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The Christensen measurable solutions of a generalization
of the Go la̧b–Schinzel functional equation

by Janusz Brzdȩk (Rzeszów)

Abstract. Let K denote the set of all reals or complex numbers. Let X be a topolog-
ical linear separable F -space over K. The following generalization of the result of C. G.
Popa [16] is proved.

Theorem. Let n be a positive integer. If a Christensen measurable function f : X →
K satisfies the functional equation

f(x+ f(x)ny) = f(x)f(y),

then it is continuous or the set {x ∈ X : f(x) 6= 0} is a Christensen zero set.

1. Introduction. The functional equation

(1) f(x+ f(x)y) = f(x)f(y)

is well known and has been studied by many authors (see e.g. [1], [2], [4], [5],
[11]–[13], [15], [16], [19]). It is called the Go la̧b–Schinzel functional equation.
C. G. Popa [16] has proved that every Lebesgue measurable solution f : R→
R of (1) is either continuous or equal to zero almost everywhere. We are
going to show that the same is true for each Christensen measurable solution
of the functional equation

(2) f(x+ f(x)ny) = f(x)f(y)

mapping a real (complex) linear topological separable F -space into the set
of all reals (complex numbers), where n is a positive integer.

Equation (2) is a natural generalization of (1). It is also a particular
case (k = 0, t = 1) of the functional equation

f(f(y)kx+ f(x)ny) = tf(x)f(y)

considered in various cases e.g. in [3], [4], [7], [18]. It is also worth mentioning
that there is a strict connection between the solutions of equation (2) in the
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class of functions f : R→ R and a class of subgroups of the Lie group L1
n+1

(cf. [5], [6]).
Throughout this paper N, Z, R, and C will denote the sets of all positive

integers, all integers, reals, and complex numbers, respectively. X stands for
a linear space over a field K ∈ {R,C}, unless explicitly stated otherwise.
m and mi are Lebesgue and inner Lebesgue measures in K, respectively.

2. Preliminary lemmas. Let us start with the following

Lemma 1. A function f : X → K, f 6= 0 (i.e. f−1({0}) 6= X), is
a solution of equation (2) iff there exist an additive subgroup A of X, a
multiplicative subgroup W of K, and a function w : W → X such that

(3) anA = A for a ∈W ;
(4) w(ab)− anw(b)− w(a) ∈ A for a, b ∈W ;
(5) w(a) ∈ A iff a = 1;

(6) f(x) =
{
a if x ∈ w(a) +A and a ∈W ,
0 otherwise,

for x ∈ X.

Furthermore, W = f(X) \ {0} and A = f−1({1}).
The proof does not differ essentially from the proof of Theorem 1 of [13]

(cf. also [19] and [12], pp. 275–277). Therefore we omit it.
The subsequent corollary follows from Lemma 1.

Corollary 1. If a function f : X → K, f 6= 0, satisfies equation (2),
A = f−1({1}), and W = f(X) \ {0}, then:

(i) A is an additive group;
(ii) W is a multiplicative group;
(iii) A \ {0} is the set of periods of f ;
(iv) if x, y ∈ X and f(x) = f(y) 6= 0, then x− y ∈ A;
(v) anA = A for a ∈W .

Lemma 2. Let f : K → K be a microperiodic function (i.e. the set of
periods of f is dense in K) satisfying equation (2). Suppose that there exists
a ∈ K such that |f(a)| 6∈ {0, 1}. Then mi(f−1(Kj)) = 0 for j ∈ N, where
Kj = {a ∈ K : 1/j ≤ |a| ≤ j}.

