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M. C. Zdun (Kraków)

Abstract. The system of Abel equations

α(ft(x)) = α(x) + λ(t), t ∈ T,

is studied under the general assumption that ft are pairwise commuting homeomorphisms
of a real interval and have no fixed points (T is an arbitrary non-empty set). A result
concerning embeddability of rational iteration groups in continuous groups is proved as a
simple consequence of the obtained theorems.

Introduction. We study continuous solutions of the system of Abel
equations

(1) α(ft(x)) = α(x) + λ(t), t ∈ T,

where T is a non-empty set, λ : T → R is a given function and ft, t ∈ T ,
are pairwise commuting homeomorphisms of an interval (a, b) (−∞ ≤ a <
b ≤ ∞). We assume that the homeomorphisms ft have no fixed points
and satisfy some additional conditions (hypotheses (H1)–(H3) below). Under
these assumptions we describe solutions of system (1) by examining the
orbits of the group generated by {ft : t ∈ T}. Our results generalize some
of those obtained by the third author in [4] and [5].

In Section 1 we formulate the basic definitions and main results describ-
ing the iteration properties of {ft : t ∈ T} (Propositions 1 and 2) and con-
tinuous solutions of system (1) (Theorem 1). Section 2 contains the proofs of
these results and a number of auxiliary lemmas. There we also prove a slight
generalization of the Krylov–Bogolyubov theorem (Theorem 2) which serves
as the main tool in the proof of Theorem 1. The last part of the paper pro-
vides some consequences of Theorem 1 concerning system (1) (Theorems 3
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and 4, Corollaries 3 and 4) as well as the problem of embeddability of ra-
tional iteration groups in continuous groups (Corollary 2).

1. Basic notions and main results. Let (a, b) (−∞ ≤ a < b ≤ ∞) be
an interval. In what follows A will stand for the set of all homeomorphisms
mapping (a, b) onto itself and having no fixed points. Observe that any
element of A is a strictly increasing function.

The following notions play a fundamental role in the paper.
Given commuting homeomorphisms f and g mapping (a, b) onto itself

we say that the pair (f, g) is periodic if

∀x∈(a,b)∃m,n∈Z\{0} f
m(x) = gn(x),

and (f, g) is aperiodic if

∀x∈(a,b)∀m,n∈Z\{0} f
m(x) 6= gn(x).

(Here and in what follows the symbol fm stands for the mth iterate of f . Al-
ternatively, periodic and aperiodic pairs are called iteratively commensurable
and iteratively incommensurable, respectively.)

R e m a r k 1 ([2, Corollary 4.2]). Let f, g ∈ A commute. The pair (f, g)
is periodic if and only if fm = gn for some non-zero integers m,n.

Let f, g ∈ A commute. For every x ∈ (a, b) there exists a (unique)
sequence (sk(x) : k ∈ N) of integers such that

(2) fsk(x)+1(x) ≤ gk(x) < fsk(x)(x), k ∈ N,
provided f < Id, and

fsk(x)+1(x) ≥ gk(x) > fsk(x)(x), k ∈ N,
if f > Id. It follows from [7, Theorem 1, Remark 2 and Lemma 4] that for
every x ∈ (a, b) there exists a finite non-zero limit

ν(f, g) = lim
k→∞

sk(x)/k,

which actually does not depend on x.

R e m a r k 2. Let f, g ∈ A commute.

(i) ([7, Corollary 1 and Remark 2]) ν(f, g) is irrational if and only if
(f, g) is aperiodic.

(ii) ([7, Theorem 2 and Remark 2]) If (f, g) is periodic and m,n ∈ Z\{0},
then ν(f, g) = m/n if and only if fm = gn.

As follows from the fact below, ν(f, g) can be defined otherwise (cf. [2,
p. 85]).

R e m a r k 3. Let f, g ∈ A commute. Then for every x ∈ (a, b),

ν(f, g) = inf{m/n : m ∈ Z, n ∈ N, fm(x) < gn(x)} if f < Id,
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ν(f, g) = sup{m/n : m ∈ Z, n ∈ N, fm(x) < gn(x)} if f > Id.

P r o o f. By [7, Remark 2 and Lemma 5], ν(f, g−1) = −ν(f, g) and
ν(g, f) = ν(f, g)−1. This allows us to consider only the case where f < Id
and g < Id.

Fix an x ∈ (a, b) and let m ∈ Z and n ∈ N be such that fm(x) < gn(x).
Observe that necessarily m ∈ N. Lemma 1 of [7] shows that fm+1 < gn,
whence, by [7, Theorem 3], m+ 1 > nν(f, g). Thus

inf{(m+ 1)/n : m ∈ Z, n ∈ N, fm(x) < gn(x)} ≥ ν(f, g).

On the other hand, if (sk(x) : k ∈ N) is a sequence of integers satisfying (2),
then

fsk(x)+2(x) < fsk(x)+1(x) ≤ gk(x), k ∈ N,
and limk→∞(sk(x) + 3)/k = ν(f, g) so

inf{(m+ 1)/n : m ∈ Z, n ∈ N, fm(x) < gn(x)} ≤ ν(f, g).

