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Asymptotic behaviour of solutions of linear
differential equations with delay

by Josef Dibĺık (Brno)

Abstract. Inequalities for some positive solutions of the linear differential equation
with delay ẋ(t) = −c(t)x(t − τ) are obtained. A connection with an auxiliary functional
nondifferential equation is used.

1. Introduction. In this paper we will obtain inequalities for some
solutions of the linear differential equation with delay

(1) ẋ(t) = −c(t)x(t− τ)

where c : I → R, I = [t0,∞), t0 = const, c ∈ C(I) and 0 < τ = const.
Although the asymptotic properties of solutions of linear differential

equations with delay were widely investigated in connection with their nu-
merous applications (e.g. by Bellman and Cooke [1], Hale [3], Kolmanovskij
and Nosov [5] and Lakshmikantham and Leela [6]) the considered case is
not yet described.

We apply our results to some more common classes of differential equa-
tions, e.g. to the equation

(2) ẋ(t) = a(t)x(t)− b(t)x(t− τ)

where the functions a and b are continuous on I.

2.The auxiliary results. Now we investigate the asymptotic behaviour
at infinity of solutions of the auxiliary functional nondifferential equation of
the type

(3) λ(t)− λ(t− τ) = ω(t)

where ω ∈ C(I).
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If we suppose that on [t0 − τ, t0) the function λ is defined by means of
an initial function g ∈ C([t0 − τ, t0)), i.e.

(4) λ(t) = λg(t) ≡ g(t) , t ∈ [t0 − τ, t0)

then we may define λ(t) from (3) stepwise as

(5) λ(t) = λg(t) ≡ λk(t) for t ∈ [t0 + (k − 1)τ, t0 + kτ)

where λk(t) ≡ λk−1(t − τ) + ω(t). In that way we may construct a contin-
uous or continuously differentiable function λg on [t0 − τ,∞) which satis-
fies (3) on I under some additional assumptions. The following lemma may
be proved in an elementary way. Therefore its proof is omitted.

Lemma 1. Let g ∈ C([t0 − τ, t0)) and ω ∈ C(I). Then there is a unique
function λ = λg defined on [t0 − τ,∞) by formulas (4), (5) which satisfies
(3) on I. This function is continuous on [t0 − τ,∞) if

(6) g(r)(t0 − 0) = g(r)(t0 − τ) + ω(r)(t0)

for r = 0, and continuously differentiable on [t0 − τ,∞) if , moreover , g ∈
C1([t0 − τ, t0)), ω ∈ C1(I), and (6) holds for r = 1.

Lemma 2. Let g ∈ C1([t0 − τ, t0)), g′ be nondecreasing on [t0 − τ, t0),
ω ∈ C1(I) and ω′ be nondecreasing on I. Suppose, moreover , that (6) holds
for r = 0 and r = 1. Then, for t ∈ I,

(7)
[
g(t0 − 0) +

1
τ

t∫
t0

ω(s) ds
](s)

≤ λ(s)
g (t) ≤

[
g(t0 − τ) +

1
τ

t+τ∫
t0

ω(s) ds
](s)

, s = 0, 1 .

This follows from Lagrange’s mean-value theorem.

Lemma 3. Suppose all assumptions of Lemma 2 are valid , ω(t) ≥ q > 0,
q = const, on I and limt→∞ ω(t+ τ)/ω(t) = 1. Then

λg(t) ∼
1
τ

t∫
t0

ω(s) ds as t→∞ .

The proof which is omitted uses the l’Hospital rule and inequalities (7)
for s = 1.

3. The main results. We will suppose that a solution of equation (1)
has the form

(8) x(t) = exp(−Kλ(t))
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where λ is a new unknown function and 0 < K = const. The corresponding
equation for λ is

(9) λ̇(t) = c(t)K−1 exp{K[λ(t)− λ(t− τ)]} .

Equation (9) is in close connection with equation (3) for ω(t) ≡
−K−1 ln[c(t)K−1], that is, with the equation

(10) λ(t)− λ(t− τ) = −K−1 ln[c(t)K−1] .

Theorem 1. Suppose c ∈ C1(I) and g ∈ C1([t0 − τ, t0)) satisfy the
following assumptions:

(i) c is nonincreasing , 0 < c(t) < K on I where K is some positive
constant , and c′/c is nonincreasing on I;

(ii) g(t) > 0 and g′ is nondecreasing on [t0 − τ, t0);
(iii) for s ∈ {0, 1},

g(s)(t0 − 0) = g(s)(t0 − τ)−K−1[ln[c(t0)K−1]](s) .

Moreover , suppose there are constants M and L, 0 < M < L, such that

(11) M−1[c(t)K−1]1−M ≤ −(τK)−1 ln[c(t)K−1] ≤ L−1[c(t− τ)K−1]1−L

for t ∈ I (left inequality) and for t ∈ [t0 + τ,∞) (right inequality). Then
there exists an uncountable set Λ of functions λ defined on [t0 − τ,∞) and
satisfying equation (9) on I. Moreover , for λ ∈ Λ,

(12) Mλg(t) < λ(t) < Lλg(t)

for t ∈ [t0 − τ,∞) where λg is the solution of equation (10) defined by the
initial function g.