P r o o f. For an indirect proof suppose that there is k ∈ N with
mi(f−1(Kk)) > 0. Then, in view of Corollary 1(ii), there exists b ∈ K with
|f(b)| > (k+1)2. PutD = b+f(b)nf−1(Kk). It is easily seen thatmi(D) > 0
and, by (2), |f(a)| > k for a ∈ D. Thus D ∩ f−1(Kk) = ∅. On the other
hand, according to a theorem of H. Steinhaus (see e.g. [14], Theorem 3.7.1),
int(D − f−1(Kk)) 6= ∅. Consequently, there exists c ∈ D − f−1(Kk) such
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that c 6= 0 and f(a+ c) = f(a) for a ∈ K, which means that f−1(Kk)∩D =
(f−1(Kk) + c) ∩D 6= ∅, a contradiction.

Given b ∈ C \ {0} and j ∈ N let us put

(7) Cj(b) =
{
a ∈ C \ {0} : (j − 1) 2

3π ≤ Arg b−1a < j 2
3π
}
,

where Arg c ∈ [0, 2π) denotes the argument of c ∈ C \ {0}. It is easy to see
that C \ {0} =

⋃
{Cj(b) : j = 1, 2, 3}.

Lemma 3. Let f : C→ C be a microperiodic solution of (2) such that the
set f(C) is infinite and |a| = 1 for a ∈ f(C)\{0}. Then mi(f−1(Cj(b))) = 0
for every j = 1, 2, 3, b ∈ C \ {0}.

P r o o f. For an indirect proof suppose that there exist b ∈ C \ {0} and
k ∈ {1, 2, 3} with mi(f−1(Ck(b))) > 0. Since f(C) is infinite, in view of
Corollary 1(ii), f(C) \ {0} is dense in the set J = {a ∈ C : |a| = 1}. Thus
there is d ∈ C such that f(d) 6= 0 and (f(d)Ck(b)) ∩ Ck(b) = ∅. Define
D = d+f(d)nf−1(Ck(b)). Then, in virtue of (2), f(D) = f(d)Ck(b). Hence
D∩f−1(Ck(b)) = ∅. On the other hand, mi(D) > 0, which, according to the
theorem of Steinhaus, means that int(D − f−1(Ck(b))) 6= ∅. Consequently,
there exists a period c ∈ D − f−1(Ck(b)) of f , from which we derive that
f−1(Ck(b)) ∩D = (f−1(Ck(b)) + c) ∩D 6= ∅, a contradiction.

Lemma 4. If a function f : K → K, f 6= 1, satisfies equation (2), then
mi(f−1({a})) = 0 for each a ∈ f(K) \ {0}.

P r o o f. For an indirect proof suppose that there is a ∈ f(K) \ {0}
with mi(f−1({a})) > 0. Fix b ∈ f−1({a}) and put D = f−1({a}) − b.
Then, on account of Corollary 1(iv), D ⊂ A := f−1({1}). Thus mi(A) > 0.
Consequently, by the theorem of Steinhaus and Corollary 1(i), A = K, a
contradiction.

Lemma 5. Let f : X → K be a function satisfying equation (2), W =
f(X) \ {0}, and A = f−1({1}). Suppose that there is a0 ∈ W such that
an
0 6= 1 and (an

0 − 1)−1A ⊂ A. Then

(8) an 6= 1 for each a ∈W \ {1}
and there exists x0 ∈ X \

⋃
{(an − 1)−1A : a ∈W \ {1}} such that

(9) f(x) =
{
a if x ∈ (an − 1)x0 +A and a ∈W ,
0 otherwise,

for x ∈ X.

P r o o f. In view of Lemma 1 there is a function w : W → X such that
(4)–(6) hold. Let x0 = (an

0 − 1)−1w(a0). Since, by (4),

w(ab)− anw(b)− w(a), w(ba)− bnw(a)− w(b) ∈ A for a, b ∈W,
Corollary 1(i) implies that anw(b) +w(a)− bnw(a)−w(b) ∈ A for a, b ∈W .
Thus, for each b ∈W , −(bn − 1)x0 + w(b) ∈ A. Consequently, according to
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(5), (6), and Corollary 1(i), conditions (8) and (9) hold and (an − 1)x0 6∈ A
for a ∈W \ {1}, which completes the proof.

