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The Christensen measurable solutions of a generalization
of the Golab—Schinzel functional equation

by JANUSzZ BRZDEK (Rzeszéw)

Abstract. Let K denote the set of all reals or complex numbers. Let X be a topolog-
ical linear separable F-space over K. The following generalization of the result of C. G.
Popa [16] is proved.

THEOREM. Let n be a positive integer. If a Christensen measurable function f: X —
K satisfies the functional equation

@+ f(@)"y) = flx)f(y),

then it is continuous or the set {x € X : f(x) # 0} is a Christensen zero set.

1. Introduction. The functional equation

(1) [+ f(e)y) = f(2)f(y)

is well known and has been studied by many authors (see e.g. [1], [2], [4], [5],
[11]-[13], [15], [16], [19]). It is called the Gotab—Schinzel functional equation.
C. G. Popa [16] has proved that every Lebesgue measurable solution f : R —
R of (1) is either continuous or equal to zero almost everywhere. We are
going to show that the same is true for each Christensen measurable solution
of the functional equation

(2) fle+ f(2)"y) = f(2)f(y)
mapping a real (complex) linear topological separable F-space into the set
of all reals (complex numbers), where n is a positive integer.

Equation (2) is a natural generalization of (1). It is also a particular
case (k =0, t = 1) of the functional equation

FUFW) z + f(2)"y) = tf(x)f(y)

considered in various cases e.g. in [3], [4], [7], [18]. It is also worth mentioning
that there is a strict connection between the solutions of equation (2) in the
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class of functions f : R — R and a class of subgroups of the Lie group L} 11
(cf. [5], [6]).

Throughout this paper N, Z, R, and C will denote the sets of all positive
integers, all integers, reals, and complex numbers, respectively. X stands for
a linear space over a field K € {R,C}, unless explicitly stated otherwise.
m and m; are Lebesgue and inner Lebesgue measures in K, respectively.

2. Preliminary lemmas. Let us start with the following

LEMMA 1. A function f : X — K, f # 0 (i.e. f71({0}) # X), is
a solution of equation (2) iff there exist an additive subgroup A of X, a
multiplicative subgroup W of K, and a function w: W — X such that

(3) a"A=A foraeW,

(4)  w(ab) — a"w(b) —w(a) € A for a,be W;
(5) w(a) € Aiff a=1;

(6)

f(x):{a ifr€w(a)+Aand ac W,

0 0 otherwise,

for x € X.

Furthermore, W = f(X)\ {0} and A= f~1({1}).

The proof does not differ essentially from the proof of Theorem 1 of [13]
(cf. also [19] and [12], pp. 275-277). Therefore we omit it.
The subsequent corollary follows from Lemma 1.

COROLLARY 1. If a function f: X — K, f # 0, satisfies equation (2),
A= f1({1}), and W = f(X)\ {0}, then:

(i) A is an additive group;
(il) W is a multiplicative group;
(iii) A\ {0} is the set of periods of f;
(iv) if z,y € X and f(x) = f(y) #0, then x —y € A;
(v) a"A=A foraeW.

LEMMA 2. Let f: K — K be a microperiodic function (i.e. the set of
periods of f is dense in K) satisfying equation (2). Suppose that there exists
a € K such that |f(a)| & {0,1}. Then m;i(f~*(K;)) = 0 for j € N, where
K;={aeK:1/j <la < j}.

Proof. For an indirect proof suppose that there is & € N with
m;(f~*(Kx)) > 0. Then, in view of Corollary 1(ii), there exists b € K with
|f(B)] > (k+1)2. Put D = b+ f(b)" f~1(K}). It is easily seen that m;(D) > 0
and, by (2), |f(a)| > k for a € D. Thus DN f~}(Kj) = 0. On the other
hand, according to a theorem of H. Steinhaus (see e.g. [14], Theorem 3.7.1),
int(D — f~1(K})) # 0. Consequently, there exists ¢ € D — f~1(K}) such
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that ¢ # 0 and f(a+c) = f(a) for a € K, which means that f~*(K;)ND =
(f7Y(Ky) +¢) N D # 0, a contradiction.

