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Evolution equations with parameter in the hyperbolic case

by Jan Bochenek and Teresa Winiarska (Kraków)

Abstract. The purpose of this paper is to give theorems on continuity and differ-
entiability with respect to (h, t) of the solution of the initial value problem du/dt =
A(h, t)u+ f(h, t), u(0) = u0(h) with parameter h ∈ Ω ⊂ R

m in the “hyperbolic” case.

1. Introduction. We consider the initial value problem

(1)





du

dt
= A(h, t)u + f(h, t), t ∈ [0, T ], h ∈ Ω,

u(0) = u0(h).

It is known that under some assumptions on the family of the operators
{A(h, t)} and on the function f , the problem (1) has the unique solution
given by

(2) u(h, t) = U(h, t, 0)u0(h) +

t\
0

U(h, t, s)f(h, s) ds,

where, for each h ∈ Ω, U is the fundamental solution (or evolution system)
for problem (1) (cf. [3, Ch. 5]).

Analogously to the papers [5] and [6], where the “parabolic” case of
problem (1) was studied, we investigate the continuity and differentiability
of the mapping

(3) Ω × [0, T ] ∋ (h, t) → u(h, t) ∈ X,

where the mapping u is given by (2).

2. Stable approximations of the family of operators. This section
is based on Krein’s monograph [2, Ch. II] and it has the auxiliary character.
To simplify notations we assume that the family {A(h, t)} considered in the
introduction is independent of the parameter h.
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Assuming that X is a Banach space we let B(X) be the Banach space
of all linear bounded operators and C(X) be the vector space of all linear
closed operators from X into itself. If A : X → X is a linear operator then
D(A), N(A), R(A), A, P (A) denote the domain, kernel, range, closure and
resolvent set of A, respectively.

In this section we consider a family of operators {A(t)}, t ∈ [0, T ], where
A(t) ∈ C(X), D(A(t)) = D, D = X and 0 ∈ P (A(t)) for every t ∈ [0, T ].

We investigate the Cauchy problem

(4)
du

dt
= A(t)u, u(s) = x, 0 ≤ s ≤ t ≤ T,

where x ∈ D.

Definition 1 ([2, p. 193]). The Cauchy problem (4) is said to be uni-

formly correct if:

(i) for each s ∈ [0, T ] and any x ∈ D there exists a unique solution
u = u(t, s) of (4) on the interval [s, T ],

(ii) the function u = u(t, s) and its derivative u′
t are continuous in the

triangle ∆T := {(t, s) : 0 ≤ s ≤ t ≤ T},

(iii) the solution depends continuously on the initial data.

If the Cauchy problem is uniformly correct, then it is possible to intro-
duce a linear operator U(t, s) for (t, s) ∈ ∆T by the formula

(5) U(t, s)x := u(t, s), (t, s) ∈ ∆T , x ∈ D,

where u(s, s) = x. The formula (5) defines the operator U(t, s) on the set D
dense in X. Since for fixed (t, s) ∈ ∆T it is a bounded operator, it admits a
continuous extension to the entire space X.

It is known (cf. [2, pp. 193–194]) that if for each x ∈ D the mapping
[0, T ] ∋ t → A(t)x is continuous (i.e. the mapping t → A(t) is strongly
continuous on D) and the Cauchy problem (4) is uniformly correct, then
the fundamental solution U has the following properties:

(a) the mapping ∆T ∋ (t, s) → U(t, s) ∈ B(X) is strongly continuous
and ‖U(t, s)‖ ≤ M for (t, s) ∈ ∆T ,

(b) U(t, t) = I and U(t, s) = U(t, r)U(r, s) for 0 ≤ s ≤ r ≤ t ≤ T,

(c) ∂
∂t

U(t, s)x = A(t)U(t, s)x, ∂
∂s

U(t, s)x = −U(t, s)A(s)x for (t, s) ∈
∆T , x ∈ D,

(d) the mappings ∆T ∋ (t, s) → ∂
∂t

U(t, s) and ∆T ∋ (t, s) → ∂
∂s

U(t, s)
are strongly continuous on D.

