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Approximation by Durrmeyer-type operators

by VIJAY GUPTA and G. S. SRIVASTAVA (Roorkee)

Abstract. We define a new kind of Durrmeyer-type summation-integral operators and
study a global direct theorem for these operators in terms of the Ditzian—Totik modulus
of smoothness.

1. Durrmeyer [4] introduced modified Bernstein polynomials to approxi-
mate Lebesgue integrable functions on [0, 1], later motivated by the integral
modification of Bernstein polynomials by Durrmeyer; Sahai and Prasad [9]
and Mazhar and Totik [8] introduced modified Lupas operators and modified
Szész operators respectively to approximate Lebesgue integrable functions
on [0,00). A lot of work has been done on these three operators (see e.g.
(1], [2], [7]-[10] etc.). In a recent paper Heilmann [6] has studied the gener-
alized operators which include all the three operators. We now give another
generalization of these operators as

(1.1) My(f,2) =Y pug(@) | buk(®) f(2)dt,
k=0 0
where
_ AT _ k1 8 k)
Pak(@) = (=1)" 507 (@), bak(t) = (1) 56,7 (1)

1+ cx)™™/¢  for the interval [0, 00) with ¢ > 0,

—nx

i) onlx)
(ii)  on(2)
(iii)  on(z)

for the interval [0, 00) with ¢ =0,
1—az)" for the interval [0, 1] with ¢ = —1.

(
(
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The cases (i), (ii) and (iii) mentioned above give modified Baskakov
type operators, modified Szasz-type operators and modified Bernstein type
polynomials respectively. The case (i) for ¢ = 1 was recently introduced by
one of the authors (see e.g. [5]).

By £7]0,00) we denote the class of functions g given by £7[0,00) = {g :
g™ € L1[0,a] for every a € (0,00) and |¢g\") (¢)| < M (1 +1t)™, M and m are
constants depending on g}.

We remark that L[0,00) is not contained in £7[0,00) and L9[0,00) =
L1 [0, OO) .

Following [3], the modulus of smoothness is given by

wi(ft)p = e 1A, fllps  d(x) = V2 + cx),

where
AL f(z) = { fx—h)—=2f(x)+ f(x+h) if [z —h,z+h] C[0,00),
" 0 otherwise.
This modulus of smoothness is equivalent to the modified K-functional (see

e.g. [3]) given by

K5 (f.¢%) = mt{|[f — gllp + 6°g"ll, + t*g" | : g € W(#,[0,00))},
where

W3(6,10,00)) = {g € L,[0,00) : g' € AC10c[0, 0), 6% € L,[0, 00)}.

In the present paper, we give a global direct theorem for the operators
(1.1) in terms of the Ditzian—Totik modulus of second order. Throughout
the paper, we denote by C positive constants not necessarily the same at
each occurrence.

2. In this section, we mention certain properties and results for the op-
erators (1.1), which are necessary for the proof of the main result.
For the cases (i) and (ii), we have

an,k(w) = 17 an,k(t) =n,
k=0 k=0

S Dn.k(T) de = ! and S bk (t)dt =1,
) n—c :

(2.1)

and for the case (iii) summation is from 0 to n and integration from 0 to 1.
For ¢(z) = v/x(1 + cx), we have

8% (2)p().(z) = [k — nalp, i(),

2.2
22 S (O.(t) = [k — (n + )t]bui(2).
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LEMMA 1. For m,r € N° (the set of non-negative integers), if we define

oo e o]

Vr,n,m(fn) = an—&-cr,k(x) S bn—cr,k+7’(t)(t — )™ dt,
k=0 0
then
(I+7)+cx(1+2r)
r,n = 17 rn =
Veno(®) Vrin1(2) n—c(r+1)

and

‘/;«7”,2(1')

~ 2cx?(n+ 2er? +4er + ¢) + 2x(n + 2er? + 5er + 2¢) + 12 + 3r 42
N [n—c(r+1)][n —c(r +2)] '
Further, we have the recurrence relation
[n— c(m 47+ D]V mi1(x) = ¢° (@) V) (@) + 2mV; 1 ()]
+ (1 +2cx)(m+r+1) — cz|V, pm(2).

By using (2.1) and (2.2) the proof of the above lemma easily follows
along the lines of [6] and [1].
It may be remarked that for all x € [0,00) (cases (i) and (ii)) and for all
x € ]0,1] (case (iii)), we have
Vo) = O (/7).