If fm(x) < gn(x) for m ∈ Z and n ∈ N, then, as one can easily verify,
fkm(x) < gkn(x), k ∈ N. Hence

inf{(m+ 1)/n : m ∈ Z, n ∈ N, fm(x) < gn(x)}
= inf{m/n : m ∈ Z, n ∈ N, fm(x) < gn(x)}.

Let T be a non-empty set and consider the following hypothesis.

(H1) ft, t ∈ T , are pairwise commuting elements of A and for every
k ∈ N, t1, . . . , tk ∈ T , and n1, . . . , nk ∈ Z either

∀x∈(a,b) f
n1
t1 ◦ . . . ◦ f

nk
tk

(x) = x,

or
∀x∈(a,b) f

n1
t1 ◦ . . . ◦ f

nk
tk

(x) 6= x.

R e m a r k 4. Hypothesis (H1) is equivalent to the statement that the
group generated by {ft : t ∈ T} ⊆ A is commutative and disjoint, that is,
Id is its unique element having fixed points.

Example. Let T be a non-empty set of reals not containing zero and
let α be a homeomorphism of (a, b) onto R. One can easily check that the
functions ft, t ∈ T , given by

ft(x) = α−1(α(x) + t), x ∈ (a, b),

satisfy (H1) and, moreover, ν(fs, ft) = t/s for every s, t ∈ T .

Let F = {ft : t ∈ T} be a family of pairwise commuting bijections of
(a, b). For any x ∈ (a, b) define the F-orbit of x by

CF (x) = {fn1
t1 ◦ . . . ◦ f

nk
tk

(x) : k ∈ N, t1, . . . , tk ∈ T, n1, . . . , nk ∈ Z}
and denote by LF (x) the set of all its cluster points.
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Proposition 1. Let F = {ft : t ∈ T} be a family of homeomorphisms
satisfying hypothesis (H1). Then

(i) LF (x) = LF (y) for every x ∈ (a, b) (from now on we denote this set
by LF );

(ii) f(LF ∩ (a, b)) = LF ∩ (a, b) for every f ∈ F ;
(iii) LF is either a perfect nowhere dense set containing {a, b}, or LF =

{a, b}, or LF = [a, b].

In what follows t0 will be a fixed element of T .
Given pairwise commuting elements ft, t ∈ T , of A we can put

ν(t) = ν(ft0 , ft), t ∈ T.

Observe that ν(t0) = 1 and denote by G the additive group generated
by ν(T ). Clearly G, being a subgroup of the additive group of reals is either
discrete, i.e. G = pZ for a non-zero p, or G is a dense subset of R.

Proposition 2. Let F = {ft : t ∈ T} be a family of homeomorphisms
satisfying hypothesis (H1). Then the following statements are equivalent :

(i) the group G is discrete;
(ii) LF = {a, b};
(iii) there exists a homeomorphism h ∈ A and a function m : T → Z

such that

(3) ft = hm(t), t ∈ T.

Theorem 1. Let F = {ft : t ∈ T} satisfy hypothesis (H1).

(i) Assume that G is discrete. Then the system

(A) α(ft(x)) = α(x) + ν(t), t ∈ T,

has a homeomorphic solution depending on an arbitrary function (1).
(ii) Assume that G is dense in R. Then (A) has a unique (up to an addi-

tive constant) continuous solution α : (a, b)→R. This solution is monotonic
and α(LF ∩ (a, b)) = R. Moreover , α is invertible if and only if LF = [a, b].

In the last section we shall give two versions of Theorem 1 for families
satisfying one of the following hypotheses:

(H2) ft, t ∈ T , are pairwise commuting elements of A and (ft0 , ft) is
periodic for every t ∈ T .

(1) This means here that there exists an interval I ⊂ (a, b) such that any continuous
function defined on I which is strictly decreasing in the case ft0 < Id and strictly increasing
provided ft0 > Id, can be uniquely extended to a homeomorphic solution α : (a, b) → R
of system (A).
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(H3) ft, t ∈ T , are elements of A and there is a t1 ∈ T such that (ft0 , ft1)
is aperiodic, and

ft0 ◦ ft = ft ◦ ft0 and ft1 ◦ ft = ft ◦ ft1 , t ∈ T.
We postpone the comparison of hypotheses (H1)–(H3) to Remark 5 in

the next section.

2. Proofs. We start with a version of the Krylov–Bogolyubov theorem,
useful in the proof of Theorem 1.

Theorem 2. Let X be a compact metric space and Ft : X → X, t ∈ T ,
be pairwise commuting continuous functions. Then there exists a probability
Borel measure µ on X such that

µ(F−1
t (A)) = µ(A), t ∈ T,

for every Borel set A ⊂ X.

P r o o f. Let C(X) be the space of all continuous real functions on X with
the sup norm. According to the Riesz representation theorem the adjoint
space C(X)∗ can be identified with the space of all countably additive real-
valued set functions of bounded variation defined on the σ-algebra of all
Borel subsets of X.

