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Positive solutions of nonlinear elliptic systems

by ROBERT DALMASSO (Grenoble)

Abstract. We study the existence and nonexistence of positive solutions of nonlinear
elliptic systems in an annulus with Dirichlet boundary conditions. In particular, L*° a
priori bounds are obtained. We also study a general multiple linear eigenvalue problem on
a bounded domain.

1. Introduction. In this paper we investigate the existence and nonex-

istence of positive solutions of the nonlinear elliptic system

_Auj :fj+1(uj+1)7 ]: 17"'7m_17 in Q(a7b)7
(1.1) — Ay, = f1(uq) in 2(a,b),

u; =0, j=1,...,m, on 02(a,b),
where 0 < a < b < 00, §2(a,b) denotes the annulus {z € R" : a < |z| < b}
(n > 2) and m > 2 is an integer. u = (uy,...,un) € (C?(2(a,b)))™ is
a positive solution of (1.1) if the functions u; satisfy (1.1) and u; > 0 on
2(a,b) for j=1,...,m.

When m=2, Ph. Clément, D. G. de Figueiredo and E. Mitidieri [2] con-
sidered the existence of positive solutions in convex domains and
L. A. Peletier and R. C. A. M. van der Vorst [6] studied the case of a
ball. In both cases the method used to prove the existence of a positive
solution consisted of first obtaining a priori estimates on the positive solu-
tions and then applying well-known properties of compact mappings taking
a cone in a Banach space into itself (see D. G. de Figueiredo, P.-L. Lions
and R. D. Nussbaum [3]).

Our first result is the following L°° bound for positive radial solutions
of problem (1.1).

THEOREM 1.1. Let f;, j = 1,...,m, satisfy the following hypotheses:

(Hi)  f;:[0,00) — R is a continuous function,
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(Hp) liminf, . fj(u)/u > a; >0 and o ... 0, > pi* where py denotes
the principal eigenvalue of —A on (2(a,b) with Dirichlet boundary
conditions.

Then there exists M > 0 such that
||U]”00SM, j:]-a"'ama
for all positive radial solutions (u1,...,um) € (C*(2(a,b)))™ of (1.1).

Under some additional assumptions on the functions f;, we can use The-
orem 1.1 to establish the existence of a positive radial solution of problem
(1.1).

THEOREM 1.2. Let f;, j =1,...,m, satisfy (Hy), (Hz). Assume more-
over that

(Hs)  fj(u) >0 foru>0,j=1,...,m,

(Hy)  limsup, o fi(uw)/u < B forj=1,....,m and B ...Bm < pi".
Then problem (1.1) has at least one positive radial solution (ui,...,Un) €
(C*(£2(a,b)))™.

We have the following nonexistence result.

THEOREM 1.3. Assume that one of the following conditions is satisfied:
(i) fj(s) > vjs for s >0, j=1,...,m where y1 ... Vm > ui";
(ii) f;(s) < 0js for s >0, j =1,...,m where 6; > 0 for j =1,....,m
and 91 ... 0p < pi.

Then problem (1.1) has no positive solution (whether radial or not)

(u, ..., um) € (C*(2(a,b)))™.

As an application we consider the problem

(1.2) — Aty = 01ug + ul? in 2(a,b),
u; =0, j=1,...,m, on 0£2(a,b),

where g; > 0 and p; > 1 for j = 1,...,m. For problem (1.2) we have the
following corollary.

COROLLARY 1.1. (i) Assume that g1 ...0m < pi*. Then problem (1.2)

has at least one positive radial solution (uy, ..., uy) € (C*(£2(a,b)))™.
(i1) Assume that o1 ...0m > pf*. Then problem (1.2) has no positive

solution (whether radial or not) (u1,...,un) € (C?*(2(a,b)))™.

Remark 1.1. Problem (1.2) is an example of a perturbed system (see
Theorem 2.1 in Section 2).
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When we are interested in positive radial solutions, the problem under
consideration reduces to the one-dimensional boundary value problem
7Auj :fj+1(uj+l)7 jzlv""milv in (avb)a
(1.3) — Aty = f1(ug) in (a,b),
uj(a) =u;(b) =0, j=1,...,m,

where A denotes the polar form of the Laplacian, i.e.

d d
_4l-n 2 [ in—-1 7
A=t <t dt).

