17 (with X' := {0} U X;) we
know that there exist A C Z™ and functions by, ...,b, : A — Ry such that

G = int ﬂ {z e 2v) 12" < bo(v), Yjequ,..n} 1 V5 0= 2" < b;(v)}.
veEA

Hence if v€ A and v; # 0, then v,v —¢; € [+, and, consequently, ej € Ft.
Since dim F'+ = m, we may assume that e 1,...,e, ¢ F* for some 0 <
s <m. Hence G = D x C"%. Clearly, F = E(log D) x R"~5. Hence s =m
and therefore £(log D) = {0}. =

Proof of Proposition 12. The implication (i)=-(ii) follows from
Lemma 17. To prove that any domain G of the form (1) is an H>*1(G)-
domain of holomorphy it suffices to consider only the case where

G={2€ ) :Vjeq, . n v #0=12""9] <b;}

for some v €Z™ and by, ...,b, > 0. We may assume that v; #0, 7 =1,...,n
(otheiwise we can pass to C"~1). It is enough to prove that for any point
a & G UV, there exists a function f € H°*1(G) such that f cannot be

continued across a. Fix such an a and let jo € {1,...,n} be such that
|a¥~%o| > bj,. Then the function
ZI/
f(z):= i —g—ei z €@,

belongs to H°*1(G) (cf. the proof of Proposition 9) and evidently cannot
be continued across a. m
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