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Even coefficient estimates for bounded
univalent functions

by D. V. Prokhorov (Saratov)

Abstract. Extremal coefficient properties of Pick functions are proved. Even coef-
ficients of analytic univalent functions f with |f(z)| < M , |z| < 1, are bounded by the
corresponding coefficients of the Pick functions for large M . This proves a conjecture of
Jakubowski. Moreover, it is shown that the Pick functions are not extremal for a similar
problem for odd coefficients.

Let S denote the class of functions f ,

(1) f(z) = z +
∞∑
n=2

anz
n ,

analytic and univalent in the unit disk E = {z : |z| < 1}. Let SM , M > 1,
denote the family of functions f ∈ S bounded by M : |f(z)| < M for |z| < 1.
Moreover, set S∞ = S.

L. de Branges [1] proved the Bieberbach conjecture: |an| ≤ n, n ≥ 2, in
the class S, with equalities only for the Koebe functions Kα,

Kα(z) =
z

(1− eiαz)2
, α ∈ R .

The functions PMα ∈ SM which satisfy the equation

M2PMα (z)
(M − PMα (z))2

= Kα(z) , |z| < 1 , M > 1 , P∞α = Kα ,

are called Pick functions. Let

PM0 (z) = z +
∞∑
n=2

pn,Mz
n , 1 < M ≤ ∞ , pn,∞ = n .
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Z. Jakubowski [4] conjectured that even coefficients of functions f ∈ SM
are bounded by pn,M for large M . Namely, for every even n ≥ 2 there exists
M+
n > 1 such that for all M ≥M+

n and all f ∈ SM ,

(2) |an| ≤ pn,M .

For references to earlier results due to Z. Jakubowski, A. Zielińska,
K. Zyskowska, L. Pietrasik, M. Schiffer, O. Tammi, O. Jokinen, see [4].
Recently the author’s student V. G. Gordenko [3] proved the Jakubowski
conjecture for n = 6. Moreover, he showed that Pick functions do not max-
imize |a5| in SM with finite M .

In this article we prove the Jakubowski conjecture for all even n ≥ 2.
Moreover, we show that odd coefficients of functions f ∈ SM do not neces-
sarily satisfy (2) for sufficiently large M .

1. According to [1] only Koebe functions are extremal for the estimate
of |an| in S. Since the classes SM are rotation invariant, it is sufficient to find
an upper estimate for Re an instead of one for |an|. Thus the Jakubowski
conjecture reduces to the fact that only Pick functions PM0 and their rota-
tions give a local maximum of Re an in the class SM for large M .

The author [6], [7] described a constructive algorithm determining the
value set VMn of the coefficient system {a2, . . . , an} in the class SM , 1 < M
≤ ∞. The set VMn is the set reachable at time t = logM for the dynamical
control system

(3)
da

dt
= −2

n−1∑
s=1

e−s(t+iu)A(t)sa(t) , a(0) = a0 ,

where a = a(t) ∈ Cn,

a(t) =

 a1(t)
...

an(t)

 , A(t) =


0 0 . . . 0 0

a1(t) 0 . . . 0 0
a2(t) a1(t) . . . 0 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
an−1(t) an−2(t) . . . a1(t) 0

 ,

a0 = (1, 0, . . . , 0)T , a1(t) ≡ 1, and u=u(t) is a real control. Optimal controls
satisfy the Pontryagin maximum principle. They maximize the Hamilton
function

H(t, a, ψ, u) = −2
n−1∑
s=1

Re[e−s(t+iu)(Asa)Tψ] ,

while the conjugate vector ψ = (ψ1, . . . , ψn)T of complex-valued Lagrange
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multipliers satisfies the conjugate Hamilton system

(4)
dψ

dt
= 2

n−1∑
s=1

e−s(t+iu)(s+ 1)(AT )sψ , ψ(0) = ξ .

The vector (ψ2(logM), . . . , ψn(logM)) is orthogonal to the boundary hy-
persurface ∂VMn of VMn . More precisely, it is orthogonal to a tangent plane or
to a certain support plane if they exist. If Re an attains its maximum at any
point x ∈ ∂VMn , then there exists ψ such that (ψ2(logM), . . . , ψn(logM)) =
(0, . . . , 0, 1) at this point.

Points of ∂VMn are obtained from boundary extremal functions f , f(z) =
Mw(z, logM), where w(z, t) are solutions of the Cauchy problem for Loew-
ner’s differential equation

(5)
dw

dt
= −we

iu + w

eiu − w
, w|t=0 = z ,

with optimal controls u = u(t). Differentiating (5) with respect to z, we
obtain a differential equation for w′(z, t), from which we deduce differen-
tial equations for the coefficient system b(t) = {b0(t), . . . , bn−1(t)} of the
function f ′(z)/(etw′(z, t)). The system for b(t) coincides with (4) with AT

replaced by A. Hence if (ψ2(logM), . . . , ψn(logM)) = (0, . . . , 0, 1), then

(6) (ψ2(t), . . . , ψn(t)) = (bn−2(t), . . . , b0(t)) .