Lemma 6. Let Y be a linear space over a subfield F of the field K. Let
f : Y → K \ {0} be a solution of equation (2) such that f(x)n ∈ F for each
x ∈ Y . Then f = 1.

P r o o f. Suppose that there is x ∈ Y with f(x)n 6= 1 and put z =
(1− f(x)n)−1x. Then x+ f(x)nz = z and, in view of (2),

f(x)f(z) = f(x+ f(x)nz) = f(z) 6= 0,

from which we derive f(x) = 1, a contradiction.
Hence f(x)n = 1 for each x ∈ Y . Thus f(x+ y) = f(x)f(y) for x, y ∈ Y

and consequently, for each x ∈ Y ,

f(x) = f

(
n

1
n
x

)
= f

(
1
n
x

)n

= 1.

This completes the proof.

Lemma 7. If a function f : X → K, f 6= 0, satisfies equation (2), then
f(f(x)−n(z − x)) = f(z)f(x)−1 for x, z ∈ X with f(x) 6= 0.

P r o o f. Fix x ∈ X with f(x) 6= 0. Setting z = f(x)ny+x in (2), we get
f(z) = f(x)f(f(x)−n(z − x)) for z ∈ X, which yields the assertion.

Lemma 8. Let B be an additive subgroup of a real linear space Y and let
V be an infinite multiplicative subgroup of R such that

(10) ax ∈ B for x ∈ B, a ∈ V.
Then the set Bx = {a ∈ R : ax ∈ B} is dense in R for each x ∈ B.

P r o o f. Note that, for each c ∈ R, c > 0, there is b ∈ V with |b| < c.
Since, for each x ∈ B, Bx is an additive group and, by (10), V ⊂ Bx, we
obtain the statement.

Lemma 9. Let B be an additive subgroup of a complex linear space and
let V be an infinite multiplicative subgroup of C such that V 6⊂ R and (10)
holds. Then the set Bx = {a ∈ C : ax ∈ B} is dense in C for each x ∈ B.

P r o o f. Let x ∈ B and J = {a ∈ C : |a| = 1}. Note that V ⊂ Bx. If
V ⊂ J , then V is dense in J . Thus Bx is dense in C, because it is an additive
group. On the contrary, if there is a ∈ V \ (R ∪ J), then, for each c ∈ R,
c > 0, there exists k ∈ Z with |ak| < c and |ak+1| < c. Since ak and ak+1

are linearly independent over R, the additive group generated by V is dense
in C, which completes the proof.

Lemma 10 (cf. [16], Théorème 1). If D1, D2 ⊂ K and mi(Dj) > 0,
j = 1, 2, then int(D1 ·D2) 6= ∅.
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P r o o f. First consider the case where K=R. There exist closed sets Fi⊂
Di such that m(Fi) > 0 for i = 1, 2. Put F k

i = Fi∩([−k,−1/k]∪[1/k, k]) for
k ∈ N, i = 1, 2. It is easily seen that there are p, q ∈ N with m(F p

1 ) > 0 and
m(F q

2 ) > 0. Let F+
1 = F p

1 ∩ (0,∞), F−1 = F p
1 ∩ (−∞, 0), F+

2 = F q
2 ∩ (0,∞),

and F−2 = F q
2 ∩ (−∞, 0). Define

F 0
i =

{
F+

i if m(F+
i ) > 0,

F−i otherwise,
for i = 1, 2.

