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A topological version of the Ambrosetti–Prodi theorem

by Bogdan Przeradzki ( Lódź)

Abstract. The existence of at least two solutions for nonlinear equations close to
semilinear equations at resonance is obtained by the degree theory methods. The same
equations have no solutions if one slightly changes the right-hand side. The abstract result
is applied to boundary value problems with specific nonlinearities.

1. Introduction. The question of the solvability of nonlinear equations
has been extensively studied since the famous work of Schauder and Leray.
Most of the results give sufficient conditions for the existence of at least
one solution to such an equation. However, some equations have the “un-
interesting” trivial solution and one should look for nontrivial ones. These
can be obtained if we prove the existence of at least two solutions. On the
other hand, it is sometimes important to know that an equation has more
than one solution somehow localized, positive or negative for instance. After
the well-known paper by Ambrosetti and Prodi [2] a lot of results appeared
concerning similar equations and using similar ideas. Most authors study
particular boundary value problems such as:

∆u + f(u) = h(x), u|∂Ω = 0

(comp. [1], [11], [12]);

x′′ + x = f(t, x) + h(t), x(0) = x(π) = 0

(comp. [4], [5], [3]);

x′′ + cx′ = f(t, x) + h(t) + s, x(0) = x(T ), x′(0) = x′(T )

(comp. [11], [3]). Assumptions on the nonlinear term make f similar to
the model function f0(x) = x2. Assertions are usually of the form: there
are at least two solutions for some h, no solution for other ones and one
solution for h belonging to the set separating the above two domains. It is a
common feature that equations have two linear approximants for x → +∞
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and x → −∞ and that there exists a linear noninvertible operator “between”
them. We use this observation to formulate our problem and result; however,
its application to the above typical boundary value problems is impossible.
We can (and do) apply the main theorem to boundary value problems for
functional-differential equations of a special form.

The approach is based on a method from the series of papers by the
present author [7]–[10] where he deals only with the existence of at least
one solution. The method seems to be applicable also for nonlinearities
jumping over several eigenvalues when we expect more than two solutions
(see [4]).

2. An abstract result. Let X, Y and Z be real Banach spaces, v1∈X∗,
the space of bounded linear functionals on X; let N : X → Z be a nonlinear
continuous operator mapping bounded sets into bounded ones, such that
there exist two linear bounded operators L+, L− : X → Z with the property

(2.1) lim
v1(x)→±∞

v1(x)−1‖N(x) − L±(x)‖ = 0.

Let J : Y → Z be an injective completely continuous linear operator and
let L0 : Y → Z be a linear bounded operator with codimZ(im L0) = 1. Take
u1 ∈ Z∗ such that ker u1 = im L0 and fix h0 ∈ im L0, h1 ∈ Z such that
u1(h1) = 1. We look for solutions to the equation

(2.2) L0y = N(Jy) + h0 + sh1,

where s is a real parameter. We work under the following assumptions:

(a) L0 − L±J are linear homeomorphisms;

(b) for any M > 0, u1 is bounded on the sets N({x : |v1(x)| ≤ M}),
L±{x : |v1(x)| ≤ M};

(c)

lim inf
v1(x)→+∞

v1(x)−1u1(L+x) > 0, lim sup
v1(x)→−∞

v1(x)−1u1(L−x) < 0.

Usually, L0 is a Fredholm operator of index 0, but this is not necessary for
our purposes.

Theorem. There exists S0 > 0 such that equation (2.2) has no solution

for s ≥ S0 and has at least two solutions for s ≤ −S0.

P r o o f. Suppose that there exist sequences sn → +∞ and (yn) ⊂ Y

such that

L0yn = N(Jyn) + h0 + snh1.

Hence u1(N(Jyn)) = −sn, which implies the unboundedness of the sequence
(v1(Jyn)). On the other hand, if there is a subsequence with the property
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v1(Jyn) → ±∞, then

v1(Jyn)−1u1(N(Jyn) − L±Jyn) = −v1(Jyn)−1sn − v1(Jyn)−1u1(L±Jyn)

tends to 0 by (2.1), which is impossible due to assumption (c).
The proof of the second part needs the Leray–Schauder theory. Let us

consider a completely continuous map H+ : [0, 1] × X → X given by

H+(λ, x) = λJ(L0 − L+J)−1(N(x) − L+x) + J(L0 − L+J)−1(h0 + sh1)

and a positive number M such that v1(x) ≥ M implies

v1(x)−1‖J(L0 − L+J)−1(N(x) − L+x)‖ < (2‖v1‖)−1.

