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A generalization of the saddle
point method with applications

by MARTIN SCHECHTER (Irvine, Calif.)

Abstract. We show that one can drop an important hypothesis of the saddle point
theorem without affecting the result. We then show how this leads to stronger results in
applications.

1. Introduction. The saddle point theorem is a useful extension of
the mountain pass theorem (cf., e.g., [Ra2]). In its simplest form, it can be
described as follows. Let G be a continuously differentiable functional on a
Hilbert space H, and let H = M & N be an orthogonal decomposition of H
into closed subspaces M, N with dim' N < oo. Assume that

(1.1) 111‘14fG = mgp > —00
and
(1.2) limsup G(v) =m < o0.

[[v]| > 00, vEN

The theorem states that if m < mg, then there is a constant ¢ > mg and a
sequence {ur} C H such that

(1.3) G(uk) — C, G’(uk) — 0.
This in itself does ngt provide a solution of
(1.4) G'(u)=0

but an additional hypothesis such as the Palais—Smale (PS) condition does
indeed provide such a solution.

The purpose of the present paper is to show that the assumption m < myg
is unnecessary. Indeed, the conclusion can be reached under hypotheses (1.1)
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270 M. Schechter

and (1.2) even if mo < m and even if

(1.5) sup G(v) > mg
[vl|=R,veN

for every R > 0. In fact we have

THEOREM 1.1. Assume (1.1), (1.2). Let ¢ be a nonincreasing function
in (0,00) such that

2R

(1.6) lim sup f Y(r)dr = oo.
R—o00 R
Let
(1.7) m; =supG.
N

Then there is a constant c satisfying
(1.8) mo<c<m
and a sequence {ur} C H such that
(1.9) Gluk) — ¢,  G'(ur)/9(llucll) - 0.

It should be noted (as we shall show) that if there is an R > 0 such that
the left hand side of (1.5) is less than mg, then the same conclusion holds
even if ¢ satisfies the weaker condition

(1.10) Tw(r) dr = 00.

However, in many applications the existence of such an R is practically
impossible to verify when m > mg.

As an application, consider the Dirichlet problem
(1.11) —Au = f(z,u) inf2, u=0 ondf

where (2 is a smooth bounded domain in R™ and f(z,t) is a Carathéodory
function on 2 x R satisfying

(1.12) If(z, )| <C(lt|+1), z€, teR,
(1.13) f(z,t)/t > by(z) ae ast— too.
If

(1.14) D< << ...< <A <...

are the eigenvalues of the linear problem

(1.15) —Au=MXu inf2, u=0 ondN
we assume that for some [ > 0

(1.16) Mt2 — Wy (z) < 2F(z,t) < Mig1t® + Wa(z)



A generalization of the saddle point method 271

where
(1.17) F(z,t) := jf(a:,s)ds
0

and the W;(z) are functions in L(£2). We shall prove

THEOREM 1.2. Under the above hypotheses, problem (1.11) has a solution
provided there does not erist an eigenfunction v of (1.15) corresponding to
A1 such that

bi(z) =N a.e whenv(z) >0,
b_(z)=A a.e whenv(z) <0,

and there does not ezist an eigenfunction w of (1.15) corresponding to \j+1
such that

bi(z) =M\y1 a.e. when w(z) >0,
b_(z) =M\y1 a.e. when w(z)<0.

Theorem 1.2 is essentially known (cf. [BF]). The novelty is that it is a
simple consequence of Theorem 1.1. An example of a new application is

THEOREM 1.3. Let u* = max(u,0), u~ = (—u)™,

(1.18) b(u) = [ {bs(u*)® +b_(u")}dz
Q
N=@ NA-X, D=Hy*2), M=N"nD.
A<
Assume (1.12), (1.13) and
(1.19) |2F(z,t) — by (tT)2 —b_(t7)?| < W(z) € L'(R)
(1.20) lv]|3 < b(v), vEN,
(1.21) |lw|? >bw), weM.
Assume also that the only functions v € N, w € M satisfying
(1.22) —~Alv+w) =by (v +wt)-b_(v” +w7),
(1.23) (byvt —b_ v, w) = (v,bywt —b_w™),
(1.24) bi(z) =b_(z) whenv(z)w(z)<O0

are v = w = 0. Then (1.11) has at least one solution.
The problem (1.11) is called resonant at infinity if
liminf f(z,t)/t < Ax < limsup f(z,t)/t

[t|— |t|—o0
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for some eigenvalue A of (1.15). In the case of Theorem 1.2 we have

A < liminf f(z,t)/t < limsup f(z,t)/t < Ai+1

|t|—o0 Jt| =00
and we allow

Ay = inf liminf f(z,t)/t, A41 = suplimsup f(z,t)/t.
T |t|—oo T |t|—o0

Thus our situation can be called double resonance. There is quite an ex-
tensive literature concerning resonance problems beginning with the work
of Landesman and Lazer [LL]. Many are quoted in our bibliography and
in the references quoted in them. Of particular relevance to the problem
we consider are Berestycki-de Figueiredo [BF], Cac [Cacl], de Figueiredo—
Gossez [DFG] and Lazer-McKenna [LM2,3]. Our proof of Theorem 1.1 is
based upon ideas found in Brezis-Nirenberg [BN].