Observe that m(F 0
i ) > 0 for i = 1, 2. Thus (see e.g. [17], Theorem 8.26),

m(lnF 0
i ) > 0 for i = 1, 2. Hence, in virtue of the theorem of Steinhaus,

int(ln(F 0
1 ·F 0

2 )) = int(lnF 0
1 +lnF 0

2 ) 6= ∅, which means that int(D1 ·D2) 6= ∅.
Now assume that K = C. Let Fi ⊂ Di be a closed set such that m(Fi) >

0 for i = 1, 2. Put Ck = {a ∈ C : 1/k ≤ |a| ≤ k} and F k
i = Fi ∩ Ck for

k ∈ N, i = 1, 2. It is easily seen that there are p, q ∈ N with m(F p
1 ) > 0 and

m(F q
2 ) > 0. Define functions h1 : R×(R\{0})→ C, h2 : (0, 2π)×(0,∞)→ C,

and h3 : R × (0,∞) → R2 by the formulas: h1(a, b) = a + ib, h2(a, b) =
b(cos a+ i sin a), h3(a, b) = (a, ln b). Let F 0

1 = h−1
1 (F p

1 ) and F 0
2 = h−1

1 (F q
2 ).

Then F 0
i is a Borel set and m(F 0

i ) > 0 for i = 1, 2 (m denotes also the
Lebesgue measure in R2). Note that h = h3 ◦ h−1

2 ◦ h1 is a diffeomorphism
onto the set h(R×(R\{0})). Thus h(F 0

i ) is a Borel set and m(h(F 0
i )) > 0 for

i = 1, 2 (see e.g. [17], Theorem 8.26(c)). Hence, by the theorem of Steinhaus,
int(h(F 0

1 )+h(F 0
2 )) 6= ∅. Since h(F 0

1 )+h(F 0
2 ) = h3 ◦h−1

2 (h1(F 0
1 )h1(F 0

2 )), we
have int(h1(F 0

1 ) · h1(F 0
2 )) 6= ∅, which implies the assertion.

3. Christensen measurability. Throughout this part we assume that
X is a separable F -space as a topological linear space over K. We shall use
the notation and terminology from [8]–[10] concerning Christensen measur-
ability. Now, we only recall necessary definitions and facts.

Let M be the σ-algebra of all universally measurable subsets of X; i.e. M
is the intersection of all completions of the Borel σ-algebra of X with respect
to probability Borel measures. In the following a measure is a countable
additive Borel measure extended to M .

Definition 1. A set B∈M is a Haar zero set iff there exists a proba-
bility measure u on X such that u(B + x) = 0 for each x ∈ X.

Definition 2. A set P ⊂ X is a Christensen zero set iff it is a subset
of a Haar zero set.

Definition 3. A set D ⊂ X is Christensen measurable iff D = B ∪ P ,
where B ∈M and P is a Christensen zero set.
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Let us define
C0 = {B ⊂ X : B is Christensen zero set},
C = {B ⊂ X : B is Christensen measurable}.

Lemma 11 (see [9], Theorem 1). Every countable union of Christensen
zero sets is a Christensen zero set.

Lemma 12 (see [9], Theorem 2). If B ∈ C \ C0, then 0 ∈ int(B −B).

Definition 4. A function f : X → K is said to be Christensen mea-
surable iff f−1(U) ∈ C for each open set U ⊂ K.

Lemma 13 (see [10], Theorem 1). Let f : X → K be a Christensen
measurable linear functional. Then f is continuous.

Put Lk = {a ∈ K : k − 1 ≤ |a| < k} and ak = m(Lk) for k ∈ N.
Given a Borel set D ⊂ X and x ∈ X denote ux(D) = mp(k−1

x (D)), where
kx : K → X, kx(a) = ax, and, for each Borel set B ⊂ K, mp(B) =∑∞

k=1 2−ka−1
k m(B ∩ Lk). Since kx is continuous, ux is a well defined Borel

measure and ux(X) = 1 for each x ∈ X \ {0}.
Lemma 14. Let D ∈ C \ C0 and x ∈ X \ {0}. Then there exist a Borel

set Dx ⊂ D and yx ∈ X such that

(11) m(k−1
x (yx +Dx)) > 0.