Our paper is organized as follows. In Section 2 we study a general mul-
tiple linear eigenvalue problem for systems. Theorems 1.1, 1.2 and 1.3 are
proved in Sections 3, 4 and 5 respectively. Finally, in Section 6 we give a
qualitative result for positive solutions (whether radial or not) of (1.1) when
the functions f; are nondecreasing.

2. A multiple linear eigenvalue problem for systems. In this sec-
tion we consider the linear eigenvalue problem

—Au; = Njyujpr, j=1,...,m—1, in {2,

—Aum = Mg in £2,
(21) u.7>0? jzla"'ama in Q,

uj =0, 7=1,...,m, on 912,

where (2 is a bounded domain in R™ (n > 1) with smooth boundary 92 and
m > 2 is an integer. We denote by pq the principal eigenvalue of the Lapla-
cian on {2 with Dirichlet boundary conditions and ¢; is the corresponding
(positive) eigenfunction. We have the following theorem.

THEOREM 2.1. Problem (2.1) has a solution if and only if
Ai>0, jg=1,....m, and A ...\, =p".

The solution is given by uj = cjp1 where ¢; > 0 is an arbitrary constant
and c; =c1(Ag... Nj) T (A1 ... )\m)(J_l)/m forj=2,...,m.

Proof. We first note that A\; > 0 for j = 1,...,m. Indeed assume that
there exists j € {1,...,m} such that A; < 0. We deduce from (2.1) that
Auj_1 > 0 on {2 (where uj_1 = up, if j = 1), hence uj_; < 0 on 2 by the
Maximum Principle and we reach a contradiction.

LEMMA 2.1. Let a1 > 0 be arbitrary and define
aj:al)\g...)\j()\l...)\m)(l—j)/m forj:2,...,m.
Then, setting v; = aju;, we have

—AUj:MIUj+17 jzl,...,m—l, ZnQ,
(2.2) —Avpy, = 101 mn 2,
v; =0, j=1,...,m, on 0f12.
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Moreover, u* = A1 ... Ap.

Proof. Using (2.1) we easily get

_AUj:()éUj+1, j:l,...,m—l, in .Q,
—Avpy = avy in {2,
0=0, j=1,...,m, on 2,

where o = (A1 ... \,)Y™, from which we deduce that

{A(vl+...+vm):a(vl+...+vm) in £2,

(2:3) vi+...+v, =0, on 012.

We have v1 +...4+v,, > 0 on {2. Since the only positive solution of problem
(2.3) is Cpy with the eigenvalue p; where C' > 0 is a constant, we get
v1 4+ ...+ vy = Cyp; with C > 0 and o = p1. The proof of the lemma is
complete.

To conclude the proof of the theorem we shall prove that
(2.4) V= ... =V .

We prove (2.4) by induction.

Assume that m = 2. Then from Lemma 2.1 we get
(2.5) A(vy —wv2) = p1(vy —w2) in £2,

' v —ve =0 on 0f2.
Multiplying the differential equation of (2.5) by v; — vo and integrating over
{2 we obtain
— f IV (vy —v2)|? dx = f (v —v2)? dx,
Q Q

which implies that v; = vs.

Now we suppose that (2.4) holds for 2 < m <r—1 (r > 3) and we must
prove it for m = r.

If r = 2p > 4, then from Lemma 2.1 we get

(—1)PAPvy = plvppr and  (—1)PAPv,q = plv; on 2,
from which we deduce
(2.6) (=1)PAP(v1 — vpy1) = —pf (v1 — Vps1) -
Multiplying (2.6) by v1 — vp41 and integrating over (2 yields
27) (=) [ (01 = vps1) AP (1 = vpp1) da = =i} [ (01 = vps1)?da.
Q Q

The left hand side in (2.7) is equal to

f (A% (o1 —vap41)) P da if p = 2k,
0
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and to

[ VAR (01 = vapg2)Pda ifp=2k+1.