LEMMA 2. If f € L;]0,00) U £7[0,00), 1 < p < 00 and x € [0,00), we
have

(23)  MI(f,2) =am,1,0) Y Poterk(®) | bnerprn () () dt,
k=0 0
where
= ot
ot =1 =y

We see that the operators defined by (2.3) are not positive. To make the
operators positive, we introduce the operators

Mn,rf = DTMnITfa f € Lp[ov OO) ) Sl[oa OO),

where D and I are the differential and integral operators respectively.
Therefore, we define the operators by

Mn,r(f: IL') = a(na T, C) anJrcr,k(x) S bnfcr,k+r(t)f(t) dta
k=0 0

f € L,0,00)U£L[0,00), n> (c+m)r.



156 V. Gupta and G. S. Srivastava

The operators M,, , are positive and the quantity HMér)f —fO,, f e
L} [0, 00), is equivalent to || My, . f — fllp, f € Ly[0,00).

Using (2.1), we can easily prove that for n > c(r+1), | M, fl1 < C||f|h
for f € L1[0,00) and || My, flloc < C||f||oo for f € L[0,00). Making use of
the Riesz—Thorin theorem, we get

(2.4) ”Mn,rf”p < CHpr, fe Lp[O,oo), 1<p<oo, n>c(r+1).

COROLLARY 3. For every m € N°, n > ¢(r +2m+1) and z € [0,00), we

have
(2.5) | My (= 2)*™,2)| < Cn™™(¢%(2) +n71)™,
| M (£ — 27, 2)] < C(L+ 28~ (a) 4 ny,

where the constant C' is independent of n. For fized x € [0,00), we obtain
(2.6) |M,, - ((t —2)™, 2)| = O(n~ " FD/2h -y o0,

Proof. Since M, ,((t —x)™,x) = a(n,r,¢c)Vy.m(x) the estimate (2.5)
follow from (2.2) along the lines of [6]; (2.6) immediately follows from (2.5).

LEMMA 4. Let t € [0,00) and n > c¢(r +m). Then
M, . (1+t) ™ 2)<Cl+cx)™™, z€]0,00),
where the constant C' is independent of n.

Proof. It is easily verified that

m—1

1+ ct) ™ bncrpar(t) = [[

=0

n—cr—+lc

mbn—cr+mc,k+r(t)

and

m
—mTT N —lc + kc
pn+cr,k( ) 1 + Cw H n+er— pn+cr7mc,k(x)-

Making use of these two identities and (2.1), we get
My (1 +1)"", z)

=a(n,7,6) > Prterk(®) | bnerpir(®)(1+1) 7" dt
0

m—1

> n—cr+le T
= a(n,r,c) an—&-chk(fn) H ———— S bn—cr+mc7k+r(t) dt
P l:0n+lc+k’c+10
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’I’L r,c Z 1 +C§E pn—‘rcr—mc,k‘(gj)

X1”—1[n+c7“—lc+kcni—_[1 n—cr+lc
n+lc+kc+1

<C 1 + C:E an-‘rm‘ me, k O(l + Cx)im-

For the two monomials ey, e; and x € [0,00), n — oo, we obtain by
direct computation

(2.7) M, (eg,z) =14+ 0(n1),
(2.8) M, (e1,2) = (1 +O0(n™1)).
LEMMA 5. For
)= { | |-
00 0
we have H,(u) < Cn~'¢?

S } Zpn—i—cr,k(l‘)bn—cnlﬁ_r(t)(u — t) dt dz,
0 k=0
(u

), where C' is independent of n and u.

The proof easily follows by using (2.1) along the lines of [1, Lemma 5.2].

3. In this section, we prove the following global direct theorem.
THEOREM 1. Suppose f € Lpy[0,00), 1 < p < oo, n>c(r+5). Then
M f = Fly < CLB(F02) + 07| £,
where the constant C' is independent of n.

Proof. By Taylor’s expansion of g, we have
t

(3.1) 9(t) = g(@) + (t — 2)g' () + {(t — w)g” (u) du.

