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Diagonal series of rational functions
(several variables)

by S lawomir Cynk and Piotr Tworzewski (Kraków)

Abstract. We give representations of Nash functions in a neighbourhood of a polydisc
(torus) in Cm as diagonal series of rational functions in a neighbourhood of a polydisc
(torus) in Cm+1.

1. Introduction. Let Ω be an open subset of Cm. We shall use the
following notation:

O(Ω) — the space of all holomorphic functions on Ω,
N (Ω) — the space of all Nash functions on Ω,
R(Ω) — the space of all rational holomorphic functions on Ω.

For any compact subset K of Cm we denote by O(K) the space of all
functions defined on K which have a holomorphic extension to an open
neighbourhood of K. In the same way we define N (K) and R(K). We
denote by U and T the unit disc and unit circle in C respectively.

We consider the diagonal operator

D : O(Tm × T ) 3 f → D(f) ∈ O(Tm) ,

defined by

(1.1) D(f)(z) =
∑
α∈Zm

aα,|α|z
α ,

where
f(z, w) =

∑
α∈Zm,n∈Z

aα,nz
αwn

is the Laurent expansion of f (see [2]–[5], [7], [9]).
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In Section 3 we shall prove our main results (Theorems (3.1) and (3.2)):

D(R(Tm × T )) = N (Tm) , D(R(Um × U)) = N (Um) .

The case m = 1 of these theorems can be found in [3]. A local version of
Theorem (3.2) was proved in [5] by completely algebraic methods.

Section 2 is of preparatory nature. The most important in this section is
Lemma (2.5) which plays a crucial role in the proofs of our main results.

In Section 4 we study relations between diagonals and Hadamard con-
volution of power series of one variable. In particular, in Example (4.3), we
construct an algebraic Laurent series with transcendental regular part.

2. Preliminary results. Let Ω be an open subset of Cm and let g ∈
O(Ω).

(2.1) Definition. We say that g is a Nash function at x0 ∈ Ω if there
exist an open neighbourhood V of x0 inΩ and a polynomial P : Cm×C→ C,
P 6= 0, such that P (x, g(x)) = 0 for x ∈ V . The function g is said to be a
Nash function on Ω if it is a Nash function at each point of Ω. We denote
by N (Ω) the space of all Nash functions on Ω.

The basic information about Nash functions may be found in [3], [10].
Let us only state the following

(2.2) R e m a r k. Let Ω be an open connected subset of Cm and let
f ∈ N (Ω). Then the closure f

Z
of f in the Zariski topology of Cm × C is

an irreducible algebraic hypersurface in Cm × C.

Let K be a compact subset of Cm.

(2.3) Definition. We say that K is rationally convex if for each z0 6∈ K
the following two equivalent conditions hold:

(1) There exists a rational function R ∈ R(K∪{z0}) such that |R(z0)| >
‖R‖K .

(2) There exists a polynomial P : Cm → C such that P (z0) = 0 and
P (z) 6= 0 for every z ∈ K.

(2.4) R e m a r k. From [2, Remark 1.1] it follows that for any compact
sets A1, . . . , An in C the product A1 × . . . × An is rationally convex. For
more information about rationally convex sets we refer the readers to [2],
[6].

We end this section with the main lemma of [3], which gives a special
representation of Nash functions.

(2.5) Lemma (S. Cynk, cf. [3]). Let E be a compact , rationally convex set
and let D and G be connected open subsets of Cm such that ∅ 6= G ⊂ E ⊂ D.
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Let a be a fixed point of G. If g ∈ N (D) then there exists a function
h ∈ N (G) and polynomials P,Q : Cm × C→ C such that

(1) h(a) = 0,
(2) h(G) ⊂ U ,

(3) h
Z ∩ (G× U) = h,

(4) Q−1(0) ∩ (G× U) = ∅,
(5) g(z) = P (z, h(z))/Q(z, h(z)) for z ∈ G.

3.Diagonal operator. In this section we consider the diagonal operator

D : O(Tm × T )→ O(Tm)

defined by (1.1). The operator D admits the integral representation

D(f)(z) =
1

2πi

∫
T

f

(
z

w
,w

)
dw

w
, z ∈ Tm .

(3.1) Theorem. D(R(Tm × T )) = N (Tm).

P r o o f. Take f ∈ R(Tm × T ) and define f1(z, w) := f(z/w,w) for
(z, w) ∈ Tm × T . Then f1 ∈ R(Tm × T ). Therefore there exist polyno-
mials P,Q : Cm × C → C such that for each (z, w) ∈ Tm × T we have
Q(z, w) 6= 0 and f1(z, w) = P (z, w)/Q(z, w). There exists an open con-
nected neighbourhood D of the set Tm such that Q−1(0) ∩ (D × T ) = ∅.
Put f̃1(z, w) = P (z, w)/Q(z, w) for (z, w) ∈ D × T .