0
In each case we get v1 = vp41. Then using the induction hypothesis we
obtain v; = ... = vy.

If r =2p+ 1, we write

(2.8) Z f —wp)tde = Z f (vF + vp — 2vjvi) da

1<j<k<2p+1 0 1<j<k<2p+1 0
2p+1
2
=2p g fvjdx—Q E fvjvkdx.
j=1 Q 1<j<k<2p+1

Now for each i € {1,...,2p+ 1} we define

Ai:{(j,k):1§j<k‘§2p+land bfvizdm: {!vjvkdx},

Bl:{he{l,...,Qp—i—l}: fv?dac: fv%dx}.
Q Q
Let s € {1,...,2p+ 1} be such that

{1,....2p+ 1} = U B;, and B;, NB;, =0 fora#b.
a=1
We shall show that
(2.9) #A,, =#B,,-p fora=1,... s
Then, since » ) p<o,41 1 = p(2p+1) we deduce from (2.8) and (2.9) that

Z f —vk dr =0

1<j<k<2p+1

and hence v; = ... = vop41.
It remains to prove (2.9). Using the equations (2.2) and integrations over
2 we obtain

2 _ — —
f Vpi1 dr = f VpUpgodr = ... = f V1V2p41 dT
02 2 2
2
f Uj dr = f Vj—1Vj+1 dr=...= f V1V25—-1 dx
i0) 9] 9]
= f ’U2p+1’l)2j der =...= f vp-&-jvp-‘rj—i-l dl‘,
9] 9}

for 1 < j < p where vy = vgp4+1, and
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2 — ) ) — - )
f 'Uj dr = f Vj—1Vj41 der=...= f V25 —2p—1U2p+1 dx
2 2 2
= f V25 —2p—2V1 dr=...= f Vj—pUj—p—1 dx
2 2

for p4+2 < j < 2p+ 1 where vyp42 = v;. Thus we immediately get (2.9).

Remark 2.1. When m = 2 Theorem 2.1 was proved by R. C. A. M. van
der Vorst [9].

As an application we consider the eigenvalue problem for the polyhar-
monic operator:
(2.10) { (=1)™mA™y = Au X in (2,

u=Au=...= A" u=0 on 0f2.
Then we have the following corollary.

COROLLARY 2.1. Problem (2.10) has a solution u > 0 in §2 if and only

if A= ut". The solution is given by u = Cp1 where C' > 0.

Proof. Clearly A > 0 if u is a nontrivial solution of (2.10). Now we note
that problem (2.10) is equivalent to

—Auj =wujy1, j=1,....m—1, in
(211) —Aum = )\ul in 97
’LL]‘:O, jzl,...,m, on&(),

where v = u;. Then the Maximum Principle implies that u,, > 0 in {2 and
by an induction argument we get u; > 0 in {2 for j = 2,...,m. Therefore
we can apply Theorem 2.1.

Remark 2.2. Let (A, u) be a solution of (2.10) with u # 0. As before
we write (2.10) as (2.11) with u = uy. Then, applying Lemma 3.9 of [9] we
get

(2.12) m/\fzfu%dxzéag( Z Vuj-Vum_j+1>(u-a:)ds

1<j<m

where v is the outward normal on 0f2. Then after normalizing u so that
|lul| = 1 in L?(£2) we obtain

(_1)m—1

A= 2m

f ( Z VAj_lu-VAm_ju)(u-:n) ds.
a2 1<5<m
When m = 1, this relation was found by F. Rellich [7].

Now if w > 0 in §2, by Theorem 2.1 we have u; = c;jp1 where ¢; > 0
is an arbitrary constant and c; = A U=D/™ for § =2 ... m. We deduce
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from (2.12) that

lffm |Vul?(v - x)ds

— Al/m _
H 2 Jou?dx

3. Proof of Theorem 1.1. We shall prove that there exists M > 0
such that
for all positive solutions (uy,...,uy) € (C?([a,b]))™ of (1.3).

Let 1 € C?([a,b]) be a positive eigenfunction associated with p;. By
(Hg), there exist K; > 0 for j =1,...,m such that

filu) >aju—K; foru>0andj=1,...,m.
Now let (ug,...,un) € (C%([a,b]))™ be a positive solution of (1.3). Then,
C denoting a generic positive constant, we have
b

b
(3.2) ut” ft"_lgolul dt = —p! ft"_lulAgol dt

a a

b b
=—p! ftn_lﬁmﬂm dt = pi" ! ftn_lSDIfQ(UQ)dt

a a

b
> aglﬂln_l f t"ougdt —C > ...