P r o o f. We define Ω(t) where t ∈ I to be the set of continuous func-
tions ϕ from [t− τ, t] into R such that

Mλg(t+ θ) < ϕ(t+ θ) < Lλg(t+ θ)

for all θ ∈ [−τ, 0) and either ϕ(t) = Mλg(t) or ϕ(t) = Lλg(t). Further
we define two functions W1(t, λ) ≡ λ −Mλg(t) and W2(t, λ) ≡ λ − Lλg(t)
and we find the sign of derivatives of these functions along the solutions of
equation (9) on the set Ω(t) for each t ∈ I. For W2(t, λ) and each ϕ ∈ Ω(t)
such that ϕ(t) = Lλg(t) we obtain

dW2(t, λ)
dt

∣∣∣∣
λ=ϕ(t)

= [c(t)K−1 exp{K[λ(t)− λ(t− τ)]} − Lλ′g(t)]|λ=ϕ(t)

= c(t)K−1 exp{K[ϕ(t)− ϕ(t− τ)]} − Lλ′g(t) .

Using the right hand side inequality of (7) for s = 1 where ω(t) ≡ −K−1

× ln[c(t)K−1] and the definition of Ω(t), we obtain
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dW2(t, λ)
dt

∣∣∣∣
λ=ϕ(t)

> c(t)K−1 exp{KL[λg(t)− λg(t− τ)]}

+ L(τK)−1 ln[c(t+ τ)K−1]

= [c(t)K−1]1−L + L(τK)−1 ln[c(t+ τ)K−1] .

Finally, in view of the right hand side inequality of (11), we conclude
that

dW2(t, λ)
dt

∣∣∣∣
λ=ϕ(t)

> [c(t)K−1]1−L − [c(t)K−1]1−L = 0 .

For W1(t, λ) and each ϕ ∈ Ω(t) such that ϕ(t) = Mλg(t) we obtain by
analogy

dW1(t, λ)
dt

∣∣∣∣
λ=ϕ(t)

= c(t)K−1 exp{K[ϕ(t)− ϕ(t− τ)]} −Mλ′g(t)

< c(t)K−1 exp{KM [λg(t)− λg(t− τ)]}
+M(τK)−1 ln[c(t)K−1]

≤ [c(t)K−1]1−M − [c(t)K−1]1−M = 0 .

Now, by the topological method of T. Ważewski (see, for instance, [4],
[9]) in the version of K. P. Rybakowski (e.g. [7], [8]) which is suitable for
retarded functional differential equations, there is a set of functions Λ such
that if λ̃ ∈ Λ then Mλg(t) < λ̃(t) < Lλg(t), t ∈ [t0 − τ,∞), λ̃ satisfies
equation (13) on I and the set {(t, λ̃(t)) : t = t0, λ̃ ∈ Λ} has the power of
the continuum. That is, inequalities (12) hold and the conclusion of the
theorem is true. The details of the application of the topological method
are omitted because they can be found e.g. in [2], [4], [7–9]. The theorem is
proved.

R e m a r k 1. Using Lemmas 2 and 3 we may obtain concrete inequalities
for solutions from Λ. E.g. if Theorem 1 holds, c(t)K−1 ≤ ν < 1, ν = const
on I and

lim
t→∞

ln[c(t+ τ)K−1]
ln[c(t)K−1]

= 1

then we may (by Lemma 3) conclude that there are positive numbers ε1 < 1
and ε2 > 1 such that for each solution λ ∈ Λ of equation (9),

(13)
−ε1M
τK

t∫
t0

ln[c(s)K−1] ds < λ(t) <
−ε2L
τK

t∫
t0

ln[c(s)K−1] ds

as t→∞.

R e m a r k 2. For a wide class of functions c (e.g. c(t) = exp(−pt), 0 <
p = const; c(t) = exp(− exp(pt)), 0 < p = const) the constants M and L in
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Theorem 1 may be chosen such that M ≤ 1 < L.

Strictly speaking, we may expect the existence of solutions of equa-
tion (9) which satisfy inequalities similar to (13) without knowledge of the
existence of the solution λ = λg of equation (10). From this standpoint the
statements of Lemmas 1–3 can be used as a motivation for finding inequal-
ities of some form for solutions of equation (9). Therefore the conditions of
the following theorem are different from the assumptions of these lemmas.

Theorem 2. Let c ∈ C(I) be nonincreasing and such that 0 < c(t)
< K on I where K is some positive constant. Moreover , suppose there are
constants M and L, 0 < M < L, such that for t ∈ I,

(14) M−1 exp
{
−KM
τ

t+2τ∫
t+τ

ln[c(s)K−1] ds
}
≤ −K
τc(t)

ln[c(t+ 2τ)K−1]

≤ L−1 exp
{
−KL
τ

t+2τ∫
t+τ

ln[c(s)K−1] ds
}
.