Definition 2 ([4, p. 89]). An operator-valued function U : ∆T ∋
(t, s) → U(t, s) ∈ B(X) satisfying the above conditions (a)–(d) is called
the fundamental solution of problem (4).
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It is known (see [2, Ch. II, §2]) that if the operator A(t) is bounded for
each t ∈ [0, T ] and the mapping [0, T ] ∋ t → A(t) is strongly continuous,
then problem (4) is uniformly correct and so the fundamental solution U for
this problem exists.

Definition 3 ([2, p. 199]). If there exists a sequence of bounded and
strongly continuous operators An(t), t ∈ [0, T ], for which

(6) lim
n→∞

sup
0≤t≤T

‖[A(t) − An(t)]A(t)−1x‖ = 0, x ∈ X,

and the fundamental solutions of the problems

du

dt
= An(t)u, u(s) = x,

are uniformly bounded, i.e.,

(7) ‖Un(t, s)‖ ≤ M,

where M does not depend on n ∈ N and (t, s) ∈ ∆T , then we say that the
family {A(t)}, t ∈ [0, T ], is stably approximated by the sequence {An(t)}.

In [2, Ch. II] the following sufficient conditions are given for the family
{A(t)}, t ∈ [0, T ], to be stably approximated:

the mapping [0, T ] ∋ t → A(t) is strongly continuous in D,(8)

‖R(λ;A(t))‖ := ‖(A(t) − λI)−1‖ ≤
1

λ + 1
for λ ≥ 0.(9)

The sequence {An(t)} approximating the family {A(t)}, t ∈ [0, T ], has the
form

(10) An(t) := −nA(t)R(n;A(t))

(cf. [2, p. 204]).
Our nearest purpose is to give other sufficient conditions for the family

{A(t)}, t ∈ [0, T ], to be stably approximated (see Theorems 1 and 2).

Definition 4 ([3, p. 130]). A family {A(t)}, t ∈ [0, T ], is called stable if
there are constants M ≥ 1 and ω (called the stability constants) such that

(11) (ω,∞) ⊂ P (A(t)) for t ∈ [0, T ]

and

(12)
∥∥∥

k∏

j=1

R(λ;A(tj))
∥∥∥ ≤ M(λ − ω)−k for λ > ω

and for every finite sequence 0 ≤ t1 ≤ . . . ≤ tk ≤ T , k ∈ N.

Lemma 1. Let {A(t)}, t ∈ [0, T ], be a stable family in the sense of

Definition 4. Then the sequence {An(t)}, where An(t) is defined by (10), is
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uniformly stable, i.e., the stability constants for the operators An(t) do not

depend on n ∈ N.

P r o o f. From the identity

R(λ;An(t)) =
n2

(n + λ)2
R

(
nλ

n + λ
;A(t)

)
−

1

n + λ
I

we have

∥∥∥
k∏

j=1

R(λ;An(tj))
∥∥∥

≤

∥∥∥∥
k∏

j=1

[
n2

(n + λ)2
R

(
nλ

n + λ
;A(tj)

)
−

1

n + λ
I

]∥∥∥∥

≤

∣∣∣∣
[

n2

(n + λ)2

]k

M

(
λn

n + λ
− ω

)−k

+

(
k

1

)(
n2

(n + λ)2

)k−1
1

n + λ
M

(
λn

n + λ
− ω

)−k+1

+

(
k

2

)(
n2

(n + λ)2

)k−2
1

(n + λ)2
M

(
λn

n + λ
− ω

)−k+2

+ . . . +
1

(n + λ)k

∣∣∣∣

≤ M

(
n

n + λ

)k(
λ −

n + λ

n
ω

)−k

×

[
1 +

(
n2

(n + λ)2

)−1
1

n + λ

(
λn

n + λ
− ω

)]k

= M

(
λ −

n + λ

n
ω

)−k(
1 −

ω

n

)k

= M

(
λ −

n

n − ω
ω

)−k

.

It follows that for n ≥ 2ω, the family {An(t)}, t ∈ [0, T ], is stable with
stability constants M and 2ω (n ≥ 2ω is fixed).

Lemma 2. Let {A(t)}, t ∈ [0, T ], be a stable family with stability con-

stants M and ω. If the mapping [0, T ] ∋ t → A(t) ∈ B(X) is strongly con-

tinuous, then the fundamental solution U corresponding to A(t) is strongly

continuous in the triangle ∆T and

(13) ‖U(t, s)‖ ≤ MeωT for (t, s) ∈ ∆T ,

where M and ω are the stability constants.