P r o o f. There exist B ∈ M and P ∈ C0 with D = B ∪ P . In view of
Lemma 11, B 6∈ C0. Thus there is y ∈ X such that u(B + y) > 0, where u
denotes the extension of ux to M . Put u0(T ) = u(T + y) for each T ∈ M .
Then u0 is a probability measure. Hence there are a Borel set Bx ⊂ B
and a set B0 ⊂ B such that u0(B0) = 0 and B = Bx ∪ B0. Furthermore
ux(Bx + y) = u(Bx + y) = u0(Bx) = u0(Bx ∪B0) = u0(B) = u(B + y) > 0.
Consequently, mp(k−1

x (Bx+y))>0, which implies (11). This ends the proof.

Lemma 15. Let L⊂K \{0} and x∈X \{0}. Let f : X→K be a function
satisfying equation (2). Suppose that f−1(L) ∈ C \ C0. Then there exists
z ∈ X such that f(z) 6= 0 and mi(f−1

x (f(z)−1L)) > 0, where fx : K → K,
fx(a) = f(ax).

P r o o f. It follows from Lemma 14 that there are a Borel set Dx ⊂ D :=
f−1(L) and yx ∈ X such that (11) holds. Put B = (Kx− yx) ∩Dx. Then,
according to the definition of kx and (11), B 6= ∅. Fix z ∈ B. It is easily
seen that f(z) 6= 0 and there exists b ∈ K with z = bx− yx. Thus

B − z = ((Kx− yx) ∩Dx)− bx+ yx = (Kx ∩ (Dx + yx))− bx,
which means that k−1

x (B − z) = k−1
x (Dx + yx)− b. Hence, in view of (11),

(12) m(f(z)−n(k−1
x (B − z))) > 0.
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Note that, by Lemma 7,

fx(f(z)−n(k−1
x (B − z))) = f(f(z)−n(k−1

x (B − z))x) ⊂ f(f(z)−n(B − z))
= f(z)−1f(B) ⊂ f(z)−1L.

Consequently, f(z)−n(k−1
x (B − z)) ⊂ f−1

x (f(z)−1L), from which we derive
by (12), that mi(f−1

x (f(z)−1L)) > 0. This completes the proof.

Lemma 16. Let f : X → K be a Christensen measurable function satis-
fying equation (2) such that the set W = f(X)\{0} is infinite. Suppose that
the set Sf = {x ∈ X : f(x) 6= 0} is not a Christensen zero set. Then the set
A = f−1({1}) is a proper linear subspace of X over the field

(13) F =
{R if f(x)n ∈ R for each x ∈ X,

C otherwise.
P r o o f. Since A 6= X, it suffices to show that A is a linear subspace of

X over F .
For an indirect proof suppose that A 6= A0, where A0 denotes the linear

subspace of X (over F ) spanned by A. Let f0 = f |A0 . It is easy to check that
f0 is a solution of (2) and f0 6= 1. Thus, in view of Lemma 6, f−1

0 ({0}) 6= ∅,
from which we derive that there are a0 ∈ F \ {0} and y ∈ A \ {0} such that
f(a0y) = 0. Note that the functions f1 : X → F , f1(x) = f(x)n, and fy :
F → F , fy(a) = f1(ay), also satisfy (2) for n = 1. Since fy(a0) = f(a0y)n =
0, we have fy 6= 1. Furthermore, Wn ⊂ F , {a ∈ F : ay ∈ A} ⊂ f−1

y ({1}),
and, by Corollary 1(v), aA = A for a ∈ Wn, where Wn = {an : a ∈ W}.
Hence, by Lemma 8, Lemma 9, and Corollary 1(i)–(iii), fy is microperiodic.

