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On continuous solutions of a functional equation

by KAZIMIERZ DANKIEWICZ (Zawiercie)

Abstract. This paper discusses continuous solutions of the functional equation
o[f(z)] = g(x, ¢(x)) in topological spaces.

Let us consider the equation

(1) olf (z)] = g(z, o(x))
with ¢ : X — Y as unknown function.

In order to obtain a solution of equation (1), it is enough to extend a
function defined on a set which for every x contains exactly one element of
the form f*(x), where k = 0,£1,42,... and f¥(z) denotes the kth iterate of
the function f (cf. [3] and [4]). In the case when X is an open interval and Y
is a Banach space, it is well known under what conditions these extensions
are continuous (cf. [5]). Paper [6] by M. Sablik brings theorems which answer
the above question for X and Y contained in some Banach spaces ([6, Th.
2.1, Th. 2.2]). In the case when X and Y are locally convex vector spaces
the continuity of similar extensions was examined by W. Smajdor in [7] but
for the Schroder equation (i.e. ¢[f(z)] = sp(z), 0 < |s| < 1). We are going
to adopt the method given in that paper to the more general situation.

We shall employ Baron’s Extension Theorem proved in [1] (cf. also [2]).
This theorem concerns extending solutions of functional equations from a
neighbourhood of a distinguished point (Lemma 7).

We shall deal with the following hypotheses:

(i) X is a Hausdorff topological space; £ is a given (and fixed) point
of X; Y is a topological space.

(ii) The function f maps X into X in such a manner that
(2)  fis homeomorphism of X onto f(X);
(3) € €int f(X);
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(4)  lim,_ o f"(z) =& for every z € X;
(5)  each neighbourhood U of the point £ contains a neighbourhood W of
¢ such that cl f(W) Cc W CU.

(iii) The function g : X x Y — Y is continuous; for every x € X \ {¢}
the function g(z,-) is a bijection and the function h : (X \ {{}) xY = Y
defined by

h(z,y) = g(z, )" (y)

is continuous.

Evidently
(6) f(&) =¢.
According to (3) and (5) we can find a neighbourhood W of £ such that W C
int f(X) and cl f(W) C W. Obviously f2(W) c f(W), thus cl f2(W) C
cdf(W)c W C f(X). By (2) we have

cl f2(W) = cl fA(W) N f(X) = f(cl f(W)) C f(W).

Putting Vj := f(WW) we obtain an open set with the following properties:

(7) £eVp, cVy Cint f(X),
(8) cl f(Vo) C Vo.
Moreover, by induction we have
(9) fE(Vp) is open, k=0,1,2,...,
(10) d Vo) € fF(Vo), k=0,1,2,...
Fix an open set Vj satisfying (7) and (8) and put
(11) Ag = cl Vo \ cl f(W),
(12) Co := clVp \ V.
We have the following
LEMMA 1.
(13) Ag = CyUint Ay,
(14) clAyg C Ag U f(Cy).

Proof of (13). Recalling (11) and (12) we have Ay C CoU(Ag\Cop) C
CoU(Vo\cl f(Vy)) € CoUint Ag. The converse inclusion follows immediately
from (11), (12) and (8).

Proof of (14). Let # € cl4g \ Ao. Then from the definition of Ag
we infer that x € cl f(V). Since, by (9) and (11), f(Vo) is an open set
disjoint from Ay, it follows that = & f(Vj). Applying (8), (7) and (2) we

get © € clf(Vo) \ f(Vo) = clf(Vo) N f(X)\ f(Vo) = f(clVo) \ f(Vo) =
f(cl Vo \ Vo) = f(Ch), which was to be proved.
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Put
(15) A = f*(Ao), k= 0,1,2,...,
(16) Ck:fk(00)7 k= 0,1,2,...

By continuity of f*, k=0,1,2,..., from (15), (11), (10) and (7) we have
(17) cl Ay, C cl f*(Ag) C el fF(cl Vo) C clel f* (Vo) C el £ (V)
C cVy Cint f(X) C f(X).

Using the above inclusions and induction we can derive from Lemma 1
the next one:

LEMMA 2.
(18) A, =CrLUint Ay, k= 0,1,2,...,
(19) clAr C Ay UCky1, k= 0,1,2,...
We have
LEMMA 3.
(20) ArNA =0 for k#1, k,1=0,1,2,...

Proof. Fix [,k €{0,1,2,...}, Il # k. Let I > k+ 1. Then, by (2) and
(10) we get A; C fl(clVp) = cl fY(Vo) C el fF+1 (Vo) = fF(cl f(Vp)). Now,
(20) follows from the fact that A N fX(cl f(Vp)) = 0.

Put

(21) Pim () £ (V).
k=0

LEMMA 4.
(22) P is closed;
(23) & e P
(24) f(P)=P;
(25) fVo\ P) C Vo \ P;
(26) P#X implies &£ ¢int P,
(27) X\pP=JUr v\ P

k=0

Proof. It follows from (10) that (")~ f™(Vo) = N,—ocl f* (Vo) thus
(22) is true. (23) follows from (6) and (7), and (24) results from (10). Since
FVo\P) = f(Vo) \ f(P), (25) follows from (8) and (24).

To prove (26) let z € X \ P. Then, by (24), f*(z) € X\P, k=0,1,2,...
and ¢ = limy,_ o f*(z) € X\ int P.

Finally, (27) follows from (4) and (7).
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LEMMA 5.