Given b € C\ {0} and j € N let us put
(7) C;(b) = {a € C\ {0} : (j — 1)2x < Argb~'a < j2r},

where Argc € [0,27) denotes the argument of ¢ € C\ {0}. It is easy to see
that C\ {0} = UJ{C;(b) : j =1,2,3}.

LEMMA 3. Let f: C — C be a microperiodic solution of (2) such that the
set f(C) is infinite and |a| = 1 for a € f(C)\{0}. Then m;(f~1(C;(b))) =0
for every j =1,2,3, be C\ {0}.

Proof. For an indirect proof suppose that there exist b € C\ {0} and
k € {1,2,3} with m;(f~(Ck(b))) > 0. Since f(C) is infinite, in view of
Corollary 1(ii), f(C) \ {0} is dense in the set J = {a € C: |a] = 1}. Thus
there is d € C such that f(d) # 0 and (f(d)Ck(b)) N Cx(b) = (. Define
D =d+ f(d)"f~1(Cr(b)). Then, in virtue of (2), f(D) = f(d)Cx(b). Hence
DN f~Y(Cx(b)) = 0. On the other hand, m;(D) > 0, which, according to the
theorem of Steinhaus, means that int(D — f~(Ck(b))) # 0. Consequently,
there exists a period ¢ € D — f=1(Cx (b)) of f, from which we derive that
FHCr(b)) N D = (f~1(Ck(b)) + c) N D # (), a contradiction.

LEMMA 4. If a function [ : K — K, f # 1, satisfies equation (2), then
mi(f~*({a})) =0 for each a € f(K)\ {0}.

Proof. For an indirect proof suppose that there is a € f(K) \ {0}
with m;(f~'({a})) > 0. Fix b € f~1({a}) and put D = f~'({a}) — b.
Then, on account of Corollary 1(iv), D C A := f~1({1}). Thus m;(A) > 0.

Consequently, by the theorem of Steinhaus and Corollary 1(i), A = K, a
contradiction.

LEMMA 5. Let f: X — K be a function satisfying equation (2), W =
F(X)\ {0}, and A = f~1({1}). Suppose that there is ag € W such that
ad #1 and (ayy —1)"YA C A. Then

(8) a #1  for each a € W\ {1}
and there exists 1o € X \ U{(a" —1)7 A a € W\ {1}} such that
(9) f(x):{g ifre(a” —1xog+ Aanda e W,

otherwise,
Proof. In view of Lemma 1 there is a function w : W — X such that
(4)—(6) hold. Let zg = (af — 1)~ tw(ag). Since, by (4),

w(ab) — a"w(b) — w(a),w(ba) — b"w(a) —w(b) € A for a,b e W,

Corollary 1(i) implies that a"w(b) +w(a) — b"w(a) —w(b) € A for a,b € W.
Thus, for each b € W, —(b™ — 1)xg + w(b) € A. Consequently, according to

forx e X.
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(5), (6), and Corollary 1(i), conditions (8) and (9) hold and (a™ — 1)z ¢ A
for a € W\ {1}, which completes the proof.
LEMMA 6. Let Y be a linear space over a subfield F' of the field K. Let

f:Y — K\ {0} be a solution of equation (2) such that f(x)" € F for each
xeY. Then f=1.

Proof. Suppose that there is x € Y with f(z)" # 1 and put z =
(1 — f(z)")" 2. Then z + f(x)"z = z and, in view of (2),

f@)f(2) = fx+ f(2)"2) = f(2) # 0,
from which we derive f(z) =1, a contradiction.

Hence f(z)" =1 for each z € Y. Thus f(z+y) = f(z)f(y) for z,y € Y
and consequently, for each x € Y,

Fz) = f(n;x) _ f(ix)n _1

This completes the proof.

LEMMA 7. If a function f : X — K, f # 0, satisfies equation (2), then
f(f(@) (2 =) = f(2)f(x)~" for x,2 € X with f(z) #0.