First consider the case where there is b ∈ F with |fy(b)| 6∈ {0, 1}. Let
Fj = {a ∈ F : 1/j ≤ |a| ≤ j} for j ∈ N. Since Sf =

⋃
{f−1

1 (Fj) : j ∈ N},
according to Lemma 11 there exists p ∈ N such that f−1

1 (Fp) 6∈ C0. Thus,
by Lemma 15 (with n = 1), mi(f−1

y (f1(z)−1Fp)) > 0 for some z ∈ Sf . Note
that there is k ∈ N with f1(z)−1Fp ⊂ Fk. Hence mi(f−1

y (Fk)) > 0, which
contradicts Lemma 2.

Now, assume that the set Wy := fy(F ) \ {0} is finite. Then Wy is a
multiplicative cyclic subgroup of F (cf. Corollary 1(ii)) and |a| = 1 for
each a ∈ Wy. There exists c ∈ F such that Wy = {ck : k ∈ N}. Put
k0 = min{k ∈ N : ck = 1} and define

Tj =
{
cj(0,∞) if F = R,
{a ∈ C \ {0} : 2πk−1

0 (j − 1) ≤ Arg a < 2πk−1
0 j} if F = C,

for j∈ N, j ≤ k0. Observe that Sf =
⋃
{f−1

1 (Tj) : j∈ N, j ≤ k0}. Thus there
is a positive integer k≤k0 such that f−1

1 (Tk) 6∈C0. It results from Lemma 15
that there exists z ∈ Sf with mi(f−1

y (f1(z)−1Tk)) > 0. Moreover, there is
exactly one positive integer p ≤ k0 such that cp ∈ f1(z)−1Tk. Consequently,
mi(f−1

y ({cp})) > 0, contrary to Lemma 4.
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It remains to study the case where F = C, Wy is infinite, and |a| = 1
for each a ∈ Wy. Since Sf =

⋃
{f−1

1 (Cj(1)) : j = 1, 2, 3}, where Cj(b), for
b ∈ C \ {0}, is given by (7), we have f−1

1 (Ck(1)) 6∈ C0 for some k ∈ {1, 2, 3}.
Thus, on account of Lemma 15, there is z ∈ Sf with mi(f−1

y (f1(z)−1Ck(1)))
>0. Clearly, f1(z)−1Ck(1)=Ck(f1(z)−1). Hence mi(f−1

y (Ck(f1(z)−1)))>0,
contrary to Lemma 3. This completes the proof.

4. The main result. Now, we have all tools to prove the announced
theorem.

Theorem. Suppose that X is a linear topological separable F -space
over K. Let f : X → K be a Christensen measurable solution of equa-
tion (2). Then either f is continuous or the set Sf = {x ∈ X : f(x) 6= 0} is
a Christensen zero set.

Furthermore, if f is continuous and satisfies (2), then

(14) f(X) ⊂ R or n = 1

and the following two statements hold :

(i) if f(X) ⊂ R, then there exists a continuous R-linear functional g :
X → R such that , for n odd , either

(15) f(x) = n
√
g(x) + 1 for x ∈ X

or

(16) f(x) = n
√

sup(g(x) + 1, 0) for x ∈ X,
and for n even, f is of the form (16);

(ii) if f(X) 6⊂ R and n = 1, then there exists a continuous C-linear
functional g : X → C, g 6= 0, such that f(x) = g(x) + 1, x ∈ X.

P r o o f. Note that if f 6= 0 is continuous, then intSf 6= ∅, which means
that Sf 6∈ C0. Therefore suppose that Sf ∈ C \C0. Put W = f(X) \ {0} and
A = f−1({1}).

First, consider the case where W is finite. Then, in view of Lemma 1,
there is a function w : W → X with Sf =

⋃
{w(a) + A : a ∈ W}. Thus,

by Lemma 11, A 6∈ C0. Hence Lemma 12 and Corollary 1(i) imply that
intA 6= ∅, from which we derive A = X. Consequently, (15) or (16) holds
with g = 0.