P r o o f. Existence and strong continuity of U follow from boundedness
and strong continuity of the mapping [0, T ] ∋ t → A(t).
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In order to prove (13), we start by approximating the family {A(t)},
t ∈ [0, T ], by piecewise constant families {Aν(t)}, t ∈ [0, T ], defined as
follows. Let tνk := (k/ν)T , k = 0, 1, . . . , ν, ν ∈ N, and let (cf. [3, p. 135])

(14) Aν(t) :=

{
A(tνk) for tνk ≤ t < tνk+1, k = 0, 1, . . . , ν − 1,

A(T ) for t = T .

From the strong continuity of t → A(t) it follows that

(15) ‖[A(t) − Aν(t)]x‖ → 0 as ν → ∞

uniformly with respect to t ∈ [0, T ] for each x ∈ X.

Denote by St(s), s ≥ 0, the C0-semigroup generated by A(t) for t ∈ [0, T ]
and let

(16) Uν(t, s) :=





Stν
j
(t − s) for tνj ≤ s ≤ t ≤ tνj+1,

Stν
k
(t − tνk)[

∏k−1
j=l+1 Stν

j
(T/ν)]Stν

l
(tνl+1 − s)

for k > l, tνk ≤ t ≤ tνk+1, tνl ≤ s ≤ tνl+1.

From (16) and Theorem 3.1 of [3, p. 135] it follows that Uν(t, s) is the
fundamental solution corresponding to Aν(t), the mapping

(17) ∆T ∋ (t, s) → Uν(t, s)

is strongly continuous and

(18) ‖Uν(t, s)‖ ≤ Meω(t−s) for (t, s) ∈ ∆T ,

where M and ω are the constants from (12).

From the equality

∂

∂t
U(t, s)x = A(t)U(t, s)x, x ∈ X,

we obtain

∂

∂t
U(t, s)x = Aν(t)U(t, s)x + [A(t) − Aν(t)]U(t, s)x.

Hence

(19) U(t, s)x = Uν(t, s)x +

t\
s

Uν(t, τ)[A(τ) − Aν(τ)]U(τ, s)x dτ

(cf. [2, p. 195, Th. 3.1]) and so we have

‖[U(t, s) − Uν(t, s)]x‖ ≤ MeωT

T\
0

‖[A(τ) − Aν(τ)]U(τ, s)x‖ dτ.

From (15) and from Lemma 3.7 of [1, p. 151] it follows that ‖[U(t, s) −
Uν(t, s)]x‖ → 0 as ν → ∞ uniformly in (t, s) ∈ ∆T . By (18), this implies
(13), i.e. the conclusion of Lemma 2.
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Theorem 1. Suppose that

(i) {A(t)}, t ∈ [0, T ], is a stable family in the sense of Definition 4,

(ii) D(A(t)) = D does not depend on t ∈ [0, T ],

(iii) the mapping [0, T ] ∋ t → A(t) is strongly continuous,

(iv) 0 ∈ P (A(t)) for t ∈ [0, T ].

Then the family {A(t)}, t ∈ [0, T ], is stably approximated (cf. Def. 3).

P r o o f. Define An(t) by (10) for n ∈ N. For each fixed n ∈ N and
t ∈ [0, T ] the operator An(t) commutes with A(t) on D and An(t) is a
bounded operator on X.

Let x ∈ D be fixed. We have

‖[A(t) − An(t)]A(t)−1x‖

= ‖[A(t) + nA(t)(A(t) − n)−1]A(t)−1x‖

= ‖x + n(A(t) − n)−1x‖ = ‖(A(t) − n)−1A(t)x‖

≤ ‖(A(t) − n)−1‖ · ‖A(t)x‖

≤
M

n − ω
‖A(t)x‖ ≤

M

n − ω
K, where K = sup{‖A(t)x‖ : t ∈ [0, T ]}.

This shows that

‖[A(t) − An(t)]A(t)−1x‖ ≤ M1,

where M1 does not depend on n > ω or t ∈ [0, T ]. From this estimate we
get

(20) lim
n→∞

sup
0≤t≤T

‖[A(t) − An(t)]A(t)−1x‖ = 0

for each x ∈ D, where D = X. By (19) and (20) in view of the Banach–
Steinhaus theorem (cf. [2, p. 9]), the condition (6) of Definition 3 is satisfied.