The initial value at t = 0 yields that ξ = (ξ1, (n− 1)an−1, . . . , 2a2, 1)T .

2. Now we are able to prove the theorem for odd coefficients of f ∈ SM .

Theorem 1. The Pick functions PM0 are not extremal for the problem
of estimating Re a2m+1 in the class SM , for all sufficiently large finite M
and natural m.

P r o o f. PM0 and K0 correspond to the control u(t) ≡ π in (3)–(4). In
this case the condition (ψ2(logM), . . . , ψn(logM)) = (0, . . . , 0, 1) requires
the initial value (ξ2, . . . , ξn) = ((n − 1)pn−1,M , . . . , 2p2,M , 1), 1 < M ≤ ∞,
in (4).

Put n = 2m+ 1 and write the Hamilton function at t = 0,

H(0, a0, ξ, u) = −2
2m∑
s=1

ξs+1 cos(su) .

Hence

∂H(0, a0, ξ, u)
∂u

= 2
2m∑
s=1

sξs+1 sin(su) ,
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and this derivative vanishes at u = π. Moreover,

∂2H(0, a0, ξ, u)
∂u2

∣∣∣∣
u=π

= 2
2m∑
s=1

(−1)ss2ξs+1 .

Evidently this derivative vanishes if M = ∞. It must be non-positive for
finite M if u ≡ π satisfies Pontryagin’s maximum principle.

Let us examine how this derivative depends on M . Write

h(M) =
2m∑
s=1

(−1)ss2ξs+1 =
2m∑
s=1

(−1)ss2(2m+1−s)p2m+1−s,M , p1,M = 1 .

Every coefficient pj,M can be found from (3). It is the jth coordinate of the
vector a(logM) if u(t) ≡ π. Put T = 1−1/M , h(M) = h(1/(1−T )) = g(T ).
Then by elementary calculations we find from (3) that

dg

dT

∣∣∣∣
T=1

=
1
3

2m−1∑
s=1

(−1)ss2(2m− s)(2m+ 1− s)2(2m+ 2− s) .

One can verify that (1/12)(j + 1)(j + 2)2(j + 3) is the jth coefficient of
the function (1 − z)−4 + 2z(1 − z)−5 while (−1)ss2 is the (s − 1)th coeffi-
cient of (z − 1)(z + 1)−3. Thus (− 1

4 ) dgdT |T=1 is the (2m− 2)th coefficient of
(1 − z2)−2(1 − z)−2, and it is positive. Hence h(M) is decreasing for suffi-
ciently large M . Since h(∞) = 0, we conclude that h(M) > 0 for large M .

The last result contradicts the maximizing property of the control u = π.
This proves Theorem 1.

3. Now we are going to investigate the extremal properties of even
coefficients of Pick functions.

Theorem 2. For every natural m there exists M+
2m > 1 such that each

function f ∈ SM satisfies the inequalities (2) for n = 2m and all M ≥M+
2m.

P r o o f. Let X denote an arbitrary neighbourhood of the function K0 in
the class S, endowed with the topology of uniform convergence on compact
subsets of the unit disk. Set XM = X∩SM . The Pick function PM0 belongs
to XM for sufficiently large M . By Section 1, it is sufficient to show that
only PM0 gives a local maximum for Re an in XM .

Again we have (ψ2(logM), . . . , ψn(logM)) = (0, . . . , 0, 1) at a point
x ∈ ∂VMn where Re an attains its maximum. If x comes from a function
f ∈ SM with expansion (1), then we need the initial value (ξ2, . . . , ξn) =
((n− 1)an−1, . . . , 2a2, 1) in (4).

Put n = 2m, ξ0 = (ξ1, (2m− 1)2, . . . , 1)T . Then

H(0, a0, ξ0, u) = −2
2m−1∑
s=1

(2m− s)2 cos(su) .
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By elementary calculations we find that

H(0, a0, ξ0, u)−H(0, a0, ξ0, π) =
(− sinu)[2m sinu− sin(2mu)]

(1− cosu)2
.

It is easy to verify that the right-hand side of this equality is negative on
[0, 2π], except for u = π, where it vanishes. Thus

(7) H(0, a0, ξ0, u) ≤ H(0, a0, ξ0, π) ,

with equality only for u = π. Moreover,

∂H(0, a0, ξ0, u)
∂(cosu)

= 2
2m−1∑
s=1

(−1)ss2(2m− s)2 .