Now, assume that W is infinite. Since, in the case where K = C, X is
also a real topological linear F -space (with the same topology), without loss
of generality we may assume that

(17) if K = C, then f(X) 6⊂ R.
It results from Lemma 16 that A is a proper linear subspace of X over

the field F given by (13). Thus, by Lemma 5, condition (8) is valid and there



Go la̧b–Schinzel functional equation 203

exists x0 ∈ X \A such that f is of the form (9). Hence

(18) Sf = A+ (Wn − 1)x0,

where Wn ={an : a∈W}. Furthermore, in view of Lemma 12, 0∈ int(Sf −
Sf ), whence

(19) A+ Fx0 = X.

On account of (19) and Lemma 14 there exist a Borel set B ⊂ Sf and a ∈ F ,
x ∈ A with m(k−1

0 (ax0 + x+B)) > 0, where k0 : F → X, k0(a) = ax0. On
the other hand, from (18), we obtain ax0+x+Sf = A+(Wn−1+a)x0. Thus
k−1
0 (ax0+x+Sf ) = Wn−1+a. Since k−1

0 (ax0+x+B) = a+k−1
0 (x+B), we

have k−1
0 (x+B) ⊂Wn−1 and m(k−1

0 (x+B)) = m(k−1
0 (ax0 +x+B)) > 0,

from which we derive that mi(Wn) = mi(Wn − 1) > 0 (in F ). Hence and
from Lemma 10 and Corollary 1(ii) we get intWn 6= ∅ (in F ), whence

(20) (0,∞) ⊂Wn and 1 ∈ intWn (in F ).

We shall prove that (8), (17), and (20) imply F = K.
For an indirect proof suppose that K = C and F = R. Then there

is a ∈ W \ R with an ∈ R. Observe that, by (20) and Corollary 1(ii),
a · |a|−1 ∈ W \ R, whence, by (8), −1 = (a · |a|−1)n ∈ W and (−1)n 6= 1.
This means that n is odd. Consequently, an+1 · |a|−n−1 = −a · |a|−1 6∈ R and
(an+1 · |a|−n−1)n = (−1)n+1 = 1, which contradicts (8).

In this way we have proved that F = K. Thus, by (19), A is a hyperplane
of X (i.e. codimA = 1) and, according to Corollary 1 and (20),

for K = C, W = C \ {0},(21)
for K = R, W = (0,∞) or W = R \ {0},(22)

whence (8) yields condition (14).
Define a linear functional g : X → K by

(23) g(ax0 + y) = a for a ∈ K, y ∈ A.

It is easy to check that, on account of (9) and (18),

(24) g(x) = f(x)n − 1 for x ∈ Sf ,

which, in view of (8), (18), and (22), means that, in the case where f(X)⊂R,
both conclusions of (i) are valid. In the case where n = 1 and f(X) 6⊂ R,
(21), (18), and (24) imply that f(x) = g(x) + 1, x ∈ X. Therefore, on
account of Lemma 13, it remains to show that g is Christensen measurable.

If n = 1 and f(X) 6⊂ R, this is obvious, because f is Christensen
measurable. On the other hand, if f(X) ⊂ R, then g(x) = f(x)n − 1 for
x ∈ g−1((−1,∞)). Furthermore, for each set U ⊂ R, g−1(U) = g−1(U+) ∪
(−g−1(−U−)) ∪ g−1(U0), where U+ = U ∩ (0,∞), U− = U ∩ (−∞, 0) and
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U0 = U ∩ {0}. This implies that g is Christensen measurable, which ends
the proof.

R e m a r k. It is easy to check that each function f : X → K satisfying
(14) and conditions (i), (ii) of the Theorem is a solution of equation (2).

Finally, since in the case where X is locally compact, C0 coincides with
the set of all the Haar measure zero subsets of X (see [9], p. 256), from the
Theorem we get the following

Corollary 2. Let k ∈ N and let f : Kk → K be a Lebesgue measurable
solution of equation (2). Then either f is continuous or the set Sf is of
Lebesgue measure zero.

Acknowledgements. I wish to thank Professor Karol Baron for calling
my attention to the problem.
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