From Lemma 2 it follows that the sequence {An(t)} is uniformly stable
with stability constants M and 2ω for n ≥ 2ω. Using Lemma 2 for each
fixed n ≥ 2ω, we obtain

(21) ‖Un(t, s)‖ ≤ Me2ω(t−s) ≤ Me2ωT .

Theorem 1 is proved.

Lemma 3. Suppose that

(i) the mapping [0, T ] ∋ t → A(t)x ∈ X is of class C1 for x ∈ D,

(ii) A(t)−1 ∈ B(X) exists for t ∈ [0, T ],

(iii) the family {A(t)}, t ∈ [0, T ], is stably approximated by the sequence

{An(t)}, where An(t) is defined by (10).
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Then there exists a constant K independent of n ∈ N and (t, s) ∈ ∆T such

that

(22) ‖A(t)Un(t, s)A(s)−1‖ ≤ K,

where Un(t, s) is the fundamental solution corresponding to An(t).

P r o o f. According to Definition 3,

(23) ‖Un(t, s)‖ ≤ M,

where M does not depend on n ∈ N and (t, s) ∈ ∆T .
Consider the equation (cf. [2, p. 200])

(24)
dy

dt
= An(t)y + A′(t)A(t)−1y.

By (i) and (ii), the mapping [0, T ] ∋ t → A′(t)A(t)−1 ∈ B(X) is strongly
continuous. In view of the Banach–Steinhaus theorem we get

(25) ‖A′(t)A(t)−1‖ ≤ C,

where C does not depend on t ∈ [0, T ].
Let Vn(t, s) be the fundamental solution of (24). We have

(26) Vn(t, s) = A(t)Un(t, s)A(s)−1, (t, s) ∈ ∆T

(cf. [2, p. 201]). From (23), (25) and (26) it follows that

(27) ‖Vn(t, s)‖ = ‖A(t)Un(t, s)A(s)−1‖ ≤ MeCMT = K

(see [2, p. 191]).

Theorem 2. Suppose that

(i) {A(t)}, t ∈ [0, T ], is a stable family in the sense of Definition 4,
(ii) D(A(t)) = D does not depend on t ∈ [0, T ],
(iii) the mapping [0, T ] ∋ t → A(t)x ∈ X is of class C1 for x ∈ D,
(iv) A(t)−1 ∈ B(X) exists for t ∈ [0, T ].

Then the family {A(t)}, t ∈ [0, T ], is stably approximated by the sequence

{An(t)} defined by (10), and the sequence {Un(t, s)} of the fundamental

solutions corresponding to {An(t)} is strongly and uniformly convergent to

U(t, s) in ∆T .

P r o o f. Upon using Theorem 1 and Lemmas 2–4, the proof is analogous
to the proof of Theorem 3.11 of [2, p. 208]. We omit the details and refer
the reader to [2, Ch. II].

From Theorem 2 and [2, Th. 3.6, p. 200] it follows that if the family
{A(t)}, t ∈ [0, T ], satisfies the assumptions of Theorem 2, then the Cauchy
problem

(28)
du

dt
= A(t)u, u(s) = x, x ∈ D, 0 ≤ s ≤ t ≤ T,
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has the unique solution given by

(29) u(t) = U(t, s)x,

where U(t, s) is the fundamental solution for (28) defined in Theorem 2.

R e m a r k 1. The set of assumptions (i)–(iii) of Theorem 2 is usually
referred to as the “hyperbolic” case in contrast to the “parabolic” case
where each A(t), t ≥ 0, is assumed to be the infinitesimal generator of
an analytic semigroup. This terminology is justified by applications of the
abstract results to partial differential equations (cf. [3, p. 134]).

3. Dependence of the fundamental solution on parameters. Let
Ω be a compact subset of R

m. We shall consider the following initial value
problem with a parameter h ∈ Ω:

(30)





du

dt
= A(h, t)u, t ∈ [0, T ], h ∈ Ω,

u(s) = x, 0 ≤ s ≤ t ≤ T,

where A : Ω × [0, T ] ∋ (h, t) → A(h, t) ∈ C(X), D(A(h, t)) = D, D = X,
0 ∈ P (A(h, t)) for (h, t) ∈ Ω × [0, T ] and x ∈ D.