For each t ∈ T the operator St : C(X)→ C(X) defined by

StF = F ◦ Ft
is linear and continuous. Let Pt be the adjoint operator to St, t ∈ T . It can
be easily checked that for each t ∈ T ,

(Ptµ)(A) = µ(F−1
t (A)), µ ∈ C(X)∗,

and Pt(M) ⊂ M, where M = {µ ∈ C(X)∗ : µ ≥ 0, µ(X) = 1}. Moreover,
M is a convex and weak∗ compact subset of C(X)∗ and Pt, t ∈ T , are linear
and weak∗ continuous. It is also clear that

Ps ◦ Pt = Pt ◦ Ps, s, t ∈ T.
Therefore, by the Markov–Kakutani fixed point theorem (see [1, Theorem
2.4]), the operators Pt, t ∈ T , have a common fixed point. This completes
the proof.

Lemma 1. Assume (H1) and let k∈N, t1, . . . , tk ∈ T , n1, . . . , nk ∈ Z. If
n1ν(t1) + . . .+ nkν(tk) = 0, then fn1

t1 ◦ . . . ◦ f
nk
tk

= Id.

P r o o f. Notice that, by (H1), for every t ∈ T the pair (ft0 , ft) is either
periodic or aperiodic.

Let n1, . . . , nk satisfy n1ν(t1) + . . . + nkν(tk) = 0. Without loss of
generality we can assume that ft0(x) > x for x ∈ (a, b). Suppose that
f = fn1

t1 ◦ . . .◦f
nk
tk

has no fixed point and assume, for instance, that f(x) > x
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for x ∈ (a, b). Fix an x0 ∈ (a, b) and arbitrary integers p1, . . . , pk for which
p1ν(t1) + . . .+ pkν(tk) > 0. Since

i(n1ν(t1) + . . .+ nkν(tk)) = 0 < p1ν(t1) + . . .+ pkν(tk), i ∈ N,

it follows from [2, Lemma 4.14] that

f i(x0) < fp1t1 ◦ . . . ◦ f
pk
tk

(x0) < b, i ∈ N.

Consequently, (f i(x0) : i ∈ N), being an increasing sequence, has a limit in
(a, b), i.e. f has a fixed point contrary to our assumption. Thus, by (H1),
f = Id.

Given an additive subgroup H of R and a family {Ft : t ∈ H} 6= {F0} of
continuous functions mapping (a, b) onto itself we say that {Ft : t ∈ H} is
a disjoint H-flow if

Fs ◦ Ft = Fs+t, s, t ∈ H,
and the graphs of any two distinct Ft are disjoint.

Lemma 2. Assume (H1). Then the formula

F (n1ν(t1) + . . .+ nkν(tk), ·) = fn1
t1 ◦ . . . ◦ f

nk
tk
,

k ∈ N, t1, . . . , tk ∈ T, n1, . . . , nk ∈ Z,

correctly defines a disjoint G-flow.

P r o o f. It is enough to observe that, by Lemma 1, if k∈N, t1, . . . , tk∈T ,
n1, . . . , nk,m1, . . . ,mk ∈ Z and n1ν(t1) + . . . + nkν(tk) = m1ν(t1) + . . . +
mkν(tk), then fn1

t1 ◦ . . . ◦ f
nk
tk

= fm1
t1 ◦ . . . ◦ f

mk
tk

.

P r o o f o f P r o p o s i t i o n 1. Define a G-flow {Ft : t ∈ G} as in
Lemma 2. Then LF (x), x ∈ (a, b), is just the set of all cluster points of
the orbit {Ft(x) : t ∈ G}. Thus, by [6, Theorem 1], the sets LF (x) have
all the required properties except possibly a, b ∈ LF (x). But observe that if
f ∈ F and, for instance, f < Id, then

lim
n→∞

fn(x) = a and lim
n→−∞

fn(x) = b.

Lemma 3. Let ft, t ∈ T , be pairwise commuting increasing homeomor-
phisms of (a, b) onto itself and let n ∈ Z and r : T → Z be such that

fnt = f
r(t)
t0 , t ∈ T.

Then there exists a homeomorphism h of (a, b) onto itself and m : T → Z
for which

ft = hm(t), t ∈ T.
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P r o o f. For each t ∈ T put k(t) = gcd(n, r(t)). Setting p(t) = n/k(t)
and q(t) = r(t)/k(t) for each t ∈ T we have

(fp(t)t )k(t) = (fq(t)t0 )k(t),

that is, by Lemma 1 of [4],

(4) f
p(t)
t = f

q(t)
t0 , t ∈ T.

Since gcd(p(t), q(t)) = 1 for t ∈ T , there are u, v : T → Z such that

(5) u(t)p(t) + v(t)q(t) = 1, t ∈ T.

Putting

ht = f
u(t)
t0 ◦ fv(t)t , t ∈ T,

we obtain pairwise commuting increasing homeomorphisms of (a, b) onto
itself. For each t ∈ T we have, by (4) and (5),

(6) h
p(t)
t = (fu(t)

t0 ◦ fv(t)t )p(t) = f
u(t)p(t)+v(t)q(t)
t0 = ft0

and

(7) h
q(t)
t = (fu(t)

t0 ◦ fv(t)t )q(t) = f
u(t)p(t)+v(t)q(t)
t = ft.