It follows that, for any λ ∈ [0, 1], the fixed points x of H+(λ, ·) satisfy
v1(x) < M or

‖x‖ < 2‖J(L0 − L+J)−1(h0 + sh1)‖.

On the other hand, if H+(λ, x) = x, then x = Jy, where

L0y = λN(Jy) + (1 − λ)L+Jy + h0 + sh1

and the condition v1(x) ∈ [0,M) implies

0 = λu1(N(x)) + (1 − λ)u1(L+x) + s.

If we take S0 > sup{|u1(N(x))| : |v1(x)| ≤ M} + sup{|u1(L+x)| : |v1(x)|
≤ M} (which is finite due to (b)), then, for s ≤ −S0, the homotopy H+ has
no fixed points on the boundary of the domain

V+ = {x : v1(x) > 0, ‖x‖ < 2‖J(L0 − L+J)−1(h0 + sh1)‖}.

Hence the Leray–Schauder degree degLS(I−H+(λ, ·), V+, 0) does not depend
on λ ∈ [0, 1]. But

degLS(I − H+(0, ·), V+, 0) = degLS(I, V+, J(L0 − L+J)−1(h0 + sh1)) = 1,

which means that there exists x = H+(1, x) ∈ V+. Obviously, x = Jy, where
y is a solution to equation (2.2). We can find the second solution by taking
the homotopy

H−(λ, x) = λJ(L0 − L−J)−1(N(x) − L−x) + J(L0 − L−J)−1(h0 + sh1)

on the set

V− = {x : v1(x) < 0, ‖x‖ < 2‖J(L0 − L−J)−1(h0 + sh1)‖}.

R e m a r k s. v1 : X → R need not be a linear functional. In fact, it
should satisfy |v1(x)| ≤ c‖x‖, x ∈ X, for a positive c, take values tending to
+∞ and −∞ and the sets {x : v1(x) > 0}, {x : v1(x) < 0} should be open.
Moreover, v1 can be defined only on a set admissible for a fixed point index
theory (ANR, for instance). In this case, we just replace the Leray–Schauder
degree by the appropriate fixed point index.
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3. Applications. Although our theorem has the same roots as the re-
sults of Ambrosetti–Prodi and their successors [2], [11], they are incompara-
ble in applications. The nonlinear part N is, in typical boundary value prob-
lems, a Nemytskĭı superposition operator x 7→ f(·, x(·)). However, asymp-
totic condition (2.1) cannot be expressed by means of properties of the
function f , except for trivial examples. If one wants (2.1) to hold, then f

should depend on v1(x). We present the simplest case in detail.

Let us consider the periodic boundary value problem

(3.1) x′ = f
(
t, x,

T\
0

x(r) dr
)

+ h0(t) + s, x(0) = x(T ),

where f : [0, T ]×R
2 → R is a Carathéodory function in the following sense:

f(t, ·, ·) is continuous for a.e. t ∈ [0, T ], f(·, x, y) is measurable for all x, y,
and, for any M > 0, there exist an integrable function ϑM ∈ L1(0, T ) and a
positive constant αM such that

(3.2) |f(t, x, y)| ≤ αM |x| + ϑM (t)

for any t ∈ [0, T ], x ∈ R and |y| ≤ M . In (3.1), s is a real parameter and
h0 ∈ L1(0, T ) satisfies

T\
0

h0(t) dt = 0.

Suppose that f has the following asymptotic property: there exist λ+ > 0
and λ− < 0 such that

(3.3) lim
v1(x)→±∞

v1(x)−1
∣∣∣

T\
0

(f(t, x(t), v1(x)) − λ±x(t)) dt
∣∣∣ = 0,

and, for any M > 0, there is βM > 0 such that

(3.4)
∣∣∣

T\
0

f(t, x(t), v1(x)) dt

∣∣∣ ≤ βM

for |v1(x)| ≤ M . We shall show that our theorem can be applied, which
means that (3.1) has no solution for large positive s and has at least two
solutions for large negative s.

Put X = Z = L1(0, T ), Y = {y ∈ W 1,1(0, T ) : y(0) = y(T )}, where
W 1,1(0, T ) stands for the Sobolev space of absolutely continuous functions
on [0, T ] with the norm

‖y‖ =

T\
0

(|y(t)| + |y′(t)|) dt.
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Set

L0y = y′, Jy = y, v1(x) = u1(x) =

T\
0

x(t) dt,

N(x)(t) = f(t, x(t), v1(x)), (L±x)(t) = λ±x(t).

