ArticleOriginal scientific text

Title

Generic properties of generalized hyperbolic partial differential equations

Authors 1

Affiliations

  1. Institute of Mathematics, University of Gdańsk, Wita Stwosza 57, 80-952 Gdańsk, Poland

Abstract

The existence and uniqueness of solutions and convergence of successive approximations are considered as generic properties for generalized hyperbolic partial differential equations with unbounded right-hand sides.

Keywords

Darboux problem, generic property, existence and uniqueness of solutions, Bielecki's norms

Bibliography

  1. A. Alexiewicz and W. Orlicz, Some remarks on the existence and uniqueness of solutions of hyperbolic equations zxy=f(x,y,z,zx,zy), Studia Math. 15 (1956), 201-215.
  2. A. Bielecki, Une remarque sur l'application de la méthode de Banach-Caccioppoli-Tikhonov dans la théorie de l'équation s = f(x,y,z,p,q), Bull. Acad. Polon. Sci. Cl. III 4 (1956), 265-268.
  3. T. Costello, Generic properties of differential equations, SIAM J. Math. Anal. 4 (1973), 245-249.
  4. G. Darbo, Punti uniti in transformazioni a codominio non compatto, Rend. Sem. Mat. Univ. Padova 24 (1955), 84-92.
  5. F. S. De Blasi and J. Myjak, Generic properties of hyperbolic partial differential equations, J. London Math. Soc. (2) 15 (1977), 113-118.
  6. K. Goebel, Thickness of sets in metric spaces and its application in fixed point theory, habilitation thesis, Lublin, 1970 (in Polish).
  7. P. Hartman and A. Wintner, On hyperbolic partial differential equations, Amer. J. Math., 74 (1952), 834-864.
  8. A. Lasota and J. Yorke, The generic property of existence of solutions of differential equations in Banach space, J. Differential Equations 13 (1973), 1-12.
Pages:
107-115
Main language of publication
English
Received
1993-03-03
Accepted
1993-12-27
Published
1994
Exact and natural sciences