There exist a non-empty open subset D1 of D and a system of Nash func-
tions Φ1, . . . , Φk ∈ N (D1) with pairwise disjoint graphs such that {(z, w) ∈
D1 × U : Q(z, w)w = 0} = Φ1 ∪ . . . ∪ Φk (where U is the unit disc in C).

Using the above equation and the residue formula we get

1
2πi

∫
T

f̃1(z, w)
dw

w
=

k∑
j=1

1
N !

∂N

∂wN

(
(w − Φj(z))N+1 P (z, w)

Q(z, w)w

)
(z, Φj(z)),

z ∈ D1 ,

where N is a sufficiently large integer. Consequently, the basic properties
of Nash functions imply that

D1 3 z 7→
1

2πi

∫
T

f

(
z

w
,w

)
dw

w
∈ C

is a Nash function. Hence D(f) ∈ N (Tm).
In order to prove the opposite inclusion fix g ∈ N (Tm). There exist

δ ∈ (0, 1
3 ) and g̃ ∈ N (Am(1 − 3δ, 1 + 3δ)) such that g̃|Tm = g (where

Am(r,R) := {z ∈ Cm : r < |zi| < R, i = 1, . . . ,m}, for 0 ≤ r ≤ R).
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By Lemma (2.5) and Remark (2.4) there exist a Nash function h ∈
N (Am(1− 2δ, 1 + 2δ)) and polynomials P,Q : Cm × C→ C such that

(1) h(Am(1− 2δ, 1 + 2δ)) ⊂ U ,

(2) h
Z ∩ (Am(1− 2δ, 1 + 2δ)× U) = h,

(3) Q−1(0) ∩ (Am(1− 2δ, 1 + 2δ)× U) = ∅,
(4) g̃(z) = P (z, h(z))/Q(z, h(z)) for z ∈ Am(1− 2δ, 1 + 2δ).

Let R be an irreducible polynomial describing the graph of h. There
exists ε > 0 such that R−1(0)∩(Am(1−δ, 1+δ)×∆(1+ε)) = h|Am(1−δ, 1+δ)
and Q−1(0) ∩ (Am(1 − δ, 1 + δ) × ∆(1 + ε)) = ∅ (where ∆(r) := {z ∈ C :
|z| < r}, for r > 0).

Defining

f(z, w) := w · P (wz,w)
Q(wz,w)

· Rw(wz,w)
R(wz,w)

we get f ∈ R(Tm × T ) and

D(f)(z) =
1

2πi

∫
T

P (z, w)
Q(z, w)

· Rw(z, w)
R(z, w)

dw =
P (z, h(z))
Q(z, h(z))

= g(z) , z ∈ Tm .

Thus D(f) = g and the proof is complete.

In view of the inclusions O(Um×U) ⊂ O(Tm×T ) and O(Um) ⊂ O(Tm)
we can consider the operator

D : O(Um × U)→ O(Um) .

We end this section with

(3.2) Theorem. D(R(Um × U)) = N (Um).

P r o o f. Since D(R(Um×U)) ⊂ N (Um) is a direct consequence of The-
orem (3.1) it is sufficient to prove the reverse inclusion.

Fix g ∈ N (Um). There exist δ ∈ (0, 1) and g̃∈N (∆m(1 + 4δ)) such that
g̃|Um = g.

By Lemma (2.5) there exist h ∈ N (∆m(1 + 3δ)) and polynomials P,Q :
Cm × C→ C such that

(1) h(0) = 0,
(2) h(∆m(1 + 3δ)) ⊂ U ,

(3) h
Z ∩ (∆m(1 + 3δ)× U) = h,

(4) Q−1(0) ∩ (∆m(1 + 3δ)× U) = ∅,
(5) g̃(z) = P (z, h(z))/Q(z, h(z)) for z ∈ ∆m(1 + 3δ).