It follows from the definition of p that the set p(T ) is finite. Let p(T ) =
p({t1, . . . , tl}) with t1, . . . , tl ∈ T such that p(ti) 6= p(tj), i, j = 1, . . . , l,
i 6= j. Then, by (6) and [4, Lemma 1],

(8) if p(t) = p(ti), then ht = hti , t ∈ T, i = 1, . . . , l.

Moreover, by (6), hp(ti)ti = h
p(tj)
tj , i, j = 1, . . . , l, and 0 6∈ p(T ). Thus, on

account of [2, Lemma 4.9], there exists a homeomorphism h of (a, b) onto
itself and integers w1, . . . , wl such that

(9) hti = hwi , i = 1, . . . , l.

For each t ∈ T put m(t) = wiq(t), where i ∈ {1, . . . , l} is a unique number
satisfying p(t) = p(ti). Then, by (7)–(9),

ft = h
q(t)
t = h

q(t)
ti = (hwi)q(t) = hm(t),

for every t ∈ T , which was to be proved.

Lemma 4. Assume (H2). Then the following statements are equivalent :

(i) G is discrete;
(ii) there exists a homeomorphism h ∈ A and m : T → Z satisfying (3).

P r o o f. (i)⇒(ii). If G is discrete then ν(t) = cr(t), t ∈ T , with some
c ∈ R and r : T → Z. Since ν(t0) = 1, we have c 6= 0 and, consequently,

r(t0)ν(t) = r(t)ν(t0), t ∈ T.
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Thus, by Lemma 4.15 of [2] applied to ft0 , ft,

f
r(t0)
t = f

r(t)
t0 , t ∈ T.

Therefore, Lemma 3 yields the assertion.
(ii)⇒(i). Let h ∈ A and let m : T → Z satisfy (3). It follows from (3)

that m(t) 6= 0, t ∈ T , and

f
m(t)
t0 = hm(t0)m(t) = f

m(t0)
t , t ∈ T.

Thus, in view of Remark 2(ii), ν(t) = ν(ft0 , ft) = m(t)/m(t0), for each
t ∈ T , whence G = (1/m(t0))Z.

Now we can compare hypotheses (H1)–(H3).

R e m a r k 5. (i) (H1) implies either (H2) or (H3).
(ii) (H2) implies (H1).
(iii) If ft, t ∈ T , satisfy (H3) (2), then any aperiodic pair (ft0 , ft)

satisfies (H1).

P r o o f. Statements (i) and (iii) are obvious. To prove (ii) fix k ∈ N
and t1, . . . , tk ∈ T . It follows from (H2) that the additive group generated
by ν({t0, t1, . . . , tk}) is discrete. Thus it is enough to apply Lemma 4 to
ft0 , ft1 , . . . , ftk .

P r o o f o f P r o p o s i t i o n 2. Each of statements (i) and (iii) implies
that actually hypothesis (H2) is satisfied. Thus they are equivalent on ac-
count of Lemma 4.

(ii)⇒(iii). Assume that LF = {a, b}. Then Lemma 2 and [6, Theorem 2]
yield a homeomorphism h of (a, b) onto itself and a homomorphism n : G→
Z such that

ft = hn(ν(t)), t ∈ T.
Clearly h has no fixed points, so it is enough to put m = n ◦ ν.

(iii)⇒(ii). Assume (iii). Then LF is simply the set of all cluster points
of {hn(x0) : n ∈ Z}, where x0 is an arbitrary point of (a, b). Thus, since h
has no fixed points, LF = {a, b}.

Lemma 5. Let f, g ∈ A commute and let α : (a, b)→ R be a monotonic
solution of the system

(10) α(f(x)) = α(x) + 1, α(g(x)) = α(x) + c

for some c ∈ R. Then c = ν(f, g).

P r o o f. Without loss of generality we may assume that f < Id and
α(x) = 0 for an x ∈ (a, b). Then it follows from (10) that α is decreasing

(2) In fact it is enough to assume here that ft, t ∈ T , are elements of A.
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and

(11) α(fn(x)) = α(x) + n and α(gn(x)) = α(x) + nc, n ∈ Z.

Let (sk(x) : k ∈ N) be a sequence of integers satisfying (2). Then

α(fsk(x)(x)) ≤ α(gk(x)) ≤ α(fsk(x)+1(x)), k ∈ N,

whence, by (11), sk(x) ≤ kc ≤ sk(x) + 1, k ∈ N, and, consequently,
ν(f, g) = c.

P r o o f o f T h e o r e m 1. (i) By Proposition 2 there exist a homeomor-
phism h ∈ A and a function m : T → Z satisfying (3). According to (3) we
have m(t) 6= 0, t ∈ T , and (cf. Remarks 5(i) and 2(ii))

(12) ν(t) = m(t)/m(t0), t ∈ T.