Proof. Fix x € X with f(x) # 0. Setting z = f(z)"y+x in (2), we get
f(z)=fx)f(f(x) (2 — x)) for z € X, which yields the assertion.

LEMMA 8. Let B be an additive subgroup of a real linear space Y and let
V' be an infinite multiplicative subgroup of R such that

(10) ax € B forze B, acV.
Then the set By ={a € R: ax € B} is dense in R for each x € B.

Proof. Note that, for each ¢ € R, ¢ > 0, there is b € V with [b] < c.
Since, for each x € B, B, is an additive group and, by (10), V C B,, we
obtain the statement.

LEMMA 9. Let B be an additive subgroup of a complex linear space and
let V' be an infinite multiplicative subgroup of C such that V¢ R and (10)
holds. Then the set B, = {a € C: ax € B} is dense in C for each x € B.

Proof. Let x € Band J = {a € C: |a| = 1}. Note that V C B,. If
V C J, then V is dense in J. Thus B, is dense in C, because it is an additive
group. On the contrary, if there is a € V' \ (R U J), then, for each ¢ € R,
¢ > 0, there exists k € Z with |a*| < ¢ and |a**!| < ¢. Since a* and a*+!
are linearly independent over R, the additive group generated by V' is dense
in C, which completes the proof.

LEMMA 10 (cf. [16], Théoreme 1). If Di,Dy C K and m;i(D;) > 0,
Jj=1,2, then int(D; - D) # 0.
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Proof. First consider the case where K =R. There exist closed sets F; C
D; such that m(F;) > 0 fori = 1,2. Put FF = F;N([-k, —1/k]U[1/k, k]) for
k€N, i=1,2. It is easily seen that there are p,q € N with m(F¥) > 0 and
m(Fy) > 0. Let F;" = FY' N (0,00), F; = FY' N (~00,0), F" = F{ N (0, 00),
and Fy = Fy N (—00,0). Define

0 _ {Fj if m(F;") >0,

¢ F;  otherwise,

fori=1,2.

Observe that m(F?) > 0 for i = 1,2. Thus (see e.g. [17], Theorem 8.26),
m(nF?) > 0 for i = 1,2. Hence, in virtue of the theorem of Steinhaus,
int(In(FY - FY)) = int(In FY +1n FY) # @, which means that int(D; - D) # 0.

Now assume that K = C. Let F; C D; be a closed set such that m(F;) >
0 fori=1,2. Put Cy = {a € C:1/k < |a| < k} and FF = F; N Cy, for
k€N, i=1,2. It is easily seen that there are p,q € N with m(FF) > 0 and
m(Fy) > 0. Define functions hy : Rx(R\{0}) — C, hy : (0,27)%(0,00) — C,
and hz : R x (0,00) — R? by the formulas: hq(a,b) = a + ib, ha(a,b) =
b(cosa +isina), hs(a,b) = (a,Inb). Let F? = h'(FP) and F9 = hy *(F§).
Then F? is a Borel set and m(F?) > 0 for i = 1,2 (m denotes also the
Lebesgue measure in R?). Note that h = hg o hy 1o by is a diffeomorphism
onto the set A(Rx (R\{0})). Thus h(F?) is a Borel set and m(h(F?)) > 0 for
i =1,2 (seee.g. [17], Theorem 8.26(c)). Hence, by the theorem of Steinhaus,
int(h(F) +h(F9)) # 0. Since h(FY) +h(FY) = hzohy ' (hi(F)h (FY)), we
have int(hy (FY) - h1(FY)) # 0, which implies the assertion.

3. Christensen measurability. Throughout this part we assume that
X is a separable F-space as a topological linear space over K. We shall use
the notation and terminology from [8]-[10] concerning Christensen measur-
ability. Now, we only recall necessary definitions and facts.

Let M be the o-algebra of all universally measurable subsets of X; i.e. M
is the intersection of all completions of the Borel o-algebra of X with respect
to probability Borel measures. In the following a measure is a countable
additive Borel measure extended to M.