Ao\ P = 4.
k=0

Proof. Fix ke {0,1,2,...} and x € Ai. Then z € clV by (17). Using
the definition of Aj we infer that = & f*[cl f(V5)]. This implies that = ¢
fF+1(Vy) and, consequently, x ¢ P. Now, fix x € clV\ P. Take the smallest
non-negative k such that = & f*(Vy). If k = 0, then = € clVy \ Vo C Ag. If
k > 0, then either = € cl f*(V4) or not. In the first case, recalling (15), we
have = € cl f*(Vg)\ f¥(Vo) C Aj. In the other case we have x € cl fF=1(14)\
cl f¥(Vy) = Ax_1. This implies that x € Uneo Ak-

LEMMA 6. For every x € X \ P the set Ay contains exactly one element
of the orbit C(z) == {f*(z) : k = 0,%1,£2,... and f*(z) is defined}.

Proof. First we prove the uniqueness. Suppose that for some z € X'\ P,
xo and yo are two different elements of Ay N C(x). Then there exists k > 0
such that yo = f*(x¢) (otherwise we interchange zo and yo). Since 2o € cl 1}
we infer that yo € f¥(clVp) = cl f*(Vp) C cl f(Vo), which is impossible.

To prove the existence suppose that Ag N C(x) = () for some x € X \ P.
In view of (4) there exists an integer n > 0 such that f"(z) € Vj. Defining
r:= f"(z) we have r € VyNC(x). Since AgNC(z) = () we obtain r € cl f(Vp),
i.e. r € f(X) in view of (8) and (7). This implies that f~1(r) is defined. We
have

F7Hr) € A F(Vo) € f7H (el f(Vo) N F(X)) = ([ (el Vo)) = el V.
Hence f~1(r) € c1Vy N C(z), which again implies that f=1(r) € cl f(Vp) C
Vo C f(X). By induction we can prove that f~%(r) is defined for every
integer i > 0 and f~*(r) € Vy. This together with the equation r =
fif~%r)], i = 0,1,2,..., implies that »r € P. This yields 2 € P, which
is impossible. Thus Ag N C(z) = 0.

LEmMA 7 (K. Baron). Let X and Y be topological spaces, U C X an
open set, h: X XY — Y and f : X — X continuous functions. If f(U) C U

and for every x € X there exists a positive integer k such that f*(z) € U,
then for every solution pg : U — Y of the functional equation

p(z) = h(z, o[f(x)])
there exists exactly one solution ¢ : X — Y of this equation such that

o(z) = po(z), € U. If vy is continuous then so is ¢.

THEOREM. Let hypotheses (1)—(iii) be satisfied. Let Vi be an open set
satisfying (7) and (8) and let the sets P, Ao, C1 be defined by (21), (11) and
(16). Then for every continuous function ¢ : Ao UCy — Y such that

(28) V(@) = g(f @) lf T (@)])  forzely
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there exists exactly one solution ¢ : X \ P — Y of equation (1) such that
(29) plaguc, = .

Proof. In view of Lemma 6 the Theorem from [3] (cf. also [4, Theo-
rem 1.1]) may be applied. It follows from that theorem and Lemma 5 that
the function @ : clVp \ P — Y defined by

(30) &(x) =Yp(x), x€A,, n>0,

where the functions v, : A, — Y are given by

(31) wO :w’Am ’l/}n-i-l(x) :g(f_l(w)7wn[f_l(x)])7
is a unique solution of equation (1) on clVj \ P such that
(32) Dl a, = vo.

We are going to prove that @ is continuous on clVy \ P. By definition
of & and Lemma 3 it follows that & is continuous on J,-, int A,. We shall
show that it is also continuous on (. First observe that
(33) &(x) =(xz) forxze AgUCh.

Indeed, if x € Cy then f~!(z) € Cy C Ag and by (30), (31) and (28) we
have

b(z) = di(x) = g(f~ (@), volf~(@)]) = g(f ' (2), ¥[f T (@)]) = ¥ ().
Next, fix an z¢ € C; and a neighbourhood U of @(z(). From the continuity
of ¥ on Ay U Cy and (33) there exists a neighbourhood V.. of 2 such that
(34) (V. N(AyUCy)) CU.

By the continuity of g(-,4(-)) on Ag U Cy and since f~!(zg) € Ao and
g(f~ (o), ¥[f*(z0)]) = @(x0) we can find a neighbourhood W of f~1(z0)
such that

(35) g ()W N (AU CU.
Putting V2 := f(W) N Vy we obtain a neighbourhood of z( such that
(36) @(Vﬁo N (Al U CQ)) cU.

Indeed, for x € V2 N (A; U Cs) we have f~(z) € W N (AgUCy) and
by (33) and (35), #(z) = g(f 1 (x), B~ (@)]) = g(f~ (@), ¥Lf (@)]) € U.
Now zg € C; implies that zg € f(Vp) and by (10), zo & cl f2(Vy). Hence
Vo = VoNV, NV2 \cl f?(Vp) is an open neighbourhood of xy. Moreover,
since V,, C clVp \ f2(Vo) C Ao U Cy by (34) and (36) we get &(V,,) C U.
This proves the continuity of @ at points of C. Hence the continuity of & on
Ck, k=0,1,2,... may be obtained by induction. From (18) and Lemma 5
we see that @ is continuous on clV; \ P.
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Hypothesis (iii) implies that @|y;\ p is a solution of the equation

(37) b(x) = h(z, P[f(x)])

on Vp \ P. Observe that by (22) the set V; \ P is open in X \ P and that
for every € X \ P there exists k € {0,1,2,...} such that f*(z) € Vo \ P
(by (4) and (7)). Thus from Lemma 7 it follows that there exists exactly
one solution ¢ : X \ P — Y of (37). It is easy to verify that the function ¢
satisfies equation (1) and condition (29).
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