Notice also that h, being an element of A, is a strictly increasing function.
It follows from [3, Theorem 2.1 and Lemma 5.1] that the equation

(13) α(h(x)) = α(x) + 1/m(t0)

has a homeomorphic solution depending on an arbitrary function. To com-
plete the proof in this case it is enough to observe that if α : (a, b)→ R is a
solution of (13), then, by (3) and (12),

α(ft(x)) = α(hm(t)(x)) = α(x) +m(t)/m(t0) = α(x) + ν(t)

for every x ∈ (a, b) and t ∈ T , i.e. α satisfies (A).
(ii) Let γ be any homeomorphism of (a, b) onto R satisfying (cf. [3,

Theorem 2.1 and Lemma 5.1]) the equation

γ(ft0(x)) = γ(x) + 1.

Putting

(14) gt = γ ◦ ft ◦ γ−1, t ∈ T,

we obtain pairwise commuting homeomorphisms of R onto itself having no
fixed points. Moreover,

gt0(u) = u+ 1, u ∈ R,

the functions gt, t ∈ T , satisfy hypothesis (H1) with a = −∞ and b = ∞,
and

ν(gt0 , gt) = ν(ft0 , ft) = ν(t), t ∈ T.
In particular, since gt ◦ gt0 = gt0 ◦ gt, we have

(15) gt(u+ 1) = gt(u) + 1, u ∈ R, t ∈ T.

Denote by S1 the unit circle {z ∈ C : |z| = 1} with positive orientation.
If z1, z2 ∈ S1, then there are (unique) reals u1, u2 such that 0 ≤ u1 ≤ u2 <
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u1 + 1 < 2 and z1 = e2πiu1 , z2 = e2πiu2 , so we can correctly define the arc−−−−→
[z1, z2) putting

−−−−→
[z1, z2) = {e2πiu : u ∈ [u1, u2)}.

Set

(16) ht = gt − [gt(0)], t ∈ T,
where [x] stands for the greatest integer not exceeding x. It follows from
(15) that

(17) ht(u+ 1) = ht(u) + 1, u ∈ R, t ∈ T.
Thus the formula

Ht(e2πiu) = e2πiht(u)

correctly defines homeomorphisms Ht, t ∈ T , of S1 onto itself. Since,
by (15),

(18) gt(u+ p) = gt(u) + p, u ∈ R, t ∈ T, p ∈ Z,

it follows from (16) that ht, t ∈ T , are pairwise commuting. Consequently,
so are Ht, t ∈ T .

Fix a z0 ∈ S1. We shall prove that the orbit

(19) {Hn1
t1 ◦ . . . ◦H

nk
tk

(z0) : k ∈ N, t1, . . . , tk ∈ T, n1, . . . , nk ∈ Z}
is infinite. Let z0 = e2πiu0 for a u0 ∈ R. Fix a p ∈ N. By the density of G
we can find k ∈ N, t1, . . . , tk ∈ T and n1, . . . , nk ∈ Z such that

(20) 0 < n1ν(t1) + . . .+ nkν(tk) < 1/p.

Suppose that

Hjn1
t1 ◦ . . . ◦H

jnk
tk

(z0) = H ln1
t1 ◦ . . . ◦H

lnk
tk

(z0)

for some j, l ∈ {0, . . . , p}. Then

gjn1
t1 ◦ . . . ◦ g

jnk
tk

(u0) = gln1
t1 ◦ . . . ◦ g

lnk
tk

(u0) +m

for an m ∈ Z, i.e.

gjn1
t1 ◦ . . . ◦ g

jnk
tk

(u0) = gmt0 ◦ g
ln1
t1 ◦ . . . ◦ g

lnk
tk

(u0),

whence, according to [2, Lemma 4.14],

(j − l)(n1ν(t1) + . . .+ nkν(tk)) = mν(t0) = m.

Thus by (20) we obtain j = l. In this way we have proved that for each
p ∈ N the orbit (19) has at least p different points, which means that it is
infinite.

Theorem 2 yields a Borel probability measure µ on S1 such that

(21) µ(Ht(A)) = µ(A), t ∈ T,
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for every Borel subset A of S1. Define β0 : [0, 1)→ R and β : R→ R by

β0(u) = µ(
−−−−−→
[1, e2πiu)) and β(u) = β0(u− [u]) + [u].

Since β is the distribution of a measure, it is increasing and left continuous.
Fix a u0 ∈ R and put z0 = e2πiu0 and c = β(u0+)−β(u0). Then µ({z0}) = c
and (21) implies that

µ({Hn1
t1 ◦ . . . ◦H

nk
tk

(z0)}) = µ({z0}) = c

for any k ∈ N, t1, . . . , tk ∈ T and n1, . . . , nk ∈ Z. Thus, since the orbit (19)
is infinite, we have c = 0. This means that β is continuous.

We shall show that

(22) β(gt(u)) = β(u) + ν(t), t ∈ T.

By the definition of β we have

(23) β(u+ 1) = β(u) + 1, u ∈ R.