DEFINITION 1. A set B€ M is a Haar zero set iff there exists a proba-
bility measure u on X such that u(B + z) = 0 for each z € X.

DEFINITION 2. A set P C X is a Christensen zero set iff it is a subset
of a Haar zero set.

DEFINITION 3. A set D C X is Christensen measurable ifft D = BU P,
where B € M and P is a Christensen zero set.
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Let us define
Co = {B C X : B is Christensen zero set},
C ={B C X : B is Christensen measurable}.

LEMMA 11 (see [9], Theorem 1). Every countable union of Christensen
zero sets is a Christensen zero set.

LEMMA 12 (see [9], Theorem 2). If B € C\ Cy, then 0 € int(B — B).

DEFINITION 4. A function f : X — K is said to be Christensen mea-
surable iff f~1(U) € C for each open set U C K.

LEMMA 13 (see [10], Theorem 1). Let f : X — K be a Christensen
measurable linear functional. Then f is continuous.

Put Ly = {a € K : k—1 < |a|] < k} and ap = m(Lg) for k € N.
Given a Borel set D C X and z € X denote u,(D) = m,(k; (D)), where
ky : K — X, ky(a) = az, and, for each Borel set B C K, m,(B) =
S 27%a; 'm(B N Ly,). Since k, is continuous, u, is a well defined Borel
measure and u,(X) = 1 for each x € X \ {0}.

LEMMA 14. Let D € C\ Cy and x € X \ {0}. Then there exist a Borel
set D, C D and y, € X such that

(11) m(kczl(yw + Dm)) > 0.

Proof. There exist B € M and P € Cy with D = BU P. In view of
Lemma 11, B ¢ Cy. Thus there is y € X such that u(B + y) > 0, where u
denotes the extension of u, to M. Put uo(T") = u(T + y) for each T € M.
Then ug is a probability measure. Hence there are a Borel set B, C B
and a set By C B such that ug(Bp) = 0 and B = B, U By. Furthermore
uz(Bz +y) =U(Bz +y) = uog(By) = ug(B, U By) = ug(B) =u(B+y) > 0.
Consequently, m,,(k; ! (Bz+y)) >0, which implies (11). This ends the proof.

LEMMA 15. Let LC K\{0} and x€ X \{0}. Let f : X — K be a function
satisfying equation (2). Suppose that f~*(L) € C\ Co. Then there exists
z € X such that f(z) # 0 and m;(f;1(f(2)"1L)) > 0, where f, : K — K,
fz(a) = f(az).

Proof. It follows from Lemma 14 that there are a Borel set D, C D :=
f7Y(L) and y, € X such that (11) holds. Put B = (Kz — y,) N D,. Then,
according to the definition of k, and (11), B # 0. Fix z € B. It is easily
seen that f(z) # 0 and there exists b € K with z = bx — y,. Thus

B—-z=((Kx—ys;)NDy) —br+y, = (KzN(Dy +ys)) — bz,
which means that k;1(B — 2) = k; ' (D, + y.) — b. Hence, in view of (11),
(12) m(f(2)""(k; (B = 2))) > 0.
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Note that, by Lemma 7,
FolF(2) 7" (k3 H(B = 2))) = f(f(2) " (k7 (B = 2))x) C f(f(2)7"(B - 2))
= f(z)7 f(B) C f(z)7'L.

Consequently, f(z) " (k; (B — 2)) C f;1(f(2)7'L), from which we derive
by (12), that m;(f;*(f(z)7'L)) > 0. This completes the proof.

LEMMA 16. Let f: X — K be a Christensen measurable function satis-
fying equation (2) such that the set W = f(X)\ {0} is infinite. Suppose that
the set Sy = {x € X : f(x) # 0} is not a Christensen zero set. Then the set
A= f~Y({1}) is a proper linear subspace of X over the field

(13) F:{R if f(x)‘”E]Rfor each x € X,
C otherwise.