2. The basic theorem. In this section we present the theorem from
which our results are obtained. Let

(2.1) H=M®N, M#{0}, M#H,

be an orthogonal decomposition of a Hilbert space H into subspaces M, N
with dim N < oco. Let G(u) be a continuously differentiable functional on
H, and let

(2.2) Bp:={u € H: |u| £ R},
(2.3) 0Bg :={u€ H : |ul| = R}.
We assume

(2.4) 111\14fG =mgy > —00.

Let R > 0 be fixed, and let

(2.5) m:= max G, m;:= max G.
8BRNN BrNN

(Clearly m < m,.) Let ¥ denote the set of nonincreasing functions ¢(r) on
(0, 00) such that

(2.6) [ ¥(r)dr=co.

Our basic theorem is

THEOREM 2.1. For each ¢ € ¥ satisfying

(2.7) f P(r)dr > m —myp
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there are a constant ¢ and a sequence {ux} C H such that
(2.8) mo <c<my,
(2.9) Glur) = ¢, |G (ur)l| < W(llusl]) -

Proof. Let % be a function in ¥ satisfying (2.7). If the conclusion of the
theorem did not hold, there would be an € > 0 such that

(2.10) P(ljull) <G (u)l
holds for all u in the set Qo := {u € H : mpg — 3e < G(u) < my + 3e}. If
necessary, reduce € so that
R4+T
(2.11) m—mo+e<a f Y(r)dr
R
holds for some T' < R and a < 1. Let

Q={ue€ H:mp—2 <G(u) <my + 2},
Qi={ueH:my—e<Gu) <m +¢},
Q2=H\Q, n(u):=d(u,Q2)/[d(u,@1)+d(x,Q2)].

There is a locally Lipschitz continuous map Y (u) of H:={ue H:G'(u)#0}
into H such that

(212) Y@l <1 and (G'(w),Y()2alG@w), uvef

(cf., e.g., [Scl, 3, 6]). Thus for each u € H there is a unique solution o(, u)
of

(2.13) d'(ty=—n(o)Y(o), t>0, o(0)=u.
Consequently,
(2.14) lo(t,u) —u| <t,

(215)  dG(o(t,u))/dt = (G'(0),0') = —n(0)(G'(0), Y (o))
< —an(o)||G' (o)l £ —an(o)P(llof)) < 0.
Let P denote the (orthogonal) projection of H onto N. For v € N we have
o)l = | Pa(t, v)l| < llv — Pet,v)l| < |lv—-o(t,v)[| < t.
Hence for v € NN 3Bg and t € [0, T] we have

(2.16) |\Po(t,v)| > R-T > 0.
Let ¢;(v) be any continuous map of [0,T] x (Br N N) to H such that
(2.17) ¢i(v) = o(t,v), v€OBRNN.

By (2.16), Py,(v) # 0 for t € [0,T) and v € 0Br N N. Hence the Brouwer
index i(Py,, Br N N, 0) is defined and satisfies

(2.18) i(Ppy, BRN N,0) = i(P,Br N N,0) = 1.
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This means that
(2.19) ei(BRNN)NM #0, 0<t<T.
Let v be any element in 8BrNN. If there is a ¢t; < T such that o(t;,v) € @1,
then G(o(T,v)) < G(o(t1,v)) < mg — € since G(o(t,v)) cannot go above m.
On the other hand, if o(¢,v) € Q1 for 0 <t < T, then

T

G(o(T,v)) - G(v) < —a [ Y(llo(t,v)]) dt
0
T

<-a [YR+1t)dt < —(m—mo+e)
0
by (2.11), (2.14) and (2.15). Hence
(2.20) G(o(T,v)) <mp—¢€, v€OBRNN.
Let S denote the set of mappings ¢ from By N N to H such that
(2.21) p(v)=0(T,v), v€dBrNN.
Since o(T,v) € S, S # 0. Define

(2.22) c:= ‘;Igg ,Joax G(p(v)).

By (2.19), ¢(Bgr N N) intersects M, and consequently mg < c¢ in view of
(2.4). Also

c< max G(o(T,v)) < max G(v)<my
vEBRNN veEBrRNN

by (2.15) and (2.21). Let 6 = £/3 and define
Q ={ueQo:|G(u)—cl <26}, Qi={uveq@ :|Gu)-_c<Sé}
Q=H\Q, m(u)=duQ3)/[du,Q1)+ d(u, Q)]

For each u € H there is a unique solution o (¢, u) of

(2.23) a'(t)=-m(o)Y(s), t>0, o(0)=u.
As before we have
(2.24) loy(t,u) —u| <t,

(2.25)  dG(o1(t,u))/dt = (G'(01),01) = —m(01)(G'(01),Y (01))
< —am(o1)|G' (1))l £ —am(o1)P(llow]]) < 0.