Fix a t ∈ T . It follows from (H1) that either there is a p ∈ Z for which

gt(u) = gpt0(u), u ∈ R,

or for each p ∈ Z,

gt(u) 6= gpt0(u), u ∈ R.
In the first case we have gt(u) = u + p, u ∈ R, so, using (23), we see that
for any u ∈ R,

β(gt(u)) = β(u+ p) = β(u) + p = β(u) + ν(t).

Thus we can assume that gt(u) 6= u+ p, u ∈ R, p ∈ Z. Then (cf. (16))

(24) u < ht(u) < u+ 1, u ∈ R.

Put u0 = h−1
t (1) and observe that u0 ∈ (0, 1) by (24). We now verify that

Ht(e2πiu) ∈ −−−−−−→[Ht(1), 1), u ∈ [0, u0),(25)

and
Ht(e2πiu) ∈ −−−−−−→[1, Ht(1)), u ∈ [u0, 1).(26)

Indeed, if u ∈ [0, u0), then, by (24), ht(0) ≤ ht(u) < ht(u0) = 1 < ht(0) + 1,
whence

Ht(e2πiu) = e2πiht(u) ∈
−−−−−−−−−−→
[e2πiht(0), e2πi) =

−−−−−−→
[Ht(1), 1).

Similarly, if u ∈ [u0, 1), then, by (24) and (17), 0 ≤ ht(u)− 1 < ht(1)− 1 =
ht(0), whence

Ht(e2πiu) = e2πi(ht(u)−1) ∈
−−−−−−−−−→
[e0, e2πiht(0)) =

−−−−−−→
[1, Ht(1)).
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Let ct = µ(
−−−−−−→
[1, Ht(1)) ). Fix a u ∈ [0, u0) and put z = e2πiu. Then

0 < ht(u) < 1 and, by (25), Ht(z) ∈
−−−−−−→
[Ht(1), 1). Thus (21) implies that

β(ht(u)) = β0(ht(u)) = µ(
−−−−−−−−→
[1, e2πiht(u))) = µ(

−−−−−−→
[1, Ht(z)))

= µ(
−−−−−−→
[1, Ht(1))) + µ(

−−−−−−−−−−→
[Ht(1), Ht(z))) = ct + µ(Ht(

−−−→
[1, z)))

= ct + µ(
−−−→
[1, z)) = ct + β0(u) = ct + β(u).

Now fix a u ∈ [u0, 1) and let z = e2πiu. Then 1 ≤ ht(u) < 2 and it follows
from (26) that Ht(z) ∈

−−−−−−→
[1, Ht(1)). Therefore, in view of (21),

β(ht(u)) = β0(ht(u)− 1) + 1 = 1 + µ(
−−−−−−−−−−−→
[1, e2πi(ht(u)−1)))

= 1 + µ(
−−−−−−−−→
[1, e2πiht(u))) = 1 + µ(

−−−−−−→
[1, Ht(z)))

= 1 + µ(
−−−−−−→
[1, Ht(1)))− µ(

−−−−−−−−−−→
[Ht(z), Ht(1)))

= 1 + ct − µ(Ht(
−−−→
[z, 1))) = 1 + ct − µ(

−−−→
[z, 1))

= ct + µ(
−−−→
[1, z)) = ct + β0(u) = ct + β(u).

Therefore, if u ∈ [0, 1), then, by (16) and (23),

β(gt(u)) = β(ht(u) + [gt(0)]) = β(ht(u)) + [gt(0)] = β(u) + ct + [gt(0)].

Hence and from (18) and (23) it follows that for any u ∈ R,

β(gt(u)) = β(gt(u− [u])) + [u] = β(u− [u]) + ct + [gt(0)] + [u]
= β(u) + ct + [gt(0)].

Using Lemma 5 we infer that actually ct + [gt(0)] = ν(t). Consequently,

β(gt(u)) = β(u) + ν(t), u ∈ R.

Put α = β ◦ γ. Then α is continuous and monotonic. Moreover, by (14)
and (22), we have for any t ∈ T and x ∈ (a, b),

α(ft(x)) = β(γ(ft(x))) = β(gt(γ(x)))
= β(γ(x)) + ν(t) = α(x) + ν(t),

that is, α is a solution of (A).
It follows from Propositions 1 and 2 that LF ∩ (a, b) 6= ∅. Let α1, α2 :

(a, b) → R be solutions of (A) which are continuous at a common point
x0∈LF ∩ (a, b). Put α = α2−α1. If x ∈ (a, b), then α(ft(x)) = α(x), t ∈ T ,
which means that α|CF (x) is constant. Thus, by the continuity of α at x0,

α(x) = α(x0), x ∈ (a, b),

and, consequently, α2 = α1 + c for a c ∈ R.
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It is clear that LF ⊂ clCF (x), x ∈ (a, b). If x ∈ LF ∩ (a, b), then, by
Proposition 1(ii), CF (x) ⊂ LF . Consequently,

(27) clCF (x) = LF , x ∈ LF ∩ (a, b).

Let α : (a, b)→ R be a continuous solution of (A). Then α is monotonic and

(28) α(CF (x)) = α(x) +G, x ∈ (a, b).