Let R be an irreducible polynomial describing the graph of h. There
exists ε > 0 such that R−1(0) ∩ (∆m(1 + 2δ) ×∆(1 + ε)) = h|∆m(1 + 2δ),
Q−1(0) ∩ (∆m(1 + 2δ)×∆(1 + ε)) = ∅, and (1 + ε)(1 + δ) < 1 + 2δ.
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Defining

f(z, w) := w · P (wz,w)
Q(wz,w)

· Rw(wz,w)
R(wz,w)

we get f |Um × T ∈ R(Um × T ) and D(f) = g.
From the above construction we see that R(z, w) = (w − h(z))A(z, w),

where A is a holomorphic function on ∆m(1 + 2δ) × ∆(1 + ε) which does
not vanish at any point. Hence

f(z, w) =
P (wz,w)
Q(wz,w)

· Rw(wz,w)
A(wz,w)

· 1
1− h(wz)/w

for (z, w) ∈ ∆m(1 + δ)×∆(1 + ε).
But h(0) = 0 so h(wz)/w ∈ ∆m(1 + δ) × ∆(1 + ε). Therefore, by the

Schwarz Lemma,∣∣∣∣h(wz)
w

∣∣∣∣ ≤ 1
1 + ε

for (z, w) ∈ ∆m(1 + δ)×∆(1 + ε)

and consequently f ∈ R(Um × U), and the proof is complete.

4. Hadamard convolution. Let us recall that the Hadamard convo-
lution of power series f(z) =

∑∞
n=0 anz

n and g(z) =
∑∞
n=0 bnz

n is defined
to be (f ∗ g)(z) =

∑∞
n=0 anbnz

n (cf. [1]). It is closely connected with our
diagonal operator in the case m = 1.

Since for f, g ∈ R(U) we have (f ∗ g)(z) = D(f(z)g(w)), it follows from
Theorem (3.2) that f ∗ g ∈ N (U). Applying the residue formula one can
prove the following stronger result ([1, Ths. 5.1.2 and 5.2.2]).

(4.1) Theorem. If f, g ∈ R(U) then f ∗ g ∈ R(U). If f ∈ R(U),
g ∈ N (U) then f ∗ g ∈ N (U).

Using the formula (f ∗g)(z) = D(f(z)g(w)) we can define the Hadamard
convolution of functions f, g ∈ O(T ). Then (f∗g)(z) =

∑
n∈Z anbnz

n, where
f(z) =

∑
n∈Z anz

n and g(z) =
∑
n∈Z bnz

n.

(4.2) R e m a r k. Under the above definition it is easy to check that the
first part of Theorem (4.1) remains true. The second statement is false in this
case. This will be shown by Example (4.3) and the following observation.

If f(z) =
∑
n∈Z anz

n and g(z) = (1 − z/2)−1 then (f ∗ g)(z) =∑
n∈N an(z/2)n = f1(z/2) where f1(z) =

∑
n∈N anz

n is the regular part
of the series

∑
n∈Z anz

n.

(4.3) Example. Let

f(z) :=
[(

1− z

2

)(
1− 1

2z

)]−1/2
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be the holomorphic branch of the square root of the function [(1 − z/2) ×
(1 − 1/(2z))]−1 in the annulus A(1/2, 2) such that f(1) = 2. Then f |T ∈
N (T ). We shall show that the regular part f1 of f is transcendental.

Observe that f satisfies the differential equation (2z3− 5z2 + 2z)f ′(z) =
(1−z2)f(z). Hence, comparing coefficients in Taylor expansions we see that
f1 satisfies

(4.4) (2z3 − 5z2 + 2z)f ′1(z) = (1− z2)f1(z) + az + b,

for some complex numbers a and b.
Consider the function C(z) := f1(z)/f(z). From (4.4) we get C ′(z) =

R(z)f(z) where R(z) = −(az + b)/(4z2) is a rational function.
Now, suppose, on the contrary, that f1 is a Nash function. Then also

C is a Nash function and therefore C is an algebraic element over the field
C(z) of rational functions. Let F := C(z)(f) be the field generated by f
over C(z). Since f is algebraic over C(z) of degree 2, the set {1, f} is a basis
of the field F over C(z). The derivative f ′ belongs to F so F is closed under
differentiation.

Since C is algebraic over C(z), it is also algebraic over F . Let P (C) =
Cn + a1(z)Cn−1 + . . .+ an(z) = 0 be the minimal polynomial of C over F .
Differentiating the above equation we get

(a′1 + nC ′)Cn−1 + . . .+ (an−1C
′ + a′n) = 0 .

Since C ′∈F it follows that nC ′+a′1 =0 and hence C∈F . Consequently,
f1 = fC ∈ F . So there exist rational functions R1, R2 ∈ C(z) such that
f1(z) = R1(z) +R2(z)f .

As f1 is holomorphic in ∆(2) and f is not meromorphic in this disc we
get R2 = 0. Thus f1(z) = R1(z) and consequently f(z) = f1(z) + f1(1/z)−
f1(0) = R1(z) +R1(1/z)− a0, so f is a rational function. This contradicts
the definition of F , and so f1 is transcendental.
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Reçu par la Rédaction le 28.4.1993