Proof. Since A # X, it suffices to show that A is a linear subspace of
X over F.

For an indirect proof suppose that A # Ag, where Ay denotes the linear
subspace of X (over F') spanned by A. Let fo = f|a,. It is easy to check that
fo is a solution of (2) and fy # 1. Thus, in view of Lemma 6, f; *({0}) # 0,
from which we derive that there are ag € F'\ {0} and y € A\ {0} such that
f(aoy) = 0. Note that the functions f; : X — F, fi(z) = f(z)", and f, :
F — F, fy(a) = fi(ay), also satisfy (2) for n = 1. Since f,(ag) = f(aoy)™ =
0, we have f, # 1. Furthermore, W,, C F, {a € F : ay € A} C f;'({1}),
and, by Corollary 1(v), aA = A for a € W,,, where W,, = {a" : a € W}.
Hence, by Lemma 8, Lemma 9, and Corollary 1(i)(iii), f, is microperiodic.

First consider the case where there is b € F with |f,(b)] & {0,1}. Let
Fj={a€F:1/j<|a|l <j}for j € N. Since Sy = U{f; "(F}):j € N},
according to Lemma 11 there exists p € N such that f; '(F,) € Cy. Thus,
by Lemma 15 (with n = 1), m;(f, ' (f1(2) "' F},)) > 0 for some z € Sy. Note
that there is & € N with f(z)""F, C Fy. Hence m;(f, ' (F))) > 0, which
contradicts Lemma 2.

Now, assume that the set W, := f,(F) \ {0} is finite. Then W, is a
multiplicative cyclic subgroup of F (cf. Corollary 1(ii)) and |a| = 1 for
each a € W,. There exists ¢ € F such that W, = {c* : k € N}. Put
ko = min{k € N: c¥ = 1} and define

[ (0,00) if F =R,
T {a e C\{0}: 2rky ' (j — 1) < Arga < 27ky '} if F =C,

for j€ N, j < kg. Observe that Sy = U{fl_l(Tj) : 7€ N, j < ko}. Thus there
is a positive integer k <kq such that f; ! (T})€Co. It results from Lemma 15
that there exists z € Sy with m;(f, ' (f1(2)"'Tk)) > 0. Moreover, there is
exactly one positive integer p < kg such that c? € f1(z)~'Ty. Consequently,
mi(f, ' ({c’})) > 0, contrary to Lemma 4.



202 J. Brzdek

It remains to study the case where F' = C, W, is infinite, and |a| = 1
for each a € W,. Since Sy = U{f; *(C;(1)) : j = 1,2,3}, where C;(b), for
b e C\ {0}, is given by (7), we have f; " (Ck(1)) € Cp for some k € {1,2,3}.
Thus, on account of Lemma 15, there is z € Sy with m;(f, ' (f1(z) " Cr(1)))

>0. Clearly, fi(2)""Cr(1)=Cy(fi(2)™"). Hence mi(f,  (Cr(f1(2)71))) >0,
contrary to Lemma 3. This completes the proof.

4. The main result. Now, we have all tools to prove the announced
theorem.

THEOREM. Suppose that X is a linear topological separable F'-space
over K. Let f : X — K be a Christensen measurable solution of equa-
tion (2). Then either f is continuous or the set Sy = {x € X : f(z) # 0} is
a Christensen zero set.

Furthermore, if f is continuous and satisfies (2), then

(14) f(X)CR or n=1
and the following two statements hold:

(i) if f(X) C R, then there exists a continuous R-linear functional g :
X — R such that, for n odd, either

(15) flz)= Vg(x)+1 forxzeX
(16) f(x) = {/sup(g(x) +1,0) forz € X,

and for n even, f is of the form (16);
(i) iof f(X) ¢ R and n = 1, then there exists a continuous C-linear
functional g : X — C, g # 0, such that f(x) =g(z)+1, z € X.