Theorem 3. If , for any (h, t) ∈ Ω × [0, T ], A(h, t) is bounded and , for

each x ∈ X, the mapping

(31) Ω × [0, T ] ∋ (h, t) → A(h, t)x ∈ X is continuous,

then the mapping

(32) Ω × ∆T ∋ (h, t, s) → U(h, t, s)x ∈ X is continuous.

P r o o f. It follows from [2, p. 189] that the mapping ∆T ∋ (t, s) →
U(h, t, s)x ∈ X is continuous for any fixed h ∈ Ω and x ∈ X. Hence, by the
Banach–Steinhaus theorem there exists M1 = M1(h) ≥ 0 such that

‖U(h, t, s)‖ ≤ M1 for (t, s) ∈ ∆T .

To prove the theorem it is enough to show that

U(h, t, s)x → U(h0, t, s)x as h → h0,

uniformly in (t, s) ∈ ∆T , for any x ∈ X. Since

∂

∂t
U(h, t, s)x = A(h, t)U(h, t, s)x for h ∈ Ω, (t, s) ∈ ∆T , x ∈ X,

and U(h, t, t)x = x for h ∈ Ω, t ∈ [0, T ], x ∈ X, we have
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‖[U(h, t, s) − U(h0, t, s)]x‖

≤

t\
s

‖[A(h, τ)U(h, τ, s) − A(h0, τ)U(h0, τ, s)]x‖ dτ

≤

t\
s

‖A(h, τ)‖ · ‖[U(h, τ, s) − U(h0, τ, s)]x‖ dτ

+

t\
s

‖[A(h, τ) − A(h0, τ)]U(h0, τ, s)x‖ dτ.

By (31) and the Banach–Steinhaus theorem there exists M > 0 such that
‖A(h, t)‖ ≤ M. Thus,

‖[U(h, t, s) − U(h0, t, s)]x‖ ≤ M

T\
0

‖[U(h, τ, s) − U(h0, τ, s)]x‖ dτ

+

T\
0

‖[A(h, τ) − A(h0, τ)]U(h0, τ, s)x‖ dτ.

By Gronwall’s inequality

‖[U(h, t, s) − U(h0, t, s)]x‖ ≤ eTM

T\
0

‖[A(h, τ) − A(h0, τ)]U(h0, τ, s)x‖ dτ.

By (31) the operators A(h, τ)−A(h0, τ) converge strongly and uniformly
in τ ∈ [0, T ] to zero as h → h0, on the entire space X. This means that they
converge to zero on the compact set of values of the continuous functions
U(h0, τ, s)x. It follows that the functions

[A(h, τ) − A(h0, τ)]U(h0, τ, s)x

converge to zero uniformly in (τ, s) ∈ ∆T (cf. [1, p. 151]). Hence
limh→h0

U(h, t, s)x = U(h0, t, s)x uniformly in (t, s) ∈ ∆T .

Definition 5. A family {A(h, t)}, (h, t) ∈ Ω × [0, T ], is said to be uni-

formly stably approximated with respect to h ∈ Ω if there exists a sequence
{An(h, t)} of bounded linear operators An(h, t) : X → X, n = 1, 2, . . . , such
that

(i) the mapping Ω × [0, T ] ∋ (h, t) → An(h, t)x ∈ X is continuous for
x ∈ X, n = 1, 2, . . . ,

(ii) limn→∞{sup ‖[An(h, t)−A(h, t)]A(h, t)−1x‖ : (h, t) ∈ Ω×[0, T ]} = 0
for x ∈ X and the sequence {Un(h, t, s)} of fundamental solutions of (30)
with A(h, t) = An(h, t), n = 1, 2, . . . , is uniformly bounded, i.e. there exists
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K > 0 such that

‖Un(h, t, s)‖ ≤ K for h ∈ Ω, (t, s) ∈ ∆T , n = 1, 2, . . .

Definition 6. We say that a family {A(h, t)}, (h, t) ∈ Ω × [0, T ], is
uniformly stable in Ω if

(i) {A(h, t)} is stable (in the sense of Def. 4) for any h ∈ Ω,

(ii) the stability constants M , ω are independent of h.