One can easily verify that u1 is chosen well, J is completely continuous by
the Sobolev Embedding Theorem, N : L1(0, T ) → L1(0, T ) is continuous
and maps bounded sets into bounded ones by (3.2), condition (2.1) is a
consequence of (3.3). In order to check assumption (a), let us notice that
the equations x′ = λ±x have no T -periodic solutions. Condition (3.4) im-
plies (b). Finally, the fractions under the limits in (c) equal λ+ > 0 and
λ− < 0, respectively.

One can replace unpleasant conditions (3.3), (3.4) by simpler ones (with-
out integrals) but then important examples will not be covered. For instance,

(3.5) f(t, x, y) = χ(y)x + g(t, x),

where χ : R → R is a continuous function with

λ± = lim
y→±∞

χ(y)

and g is a Carathéodory function bounded by an integrable one, satisfies
our assumptions.

We can study the same boundary value problem (3.1) using completely
different assumptions. Let f : [0, T ]×R

2 → R be a continuous function and
f(0, x, y) = f(T, x, y) for all x, y ∈ R; let h0 be a continuous real function
with the vanishing integral over [0, T ]. Condition (3.3) is replaced by

(3.6) lim
y→±∞

f(t, x, y)

y
= λ±(t),

uniformly with respect to t, x. We do not change condition (3.4). The
continuous functions λ± : [0, T ] → R are supposed to have positive and
negative integrals over [0, T ], respectively.

Let X = Z = C[0, T ], Y = {y ∈ C1[0, T ] : y(0) = y(T )}, and let L0, J ,
u1, v1 and N be as above. We can put (L±x)(t) = λ±(t)v1(x). Asymptotic
property (2.1) is a direct consequence of (3.6), the proof of (a) is given below,
(b) follows from (3.4) and the definition of L±. In (c), we have under the
limits

T\
0

λ±(t) dt

that is positive and negative, respectively.
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P r o o f o f (a). We shall find the only solution to the boundary value
problem

(3.7) x′ =

T\
0

x(s) ds · λ(t) + z(t), x(0) = x(T ),

where λ is a fixed function with a nonzero integral over [0, T ], and λ, z ∈

C[0, T ]. Suppose that x is a solution and c =
TT
0

x(t) dt. Then

(3.8) x(t) = x(0) + c

t\
0

λ(s) ds +

t\
0

z(s) ds

and the periodic condition gives

(3.9) c =
( T\

0

λ(s) ds
)−1

T\
0

z(s) ds.

If we integrate (3.8) over [0, T ] and apply the Fubini Theorem, we shall get

c = Tx(0) + c

T\
0

(T − s)λ(s) ds +

T\
0

(T − s)z(s) ds.

Applying (3.9), we obtain

(
1 +

T\
0

sλ(s) ds
)
c = Tx(0) −

T\
0

sz(s) ds.

Hence, we can express x(0) and c by means of

z0 =

T\
0

z(s) ds, z1 =

T\
0

sz(s) ds,

λ0 =

T\
0

λ(s) ds, λ1 =

T\
0

sλ(s) ds.

That is,

x(0) = T−1(c(1 + λ1) + z1), c = λ−1
0 z0,

and we substitute it in (3.8). It follows that a solution of (3.7) is unique and
continuously expressed by z0.

The following function satisfies our assumptions:

f(t, x, y) = χ(t, y) + g(t, x),

where χ, g : [0, T ] × R → R are continuous, χ(0, y) = χ(T, y), g(0, x) =
g(T, x), g is bounded and

lim
y→±∞

y−1χ(t, y) = λ±(t)

uniformly in t.
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In the same way one can study the periodic problem for the second order
differential equation

x′′ = f
(
t, x,

T\
0

x(r) dr
)

+ h0(t) + s, x(0) = x(T ), x′(0) = x′(T );

the Dirichlet problem

x′′ + m2x = f
(
t, x,

π\
0

x(r) sin mr dr
)

+ h0(t) + s sin mt, x(0) = x(π) = 0;

or the Neumann problem

x′′ = f
(
t, x,

T\
0

x(r) dr
)

+ h0(t) + s, x′(0) = x′(T ) = 0.

Particular attention should be paid to (a) which needs new bounds on λ±

in both cases.

4. Functional-differential equations. We study the general functio-
nal-differential equation

(4.1) x′ = f(t, xt, v1(x))) + h0(t) + sh1(t),

with the boundary condition

(4.2) Ax0 + Bx1 = 0.