a

> ag...ajpy f "oy figa (ujgn) dt — C

b
Z a9 ... aj+1,u71n_] f tn_1(p1Uj+1 dt — C

a

for j =1,...,m where f,+1 = f1, @mi1 = @1 and up,41 = ug. From (3.2)
we deduce that
b b

(3.3) [ eru;dt <C and [ oulf;(uy)]dt < C

a a
for j =1,...,m where C' is again a generic positive constant. Now we have

b

(3.4) ui(t) = [ Gt,9)fi1(ujpa(s))ds, j=1,....m,

for t € [a, b], where G(t, s) denotes the Green’s function of the operator —A
on (a,b) with Dirichlet boundary conditions. We easily show that
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S
t =
G( ’8) (TL _ 2)tn—2(bn—2 _ an—2)
“ (Sn—2 _ an—2)(bn—2 _ tn—2)’ a<s<t< b,
(tn—2 _ an—Z)(bn—2 _ 8n—2)’ a S t S s S b,
if n >3, and
Gt s) = s (Inb—Int)(Ins —Ina), a<s<t<bh,
" Inb—1Ina | Int —Ina)(Inb—1Ins), a<t<s<b,
if n = 2. Define

ot)y=(t—a)b—t) fora<t<hb.

Then we have

(3.5) 0<G(ts) <cro(s) fora<t,s<b
and
(3.6) c20 < p1 <czo  on [a,b]

for some positive constants c¢j, j = 1,2,3. From (3.3)-(3.6) we easily get
uj(t) < Cfort € [a,b] and j =1,...,m where C is a positive constant, and
(3.1) is proved.

4. Proof of Theorem 1.2.

We shall prove that problem (1.3) has at least one positive solution
(U1, ..., um) € (C%(la,b]))™. The proof makes use of a fixed point theo-
rem originally due to Krasnosel’skii [5] and Benjamin [1]. Here we use the
following modified version.

PROPOSITION 4.1 ([3], p. 56). Let C be a cone in a Banach space X and
¢ : C — C a compact map such that ¢(0) = 0. Assume that there exist
numbers 0 < r < R such that

(i) u # 0P(u) for 6 € [0,1] and u € C such that ||u]| =,

(ii) there exists a compact map F : Bgr x [0,00) — C (where B, =
{u € C :|lul]| < o}) such that F(u,0) = &(u) for ||u|| = R, F(u,z) # u
for ||u|] = R and 0 < 2 < oo and F(u,z) = u has no solution u € By for
T > xq.

Then if U ={u e C :r < ||u|| < R}, one has
Z.C(st BR) = Oa Z'C(¢a BT) = 17 iC(dS? U) = _17

where ic(®, W) denotes the fized point index of ® on W. In particular, @
has a fized point in U.

Now let X denote the Banach space (C([a,b]))™ endowed with the norm

lull = max (Jlulloc)
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where u = (u1, ..., uy). Define the cone
C={ueX:u>0}
where v = (u1,...,u,) > 0 means that u; > 0 for j = 1,...,m. For

(u,z) € C x [0,00) we define
F(u,z)(t) = (Fa(u,z)(t),..., Fpn(u,z)(t), Fi(u,z)(t)) fort € [a,b]

where
b

Fi(u,2)(t) = [ Glt,s)f;(u;(s) + ) ds,

a
and

&(u) = F(u,0).

We shall show that the hypotheses of Proposition 4.1 are satisfied. By (Hj)
and (3.5), F maps C x [0,00) into C. Since G is continuous, it is well-
known that F' is compact. (Hi), (Hs) and (H4) imply that f;(0) = 0 for
j=1,...,m, hence ¢(0) = 0.

By (H4) we can choose r > 0 such that f;(s) < ;s for 0 < s < r and
j =1,...,m. Suppose that there exist # € [0,1] and v € C with |Ju| = r
such that v = 6&(u). Then

—AUj :Qf]qu(u]‘+1), jzl,...,m—l, in (a,b),

— Aty = 0f1(uq), in (a,b),

uj(a) =u;(b) =0, j=1,...,m.
By the Maximum Principle, for each j € {1,...,m}, u; > 0 on (a,b) or
uj = 0 on [a,b]. Now, if there exists ¢ € {1,...,m} such that u; = 0 on
[a, b], we easily show that u; =0 on [a,b] for j =1,...,m. Thus u; > 0 on
(a,b) for j =1,...,m. With the notations of Section 3 we have

b b

uy' f t"Loyuy dt = —pt ! f t" Ly Ay dt

b b
= —u! ftn_lwlﬂmdt:/ian_l@ ftn_lSDIfZ(UQ)dt

b b
< Bt [t orugdt < < By B [ oruy dt

a a

and we reach a contradiction because the integrals are nonzero. Thus con-
dition (i) of Proposition 4.1 is satisfied.
By (Hs), there exists o > 0 such that