Theorem 4. Suppose that

(i) the family {A(h, t)}, (h, t) ∈ Ω × [0, T ] is uniformly stably approxi-

mated by {An(h, t)}, (h, t) ∈ Ω × [0, T ],

(ii) the mapping Ω × [0, T ] ∋ (h, t) → A(h, t)x ∈ X is continuous for

x ∈ D,

(iii) the mapping [0, T ] ∋ t → A(h, t)x ∈ X is of class C1 for h ∈ Ω,
x ∈ D,

(iv) An(h, t) commutes with A(h, t) for n ∈ N, (h, t) ∈ Ω × [0, T ],

(v) {Un(h, t, s)} strongly and uniformly converges to U(h, t, s) in Ω×∆T .

Then U(h, t, s) is the fundamental solution of the problem (30) and the map-

ping (h, t, s) → U(h, t, s)x is continuous.

P r o o f. It follows from Theorem 3.6 of [2, p. 200] that the problem (30)
is uniformly correct and, for h ∈ Ω, U(h, t, s) is its fundamental solution.
By (i), the assumptions of Theorem 3 are satisfied. Thus, for n ∈ N, the
mapping (h, t, s) → Un(h, t, s)x is continuous and the assumption (v) ends
the proof.

Theorem 5. Suppose that

(i) {A(h, t)}, (h, t) ∈ Ω × [0, T ], is stable uniformly in h ∈ Ω,

(ii) the mapping Ω × [0, T ] ∋ (h, t) → A(h, t)x ∈ X is continuous for

x ∈ D,

(iii) the mapping [0, T ] ∋ t → A(h, t)x ∈ X is of class C1 for h ∈ Ω,
x ∈ D.

Then the problem (30) has, for any h ∈ Ω, exactly one solution u(h, ·) which

is given by u(h, t) = U(h, t, s)x, where U(h, t, s) is the fundamental solution

of (30). Moreover , the mapping Ω × ∆T ∋ (h, t, s) → U(h, t, s)x ∈ X for

x ∈ X is continuous.

P r o o f. Since for any h ∈ Ω, the family {A(h, t)} satisfies the assump-
tions of Theorem 2, it is stably approximated and the approximating se-
quence is given by

(33) An(h, t) = −nA(h, t)R(n;A(h, t)) = −nI − n2R(n;A(h, t)).
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By (i),

‖R(n;A(h, t))‖ ≤
M

n − ω
and so R(n;A(h, t)) is bounded uniformly in (h, t) ∈ Ω× [0, T ], for any fixed
n ∈ N. Hence the mapping (h, t) → An(h, t)x for x ∈ X is continuous (see
[2, p. 176]), where An(h, t) is given by (33). By Theorem 3 the mapping

(h, t, s) → Un(h, t, s)x for x ∈ X, n = 1, 2, . . . ,

is continuous, where Un(h, t, s) is the fundamental solution of (30) with
A(h, t) = An(h, t) given by (33). By Theorem 2 the sequence {Un(h, t, s)} is
strongly and uniformly convergent to U(h, t, s) in ∆T , for h ∈ Ω. Since the
family {A(h, t)} is uniformly stably approximated with respect to h ∈ Ω,
similarly to the proof of Theorem 3.11 in [2] we conclude that Un(h, t, s)x →
U(h, t, s)x uniformly in (h, t, s) ∈ Ω × ∆T .

4. Dependence on parameter of solutions to problem (1). It is
well known that under suitable assumptions the solution of problem (1) is
given by

(34) u(h, t) = U(h, t, 0)u0(h) +

t\
0

U(h, t, s)f(h, s) ds.

Theorem 6. Suppose that

(i) the family {A(h, t)} satisfies the assumptions of Theorem 4,
(ii) the mapping Ω ∋ h → u0(h) ∈ X is continuous,
(iii) the mapping Ω × [0, T ] ∋ (h, t) → f(h, t) ∈ X is continuous.

Then the function u given by (34) is continuous in Ω × [0, T ].

P r o o f. By Theorem 4 the mapping Ω×∆T ∋ (h, t, s) → U(h, t, s)x ∈ X
for x ∈ X is continuous and so Theorem 6 is now a simple consequence of
Theorem 1 of [5].