Fix an x ∈ LF ∩ (a, b). Since α is continuous and monotonic and G is dense
in R, from (28) we have

α(clCF (x) ∩ (a, b)) = clα(CF (x)) = cl(α(x) +G)
= α(x) + clG = R,

which means (cf. (27)) that

(29) α(LF ∩ (a, b)) = R.

Now assume that α is invertible. Then it is a homeomorphism and,
by (29), LF is an interval. Consequently, Proposition 1(iii) shows that
LF = [a, b].

Conversely, assume that LF = [a, b] and suppose that α is not invertible.
Let I be a proper interval of constancy of α and let x0∈(a, b). Since I ⊂ LF ,
we can find u, v ∈ I ∩CF (x0) such that u 6= v. Choose k ∈ N, t1, . . . , tk ∈ T
and n1, . . . , nk,m1, . . . ,mk ∈ Z for which

u = fn1
t1 ◦ . . . ◦ f

nk
tk

(x0) and v = fm1
t1 ◦ . . . ◦ f

mk
tk

(x0).

Then, by (A),

α(x0) + n1ν(t1) + . . .+ nkν(tk)
= α(fn1

t1 ◦ . . . ◦ f
nk
tk

(x0)) = α(u) = α(v)

= α(fm1
t1 ◦ . . . ◦ f

mk
tk

(x0)) = α(x0) +m1ν(t1) + . . .+mkν(tk),

whence n1ν(t1) + . . .+ nkν(tk) = m1ν(t1) + . . .+mkν(tk). Now Lemma 1
yields

u = fn1
t1 ◦ . . . ◦ f

nk
tk

(x0) = fm1
t1 ◦ . . . ◦ f

mk
tk

(x0) = v,

a contradiction. Thus α is invertible, which completes the proof.

3. Some consequences. Notice that proving the “uniqueness” part
of Theorem 1 for G dense in R, we have actually proved the uniqueness of
solutions in the class of functions continuous at a point of LF ∩ (a, b). Thus
we also have the following fact.

Corollary 1. Let F = {ft : t ∈ T} satisfy hypothesis (H1) and assume
that G is dense in R. If α : (a, b)→ R is a solution of system (A) which is
continuous at a point of LF ∩ (a, b), then α is continuous.
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By Remark 5(ii) the following result can be immediately deduced from
Theorem 1.

Theorem 3. Let F = {ft : t ∈ T} satisfy hypothesis (H2).

(i) Assume that the group G is discrete. Then system (A) has a homeo-
morphic solution depending on an arbitrary function.

(ii) Assume that G is dense in R. Then (A) has a unique (up to an addi-
tive constant) continuous solution α : (a, b)→R. This solution is monotonic
and α(LF ∩ (a, b)) = R. Moreover , α is invertible if and only if LF = [a, b].

Corollary 2. Let F = {ft : t ∈ Q} ⊆ A satisfy (3)

(30) fs ◦ ft = fs+t, s, t ∈ Q.
Then the system

α(ft(x)) = α(x) + t, t ∈ Q,
has a unique (up to an additive constant) continuous solution α : (a, b)→ R.
This solution is monotonic and α(LF∩(a, b)) = R. Moreover , α is invertible
if and only if LF = [a, b].

P r o o f. It follows from (30) that fnm/n = fm = fm1 , m ∈ Z, n ∈ N.
Thus, putting T = Q and t0 = 1, we see that F satisfies (H2) and
(cf. Remark 2(ii)) ν(f1, fm/n) = m/n, m ∈ Z, n ∈ N, i.e. ν(t) = t, t ∈ T .
Hence G = Q and to get the assertion it is enough to apply Theorem 3(ii).

Before stating another consequence of Theorem 1 we need two more
facts.

Lemma 6. Let f, g, h be pairwise commuting elements of A and assume
that the pair (f, g) is aperiodic. Then any continuous solution α : (a, b)→ R
of the system

(31) α(f(x)) = α(x) + 1, α(g(x)) = α(x) + ν(f, g)

satisfies also the equation

α(h(x)) = α(x) + ν(f, h).

P r o o f. Let α : (a, b) → R be a continuous solution of (31) and put
β = α ◦ h. Then for any x ∈ (a, b),

β(f(x)) = α(h(f(x))) = α(f(h(x))) = α(h(x)) + 1 = β(x) + 1

and
β(g(x)) = α(h(g(x))) = α(g(h(x))) = α(h(x)) + ν(f, g)

= β(x) + ν(f, g).
Notice that {f, g} satisfies (H1). Moreover, by Remark 2(i), ν(f, g) is

irrational, so the additive group generated by {1, ν(f, g)} is dense in R.

(3) Such a family is said to be a rational flow or rational iteration group.
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Thus, by Theorem 1(ii), α is monotonic and β = α + c for a c ∈ R, which
means that α(h(x)) = α(x) + c, x ∈ (a, b). Now the conclusion follows from
Lemma 5.