Here f : [0, 1] ×C ×R → R is a Carathéodory function, where C = C[−r, 0],
i.e. f(t, ·, ·) is continuous for a.e. t, f(·, φ, y) is measurable for all φ ∈ C,
y ∈ R, and, for any M > 0, there exist αM > 0 and ϑM ∈ L1(0, 1) such
that

(4.3) |f(t, φ, y)| ≤ αM‖φ‖C + ϑM (t)

for t ∈ [0, 1], φ ∈ C, |y| ≤ M (comp. [6], pp. 10–13). Moreover, xt(s) =
x(t + s) for t ∈ [0, 1], s ∈ [−r, 0], and x : [−r, 1] → R, v1 is a linear bounded
functional on C[−r, 1] of the form

v1(x) =

1\
−r

ṽ1(t)x(t) dt,

where ṽ1 ∈ L∞(−r, 1), A and B are linear bounded operators in C. Suppose
that the boundary value problem

x′ = z(t), Ax0 + Bx1 = 0,

for z ∈ L1(0, 1) has a solution x : [−r, 1] → R absolutely continuous on [0, 1]
if and only if u1(z) = 0, where u1 is a linear bounded functional on L1(0, 1),
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i.e.

u1(z) =

1\
0

ũ1(t)z(t) dt, ũ1 ∈ L∞(0, 1).

By applying the considerations from [6], p. 11, it is easy to formulate this
property by means of A and B. Namely, the range imBT is closed in C
and

codimimBT (im(A + BS) ∩ im BT ) = 1

where S : C → C and T : L1(0, 1) → C are linear bounded operators given
by

Sφ(s) =

{
φ(s + 1) for s ∈ [−r,−1],
φ(0) for s ∈ (−1, 0],

T z(s) =

{
0 for s ∈ [−r,−1],Ts+1

0
z(t) dt for s ∈ (−1, 0].

The functions h0, h1 ∈ L1(0, 1) in (4.1) are chosen in the way that u1(h0) =
0, u1(h1) > 0, and s is a real parameter.

The linear asymptotes in (2.1) will be of a special form. Let there exist
two functions λ± ∈ L∞(0, 1) such that

(4.4) lim
v1(x)→±∞

v1(x)−1
1\
0

|f(t, xt, v1(x)) − λ±(t)x(t − r)| dt = 0.

The boundary value problem (4.1)–(4.2) is suitable for our framework if
we take X = C[−r, 1], Z = L1(0, 1), Y = {y ∈ X : y|[0,1] is absolutely
continuous, Ay0 + By1 = 0}, L0y = y′, N(x)(t) = f(t, xt, v1(x)), Jy = y,

(L±x)(t) = λ±(t)x(t − r). Then condition (4.4) is a reformulation of (2.1).
Assumption (a) can be satisfied if the operators A + BS± : C → C are
invertible, where

S±φ(s) =

{
φ(s + 1) for s ∈ [−r,−1],

φ(0) +
Ts+1

0
λ±(t)φ(t − 1) for s ∈ (−1, 0].

In order to get (b), we assume that, for any M > 0,

sup
|v1(x)|≤M

∣∣∣
1\
0

ũ1(t)f(t, xt, v1(x)) dt

∣∣∣ < ∞,

and that

ṽ1(t) =

{
ũ1(t + r)λ±(t + r)l± for t ∈ [−r,−r + 1],
0 for t > −r + 1,

where l± are some constants. If l+ > 0 and l− < 0, then condition (c) will be
satisfied as well. Under the above assumptions, the boundary value problem
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(4.1)–(4.2) has no solution for large s > 0 and has at least two solutions for
large s < 0.

If we take r = 1, A = −B = I (the identity operator), then ũ1(t) = 1,
so we should have

ṽ1(t) =

{
λ±(t + 1) · l± for t ∈ [−1, 0],
0 for t ∈ (0, 1].

This means that

(4.5) λ+(t) = l−1
− l+λ−(t)

for t ∈ [0, 1].

Let f(t, φ, y) = χ(t, y)φ(−1) + g(t, φ), where χ : [0, 1] × R → R is a
continuous function such that

lim
y→±∞

χ(t, y) = λ±(t)

uniformly with respect to t, and g : [0, 1] ×C[−1, 0] → R is a Carathéodory
function such that |g(t, φ)| ≤ ϑ(t) for any t and φ, provided that ϑ ∈ L1(0, 1).
Then all the assumptions are satisfied if the functions λ± satisfy (4.5) with
l+ positive and l− negative.
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Banacha 22
90-238  Lódź, Poland
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