Corollary.If the family {A(h, t) : (h, t) ∈ Ω × [0, T ]} satisfies the

assumptions of Theorem 5 and the mappings Ω ∋ h → u0(h) ∈ X and

Ω × [0, T ] ∋ (h, t) → f(h, t) ∈ X are continuous then the function given by

(34) is continuous in Ω × [0, T ].

Indeed, it is a simple consequence of Theorems 5 and 6.

Theorem 7. Let the assumptions of Theorem 4 be satisfied. Suppose that

Ω ⊂ R, h0 is an interior point of Ω and

(i) u(h, ·) ∈ C([0, T ];X) is a solution of the problem (1),
(ii) the mappings Ω ∋ h → A(h, ·)x ∈ C([0, T ];X), Ω ∋ h → f(h, ·) ∈

C([0, T ];X) and Ω ∋ h → u0(h) ∈ X are differentiable at h0.
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Then the mapping Ω ∋ h → u(h, ·) ∈ C([0, T ];X) is differentiable at h0

and

u′(h0, t) = U(h0, t, 0)u
′
0(h0)(35)

+

t\
0

U(h0, t, s)[f
′(h0, s) − A′(h0, s)u(h0, s)] ds,

where “ ′” denotes differentiation with respect to h.

P r o o f. Since u(h, ·) is a solution of the problem (1), the function

(36) ω(h, t) =
u(h, t) − u(h0, t)

h − h0
for h 6= h0

is for h 6= h0 a solution of the problem

(37)





dυ

dt
= A(h, t)υ + F (h, t),

υ(0) = ω0(h),

where

F (h, t) =





f(h, t) − f(h0, t)

h − h0
−

A(h, t) − A(h0, t)

h − h0
u(h0, t) for h 6= h0,

f ′(h0, t) − A′(h0, t)u(h0, t) for h = h0,

ω0(h) =





u0(h) − u0(h0)

h − h0
for h 6= h0,

u′
0(h0) for h = h0.

By (ii) the mapping

(h, t) →





f(h, t) − f(h0, t)

h − h0
for h 6= h0,

f ′(h0, t) for h = h0,

is continuous. We have

A(h, t) − A(h0, t)

h − h0
u(h0, t)

=
A(h, t) − A(h0, t)

h − h0
A(h0, 0)

−1A(h0, 0)A(h0, t)
−1A(h0, t)u(h0, t).

Since

A(h0, t)u(h0, t) =
du(h0, t)

dt
− f(h0, t)

and by Definition 1, the mapping

[0, T ] ∋ t → A(h0, t)u(h0, t)u

is continuous. Also, the mapping

[0, T ] ∋ t → A(h0, t)A(h0, t)
−1u
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is continuous (cf. [2, Lemma 1.5]). Therefore

(h, t) →





A(h, t) − A(h0, t)

h − h0
u(h0, t) for h 6= h0,

A′(h0, t)u(h0, t) for h = h0,

is continuous. By Theorem 6 the mapping

ω̃(h, t) := U(h, t, 0)ω0(h) +

t\
0

U(h, t, s)F (h, s) ds

is continuous and

ω̃(h, t) =

{
ω(h, t) for h 6= h0,

u′(h0, t) for h = h0.

Therefore

u′(h0, t) = U(h0, t, 0)u
′
0(h0)

+

t\
0

U(h0, t, s)[f
′(h0, s) − A(h0, s)u(h0, s)] ds.

Corollary 2. If for any h ∈ Ω the assumptions of Theorem 7 are

satisfied , then the mapping

Ω ∋ h → u(h, ·) ∈ C([0, T ];X)

is differentiable and

u′(h, t) = U(h, t, 0)u′
0(h) +

t\
0

U(h, t, s)F1(h, s) ds,

where F1(h, s) = f ′(h, s) − A′(h, s)u(h, s).

R e m a r k 1. Let the assumptions of Theorem 4 be satisfied. If for any
h ∈ Ω the mapping [0, T ] ∋ t → f(h, t) ∈ X is of class C1, then the function
u given by (34) is the unique solution of the problem (1) (see [4, Th. 4.52]).

R e m a r k 2. Similarly to [6] one can prove theorems on higher regularity
of the solution of problem (1).
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