Then there exists an uncountable set Λ1 of functions λ defined on [t0−τ,∞)
and satisfying equation (9) on I. Moreover , for λ ∈ Λ1,

(15) ω1(t) < λ(t) < ω2(t)

for t ∈ [t0 − τ,∞), where

ω1(t) ≡ −M
τ

t+2τ∫
t0

ln[c(s)K−1] ds , ω2(t) ≡ −L
τ

t+2τ∫
t0

ln[c(s)K−1] ds .

P r o o f. The proof is analogous to that of Theorem 1 and therefore we
only describe the main points. Define Ω1(t) where t ∈ I to be the set of
continuous functions ϕ from [t− τ, t] into R such that ω1(t+θ) < ϕ(t+θ) <
ω2(t+ θ) for all θ ∈ [−τ, 0) and either ϕ(t) = ω1(t) or ϕ(t) = ω2(t). Further
we define Wi(t, λ) ≡ λ− ωi(t), i = 1, 2. For ϕ ∈ Ω1(t) with ϕ(t) = ω2(t) we
compute:

dW2(t, λ)
dt

∣∣∣∣
λ=ϕ(t)

=
[
c(t)K−1 exp{K[λ(t)− λ(t− τ)]}+

L

τ
ln[c(t+ 2τ)K−1]

]∣∣∣∣
λ=ϕ(t)

>
c(t)
K

exp{K[ω2(t)− ω2(t− τ)]}+
L

τ
ln[c(t+ 2τ)K−1]

=
c(t)
K

exp
{
−KL
τ

t+2τ∫
t+τ

ln[c(s)K−1] ds
}

+
L

τ
ln[c(t+ 2τ)K−1] ≥ 0 .
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For ϕ ∈ Ω1(t) with ϕ(t) = ω1(t) we obtain

dW1(t, λ)
dt

∣∣∣∣
λ=ϕ(t)

=
[
c(t)
K

exp{K[λ(t)− λ(t− τ)]}+
M

τ
ln[c(t+ 2τ)K−1]

]∣∣∣∣
λ=ϕ(t)

<
c(t)
K

exp{K[ω1(t)− ω1(t− τ)]}+
M

τ
ln[c(t+ 2τ)K−1]

=
c(t)
K

exp
{
−KM
τ

t+2τ∫
t+τ

ln[c(s)K−1] ds
}

+
M

τ
ln[c(t+ 2τ)K−1] ≤ 0 .

The theorem is proved.

For equation (1), as follows from Theorems 1 and 2 and from transfor-
mation (8), the following result holds:

Theorem 3. (a) Let all assumptions of Theorem 1 be valid. Then there
exists an uncountable set X of functions x defined on [t0 − τ,∞) and satis-
fying equation (1) on I such that

(16) exp{−Lλg(t)} < x(t) < exp{−Mλg(t)}
for t ∈ [t0 − τ,∞) where λg is the solution of equation (10) defined by the
initial function g.

(b) Let all assumptions of Theorem 2 be valid. Then there exists an
uncountable set X1 of functions x defined on [t0−τ,∞) and satisfying equa-
tion (1) on I such that

(17) exp{−ω2(t)} < x(t) < exp{−ω1(t)}
for t ∈ I.

By means of the transformation x(t) = w(t) exp{
∫ t
t0
a(s) ds} equation (2)

can be transformed into ẇ(t) = −c1(t)w(t − τ) where c1(t) ≡ b(t)
× exp{

∫ t−τ
t

a(s) ds}. Since the latter equation has the form (1), the fol-
lowing result holds for equation (2):

Theorem 4. (a) Let all assumptions of Theorem 1 be valid with c(t) ≡
c1(t). Then there exists an uncountable set X2 of functions x defined on
[t0−τ,∞) and satisfying equation (2) on I and inequalities (16) on [t0−τ,∞)
where λg is the solution of equation (10) (with c(t) ≡ c1(t)) defined by the
initial function g(t).

(b) Let all assumptions of Theorem 2 be valid with c(t) ≡ c1(t). Then
there exists an uncountable set X3 of functions x defined on [t0− τ,∞) and
satisfying equation (2) on I and inequalities (17) on I (with c(t) ≡ c1(t) in
the definitions (15) of ωi, i = 1, 2).
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Example. The functions x(t) = q exp(−t2), q = const, satisfy the equa-
tion

ẋ(t) = −2t[exp(1− 2t)]x(t− 1)
which was used by Hale [3] as an illustration of the fact that solutions of
nonautonomous linear homogeneous functional differential equations with
bounded coefficients can be nonzero and approach zero more rapidly than
each exponent.

If we put c(t) ≡ 2t exp(1 − 2t), τ = 2M = K = 1 and L = 2 in the
formulation of Theorem 3(b) then inequalities (14) hold for t ∈ I if t0 is
sufficiently large. Thus for each x ∈ X1 and large t0,

exp(−2t2 − 10t) < x(t) < exp(− 1
2 t

2)

for t ∈ I. This is in accordance with the above mentioned facts.
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