This is the (2m− 2)th coefficient of −2(1− z2)−2, and it is negative.
The sign of this derivative and the inequality (7) are preserved for close

points ξ. Let ξ = (ξ1, . . . , ξn)T be an arbitrary point in a neighbour-
hood of ξ0, with ξ2, . . . , ξn real. Then according to the continuity prin-
ciple H(0, a0, ξ, u) attains its maximum on [0, 2π] at the single point u = π.
We can choose (ξ2, . . . , ξn) = ((n − 1)pn−1,M , . . . , 2p2,M , 1) for sufficiently
large M . The control u = π satisfies Pontryagin’s maximum principle for
t > 0 in a certain neighbourhood of the initial value t = 0, and the cor-
responding solution w(z, t) of Loewner’s differential equation (5) has real
coefficients. Hence u = π is optimal on the whole half-axis [0,∞) (see e.g.
[6], [7]). This gives the Pick function PM0 . So PM0 satisfies the necessary
conditions for maximum of Re an.

It remains to show that the necessary conditions for an extremum hold
at a unique point in XM .

Let us consider the point a = (1, 2, . . . , n)T in ∂Vn = ∂V∞n and its
neighbourhood Qa, Qa ⊂ ∂Vn. Points of Qa appear as the phase space
projections of solutions of the Cauchy problem for the Hamilton system (3),
(4). The neighbourhood Qa corresponds to a neighbourhood Qξ of the initial
value Λ = (ξ2, . . . , ξn) = ((n− 1)2, . . . , 1) in (4). This correspondence is not
one-to-one. All points ξ∗ ∈ Qξ with real coordinates ξ∗2 , . . . , ξ

∗
n are mapped

to the point a. The correspondence between the conjugate vector and the
initial value is one-to-one in Qξ. This means that the hypersurface ∂Vn does
not have any tangent hyperplane at a. It has support hyperplanes there.
The initial value Λ selects the support hyperplane Π with normal vector
(0, . . . , 0, 1). But Π and ∂Vn may be tangent along some directions in the
imaginary parts of coordinates of the phase vector, i.e. along the directions
of the imaginary parts of ξ2, . . . , ξn. We will show that this is at most first
order tangency.
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Let (a(t), ψ(t)) solve the Cauchy problem (3)–(4) with u = π and with
initial value Λ, and let Λ∗ = (ξ∗2 , . . . , ξ

∗
n) = Λ + ε(δ2, . . . , δn), where ε > 0,

and δ2, . . . , δn are constant complex numbers. Suppose that Π and ∂Vn
have second order tangency along the direction determined by (δ2, . . . , δn).
The phase vector a∗(t) and the conjugate vector ψ∗(t) solve the Cauchy
problem (3)–(4) with ψ∗(0) = (ξ1, ξ∗2 , . . . , ξ

∗
n)T and with optimal control

u∗ = u∗(t, a∗, ψ∗).
Second order tangency implies that Re a∗n(∞) = n+O(ε3). Since |a∗n(∞)|

≤ n, we have Im a∗n(∞) = O(ε2), and so a∗n(∞) = n + O(ε2). By E. Bom-
bieri’s result stated in [5], there are constants αn and βn such that Re(2−a2)
< αn Re(n− an) for n even, and |2− a2| ≤ βn. It follows that Re a∗2(∞) =
2 +O(ε3), Im a∗2(∞) = O(ε2), and so a∗2(∞) = 2 +O(ε2). By D. Bshouty’s
result [2], there exist constants ck and dk such that for k ≥ 2, Re(k − ak)
≤ ck Re(2 − a2) and k − |ak| ≤ dk Re(2 − a2). It follows that for 2 ≤
k ≤ n, Re a∗k(∞) = k + O(ε3), Im a∗k(∞) = O(ε2), and so a∗k(∞) =
k + O(ε2). Hence (ψ∗2(∞), . . . , ψ∗n(∞)) = (0, . . . , 0, 1) + O(ε). The rela-
tion (6) at t = 0 implies that Λ∗ = Λ + O(ε2). This contradicts our as-
sumptions.

Thus the hyperplane Π may have at most first order tangency to
∂Vn along some directions. Π is the unique support hyperplane with nor-
mal vector (0, . . . , 0, 1) in the neighbourhood Qa. The hypersurfaces ∂VMn
depend analytically onM , except for manifolds of smaller dimension. Hence,
passing from ∂Vn to ∂VMn , we have the unique support hyperplane with
normal vector (0, . . . , 0, 1) in a neighbourhood QMa ⊂ ∂VMn of the
point aM = (1, p2,M , . . . , pn,M )T , for M sufficiently large. This ends the
proof.

Theorem 2 answers affirmatively the Jakubowski conjecture.
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