T

Next, since M, . (f,z) are uniformly bounded operators, for every g €
W2(¢,[0,00)), we have

(3.2 1Morf — Fllp < CIF — gllp + Mo v — gl
Using (2.5), (2.8) and (3.1) and following [3], we have
(3:3) [1Mnrg—=glly < C{llgllp + 19"l 10.1}
+ (1 + 2er2)g' |, 0,00) + 1 Mnr (R(g,t, 7))l
< Cnlglly + 16°9" 1] + 1Mo, (R(g, t, 2), @)l
where R(g,t,z) = S; g" (u)(t — u) du.
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Now, we prove that
(3.4) 1My (R(g, . 2),2) [l < CnTH[(¢% +17)g" |,

We prove this for p = 1 and p = oco. The case 1 < p < oo follows again by
the Riesz—Thorin theorem.

Using (2.5) for the case m = 1 and Lemma 4, the case p = oo easily
follows (see e.g. [6]).

For p =1, we derive (3.4) by applying Fubini’s theorem twice, the defi-
nition of H,(u) and Lemma 5:

[ee]

S |Mn,T(R(g7 t? x)? ':U)| d':L'
0

n T, C S an+crk S bn cr, k+r ‘Sg”(u)(t_u) du|dt dzx
0 k=0 0 T
—a(,r.e) {lg"@{ §-1§ -1
0 00 00

X Prterk(2)bn—er et (t) dt da du
k=0

oo

= a(n,r,c) S lg" (u)|Hp (u) du

0
< On7H¢%g" [l < Cn (¢ + 17 g I,
where C'is independent of n. Hence (3.4) holds by the Riesz—Thorin theorem
for 1 < p < oco. Combining the estimates (3.2), (3.3) and (3.4), we get
1Mo f = fllp = CIIf = gllp + Cn™{ILf = gllp + I £l
+19%g" [l + 1@ +n71)g" [}
< C{llf = gllp + "M l?g"lp + n72llg"llp +n7 [ fllp}-
Next taking the infimum over all g € Wg(QS, [0,00)) on the right hand side,
we get
1Mo f = fllp < CLEG(fon™) + 07 | £l
This completes the proof of Theorem 1.
Remark. The conclusion of the above theorem is true for the space

Ly[0,00), 1 < p < oo (e limyoo |[Mp,f — fllp = 0 for every f €
L,[0,00)) since the basic fact about the Ditzian-Totik modulus of smooth-
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ness w3(f,n~") is that

nli_)ngowé(f,nfl) =0 forall fe L,0,00)if 1 <p < o0,

or for all bounded functions f € C[0,00) which satisfy

lim f(z) = Lo < o0

if p= o0 (cf. [3, p. 36]).

References

[1] M. M. Derriennic, Sur l'approzimation de fonctions intégrables sur [0,1] par des
polynomes de Bernstein modifiés, J. Approx. Theory 31 (1981), 325-343.

[2] Z.Ditzian and K. Ivanov, Bernstein type operators and their derivatives, ibid.
56 (1989), 72-90.

[3] Z.Ditzian and V. Totik, Moduli of Smoothness, Springer Ser. Comput. Math. 9,
Springer, Berlin, 1987.

[4] J. L. Durrmeyer, Une formule d’inversion de la transformée de Laplace: Ap-
plications a la théorie des moments, These de 3e Cycle, Faculté des Sciences de
I’Université de Paris, 1967.

[6] V. Gupta, A note on modified Baskakov type operators, Approx. Theory Appl. 10
(1994), 74-78.

[6] M. Heilmann, Direct and converse results for operators of Baskakov—Durrmeyer
type, ibid. 5 (1989), 105-127.

[7] H.S. Kasana, P. N. Agrawal and V. Gupta, Inverse and saturation theorems
for linear combination of modified Baskakov operators, ibid. 7 (1991), 65-82.

[8] S. M. Mazhar and V. Totik, Approzimation by modified Szdsz operators, Acta
Sci. Math. (Szeged) 49 (1985), 257-269.

[9] A.Sahai and G. Prasad, On simultaneous approzimation by modified Lupas op-
erators, J. Approx. Theory 45 (1985), 122-128.

[10] R.P.Sinha, P. N. Agrawal and V. Gupta, On simultaneous approzimation by
modified Baskakov operators, Bull. Soc. Math. Belg. Sér. B 42 (1991), 217-231.
Department of Mathematics Current address of Vijay Gupta:
University of Roorkee Department of Mathematics
Roorkee 247 667, India Institute of Engineering and Technology
E-mail: maths%rurkeu@sirnetd.ernet.in Rohilkhand University

Bareilly 243006, India

Regu par la Rédaction le 27.10.199/
Révisé le 27.7.1995