R e m a r k 6. Let f, g, h be pairwise commuting elements of A and as-
sume that (f, g) and (f, h) are aperiodic. Then L{f,g} = L{f,h}.

P r o o f. It is enough to prove that L{f,h} ⊂ L{f,g}. By Theorem 1(ii)
applied to {f, g} there exists a continuous monotonic solution α : (a, b)→ R
of (31) satisfying

(32) α(L{f,g} ∩ (a, b)) = R.
In view of Proposition 1(iii), L{f,g} is closed and {a, b} ⊂ L{f,g}. Thus there
are pairwise disjoint open intervals In, n ∈ N, such that

[a, b] \ L{f,g} =
∞⋃
n=1

In.

Suppose that L{f,h} 6⊂ L{f,g} and let x ∈ L{f,h} \ L{f,g}. Choose a
k ∈ N with x ∈ L{f,h} ∩ Ik. Then (cf. Proposition 1(i)) there exist u, v ∈
C{f,h}(x) ∩ Ik, u 6= v. Let n,m, p, q ∈ Z be such that u = fn ◦ hm(x) and
v = fp ◦ hq(x). It follows from (32) and the monotonicity of α that α|Ik

is
constant. Therefore, by Lemma 6,

α(x) + n+mν(f, h) = α(fn ◦ hm(x)) = α(u) = α(v)
= α(fp ◦ hq(x)) = α(x) + p+ qν(f, h),

whence, by irrationality of ν(f, h) (cf. Remark 2(i)), n = p and m = q.
Consequently, u = v, a contradiction.

In Theorem 4 below L denotes the set L{ft0 ,ft}, where (ft0 , ft) is an
arbitrary aperiodic pair. Hypothesis (H3) ensures the existence of such a
pair and Remark 6 shows that L does not depend on the choice of it.

Theorem 4. Assume (H3). Then system (A) has a unique (up to an addi-
tive constant) continuous solution α : (a, b)→R. This solution is monotonic
and α(L ∩ (a, b)) = R. Moreover , α is invertible if and only if L = [a, b].

P r o o f. Let t1 ∈ T be such that (ft0 , ft1) is aperiodic and

(33) ft0 ◦ ft = ft ◦ ft0 and ft1 ◦ ft = ft ◦ ft1 , t ∈ T.
By Remark 5(iii), {ft0 , ft1} satisfies (H1). Moreover, it follows from Re-
mark 2(i) that ν(t1) is irrational. Since ν(t0) = 1, this means that the addi-
tive group generated by {ν(t0), ν(t1)} is dense in R. Therefore, according to
Theorem 1(ii), there exists a unique (up to an additive constant) continuous
solution α : (a, b)→ R of the system

(At1) α(ft0(x)) = α(x) + 1, α(ft1(x)) = α(x) + ν(t1).
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Lemma 6 shows that α satisfies (A). By Theorem 1(ii), α has all the remain-
ing desired properties.

Notice that we have just proved also the following fact.

R e m a r k 7. Assume (H3). If t1 ∈ T is such that (ft0 , ft1) is aperiodic
and (33) is satisfied, then systems (A) and (At1) have the same sets of
continuous solutions.

Finally, we return to system (1). It turns out that in some cases, (1) can
be reduced to (A). First notice that the following fact follows immediately
from Lemma 5.

Corollary 3. Let ft, t ∈ T , be pairwise commuting elements of A and
suppose λ : T → R does not vanish at t0. If system (1) has a monotonic
solution defined on (a, b), then λ = cν for a non-zero c ∈ R.

Regarding continuous solutions of (1) we can prove the following.

Corollary 4. Let (H2) or (H3) be satisfied and suppose λ : T → R does
not vanish at t0. Then (1) has a continuous solution defined on (a, b) if and
only if λ = cν for a non-zero c ∈ R.

P r o o f. Assume, for instance, that ft0 > Id and let α : (a, b) → R be a
continuous solution of (1). Then α1 = α/λ(t0) satisfies

(34) α1(ft(x)) = α1(x) + λ(t)/λ(t0), x ∈ (a, b), t ∈ T.
Fix a continuous solution α2 : (a, b)→ R of (A) (cf. Theorems 3 and 4) and
put α0 = α1 − α2. By (34) and (A) we have for any t ∈ T and x ∈ (a, b),

α0(ft(x)) = α1(ft(x))− α2(ft(x))
= (α1(x) + λ(t)/λ(t0))− (α2(x) + ν(t))
= α0(x) + λ(t)/λ(t0)− ν(t).

In particular,

α0(ft0(x)) = α0(x), x ∈ (a, b).

Therefore α0((a, b)) = α0([x0, ft0(x0)]), where x0 is an arbitrary point of
(a, b). Hence, α0 is bounded. Moreover,

α2(fnt (x)) = α0(x) + n(λ(t)/λ(t0)− ν(t)), x ∈ (a, b), t ∈ T,
for every n ∈ N. Therefore the boundedness of α0 implies that λ(t)/λ(t0)−
ν(t) = 0, t ∈ T , i.e. λ = λ(t0)ν. The converse statement follows from
Theorems 3 and 4.
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