(41)  fils+2) = aj(s +2) > a;s
fors >0, z>x9g>0and j=1,...,m.
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We shall show that
(4.2) F(u,z) 2u forallu e C and z > xg.

Indeed, suppose that there exist u € C' and x > z( such that F(u,z) = u.
Then

_Au](t) = fj-‘rl(uj-‘rl t) +$)7 j = 17 cee, M — 17 te (a>b)7
—Aum(t) = fl (Ul (t) + .T), t e ( )
uj(a) =uj(b) =0, j=1,...,m.

If w =0 then f;(z) = 0 for j = 1,...,m, a contradiction to (4.1). Thus
u # 0. Therefore u; > 0 in (a,b) for j =1,...,m as before. Now with the
notations of the proof of (3.1) we have

b b
uy' ft"flaplul dt:—u’l“_1 ft"flulALpl dt

b b
= —,ui”fl f t" o) Auy dt = u{”fl f t" Loy fo(ug + ) dt
a a
b b
> ozg,ugnfl f " rougdt > . > ar .. g f t"royug dt
a a

and this yields a contradiction because the integrals are nonzero. Thus (4.2)
holds and the third condition of (ii) is satisfied.

Now we note that the constant in (3.1) can be chosen independently of
the parameter = € [0, x| for each fixed zy € (0,00) if we consider positive
solutions of (1.3) for the family of nonlinearities f;,(t) = f;(t + ), t > 0.
Thus we can find a constant R > r such that

(4.3) F(u,z) #u for all x € [0,20] and u € C with |lul]| = R.

Therefore (4.2) and (4.3) prove the second condition of (ii).

Thus we may apply Proposition 4.1 to conclude that @ has a nontrivial
fixed point © € C. Using the same arguments as before we can show that
any nontrivial fixed point of @ in C' yields a positive solution of (1.3) in
(C?([a, b]))™. The proof of the theorem is complete.

5. Proof of Theorem 1.3. Since the proof makes use of similar argu-
ments we only prove (i). Let (ui,...,um) € (C%(£2(a,b)))™ be a positive
solution of (1.1), whether radial or not. With the notations of Section 3 we
show as before that

ul [ orunde = —p " [ w Ay da
2 2
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-1 —1
= —uy" f p1Auy doe = pf* f o1 f2(u2) dz
2 2

>72u71n*1 fgpluzdw>...>71...7m fgaluldw
19 %)

and this yields a contradiction because the integrals are nonzero.

6. A qualitative result. In this section we give a qualitative result for
positive solutions (whether radial or not) (uy,...,u,) € (C?(2(a,b)))™ of
the problem

—Auj = fir1(ujp1), j=1,...,m—1, in 2(a,b),
(6.1) — Ay, = fi(ur) in 2(a,b),
uj=0 onlz|=0b forj=1,...,m,

where the functions f; satisfy
(Hs) fjeC'and fj>0forj=1,...,m.

The following theorem is an extension to systems of a theorem obtained
by B. Gidas, W.-M. Ni and L. Nirenberg (see [4], Theorem 2, p. 210).

THEOREM 6.1. Assume (Hs). Let (u1,...,upy) € (C?*(2(a,b)))™ be a
positive solution of (6.1). Then

a+b

xz-Vuj(z) <0 for <l|z|<bandj=1,...,m.

Proof. The proof makes use of a lemma proved by W. C. Troy ([8],
Lemma 4.3, p. 408). We note that, with the notations of Lemma 4.3 in [8],
the condition u; = 0 on 92 for ¢ = 1,...,n is not needed: we only need
u; =0on 02N{zx € R": 21 > A} fori = 1,...,n. Then the proof is the
same as in the scalar case (see [4]).

Remark 6.1. Note that, as in the scalar case, no condition is imposed
on the boundary |z| = a and the result holds without any sign condition on

the fj .
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