Proof. Note that if f # 0 is continuous, then int Sy # (), which means
that S¢ & Cy. Therefore suppose that Sy € C\Cy. Put W = f(X)\ {0} and
A= £y,

First, consider the case where W is finite. Then, in view of Lemma 1,
there is a function w : W — X with Sy = (J{w(a) + A : a € W}. Thus,
by Lemma 11, A ¢ Cy. Hence Lemma 12 and Corollary 1(i) imply that
int A # (), from which we derive A = X. Consequently, (15) or (16) holds
with g = 0.

Now, assume that W is infinite. Since, in the case where K = C, X is
also a real topological linear F-space (with the same topology), without loss
of generality we may assume that

(17) if K =C, then f(X) ¢ R.

It results from Lemma 16 that A is a proper linear subspace of X over
the field F' given by (13). Thus, by Lemma 5, condition (8) is valid and there
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exists zg € X \ A such that f is of the form (9). Hence

where W,, ={a"™ : a€ W}. Furthermore, in view of Lemma 12, 0 €int(S; —
S¢), whence

On account of (19) and Lemma 14 there exist a Borel set B C Sy and a € F,
z € A with m(ky ' (azg + = + B)) > 0, where ko : F — X, ko(a) = azg. On
the other hand, from (18), we obtain azo+z+Sy = A+(W,,—14a)zo. Thus
ko t(awo+x+Sf) = W, —1+4a. Since ky ' (azo+2+B) = a+ky ' (z+B), we
have ky ' (2 + B) € W,, — 1 and m(ky ' (z + B)) = m(ky * (axg +z + B)) > 0,
from which we derive that m;(W,,) = m;(W,, —1) > 0 (in F'). Hence and
from Lemma 10 and Corollary 1(ii) we get int W,, # 0 (in F'), whence

(20) (0,00) CW,, and 1€ intW, (in F).

We shall prove that (8), (17), and (20) imply F' = K.

For an indirect proof suppose that K = C and FF = R. Then there
is a € W\ R with a” € R. Observe that, by (20) and Corollary 1(ii),
a-la|7t € W\ R, whence, by (8), —1 = (a-|a|7!)" € W and (—1)" # 1.
This means that n is odd. Consequently, a"*!-|a|™""! = —a-|a|7! ¢ R and
(a™*1 . |a|7"" 1) = (=1)"*! = 1, which contradicts (8).

In this way we have proved that F' = K. Thus, by (19), A is a hyperplane
of X (i.e. codim A = 1) and, according to Corollary 1 and (20),

(21) for K =C, W =C\{0},
(22) for K =R, W =(0,00)0or W =R\ {0},

whence (8) yields condition (14).
Define a linear functional g : X — K by

(23) glaxg+y)=a fora€e K, ye A.
It is easy to check that, on account of (9) and (18),
(24) g(xz) = f(z)" =1 for x € Sy,

which, in view of (8), (18), and (22), means that, in the case where f(X)CR,
both conclusions of (i) are valid. In the case where n = 1 and f(X) ¢ R,
(21), (18), and (24) imply that f(x) = g(z) + 1, = € X. Therefore, on
account of Lemma 13, it remains to show that g is Christensen measurable.

If n =1 and f(X) ¢ R, this is obvious, because f is Christensen
measurable. On the other hand, if f(X) C R, then g(x) = f(z)" — 1 for
r € g71((—1,00)). Furthermore, for each set U C R, g~ (U) = g~} (Ut) U
(=g~ (=U7))Ug 1 (Uyp), where UT = U N (0,00), U~ = U N (—00,0) and
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Uy = U N {0}. This implies that g is Christensen measurable, which ends
the proof.

Remark. It is easy to check that each function f : X — K satisfying
(14) and conditions (i), (ii) of the Theorem is a solution of equation (2).

Finally, since in the case where X is locally compact, Cy coincides with
the set of all the Haar measure zero subsets of X (see [9], p. 256), from the
Theorem we get the following

COROLLARY 2. Let k € N and let f : K* — K be a Lebesque measurable
solution of equation (2). Then either f is continuous or the set Sy is of
Lebesgue measure zero.
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