From the fact that c satisfies (2.8) we see that (2.10) holds for all u € Q".
From the definition (2.22) of ¢ we see that there must be a ¢ € S such that

(2.26) G(p(v))<c+é6, wveEBRNN.
Let
(2.27) M = max |l¢(v)]|

BrNN
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and pick T so that

M+T
(2.28) a [ o(r)dr>26.
M

Let v be any element in BRNN. If there is a t; < Ty such that o1(t1, o(v)) &
!, then (2.25) implies
G(o1(T1, ¢(v))) £ G(o1(t1,0(v))) <c—6

since G(o01(t, ¢(v))) cannot go above c+§é by (2.25) and (2.26). On the other
hand, if 0,(¢, p(v)) € @} for 0 < ¢ < T3, then (2.25) implies

5
(229)  G(o1(T1, () - G(p(v)) < —a [ ¥(llor(t, p(w))]) dt
0

Ty
< -a [ p(M +t)dt

0
M+Ty
=—a f Y(r)dr < —26
M
Thus by (2.26)
(2.30) G(o1(Ty,p(v))) <c—6, wv€BrRNN.

Let

SO1(U) = 0'1(T1,(,0(’U)), v€E BRNN.
Since ¢ € S, it satisfies (2.21). Consequently,
(2.31) G(p(v)) <mg—¢, v€OBrRNN,

by (2.20). Since ¢ = 3§, this means that ¢(v) € Q5 for v € Bg N N.
Thus 7, (¢(v)) = 0 for such v. This implies o1 (¢, p(v)) = ¢(v) = o(T,v) for
such v. Hence p; € S. But this causes (2.30) to contradict (2.22). Since the
entire argument is based solely upon assumption (2.10), the conclusion of
the theorem must hold. =

COROLLARY 2.2. Under the same hypotheses, if m < mg, then there is
a constant c satisfying (2.8) such that for each ¢ € ¥ there is a sequence
{ux} C H for which

(2.32) Glur) — ¢ G () /¥(uel)) = 0.

Proof. In this case we do not have to use o(T,v) in (2.20). It can be
replaced by

(2.33) G(v)<mo—¢, vedBgNN,
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for ¢ sufficiently small. We can define ¢ immediately not depending on .
We let S denote the set of all continuous maps ¢ of Bg N N into H such
that p(v) = v on 0Bg N N. We then take

(2.34) c:= inf max G(v).
p€S vEBRNN

We then proceed with the proof of Theorem 2.1. If 4 € ¥, then for each
k > 0, ¢/k € ¥. By what has been proved, there is a ux € H such that
|G(uk) — ¢| < 1/k and ||G'(ug)| < ¥(||uk||)/k. This gives (2.32). m
Proof of Theorem 1.1. For each k > 0 there is an R} such that
2R,
f 1,0(7‘) dr > k(m1 - mo) .
Ry
Then 9 (r) = ¥(r)/k € ¥ and satisfies
2R,

f@bk Ydr > my —

Since

max G < max G<m;, k=12,...,
BBnan BRk NN

we can apply Theorem 2.1 for each k to find a ux € H and a constant ci
such that
mo < e Smy,  |Gluk) — ekl <1/k, |G (uk)|| < Pr(lluxll) -

A subsequence will satisfy (2.8) and (2.32). m

3. An application. We now consider a semilinear boundary value prob-
lem which can be solved by means of Theorem 1.1. Let {2 be a bounded
domain in R”, and let A be a selfa,djomt operator on L2(f2). We assume
that A > Ag > 0 and that

(3.1). CE(7) C D := D(AY?) c H™* ()

for some m > 0, where C§°(f2) denotes the set of test functions on 2 and
H™2(2) is the Sobolev space with norm ||u||m 2. For m an integer, this norm
is equivalent to the sum of the L2(2) norms of u and all its derivatives up to
order m. For m not an integer, the norm can be defined by interpolation (cf.,
e.g., [LM]). We assume that the spectrum of A consists only of eigenvalues
A of finite multiplicity satisfying

(32) 0</\0<A1<A2<...</\1<A[+1<...
We consider the semilinear problem
(3.3) Au = f(z,u), weD,



A generalization of the saddle point method 277

where f(z,t) is a Carathéodory function on 2 x R (continuous in ¢ for a.e.
z € {2 and measurable in z for every ¢ € R). We assume

(A) The function f(z,t) satisfies

(3.4) If(z,t) <SC(t|+1), z€n teR,
(3.5) f(z,t)/t > by(z) ae ast— too.

(B) If
t
(3.6) F(z,t):= [ f(z,5)ds,
0
then
(3.7) Mt? — Wy (z) < 2F(z,t) < Mpat’ + Wa(z)

for some ! > 0, where the Wj(z) are functions in L!(£2).
(C) No eigenfunction of A corresponding to either \; or A,y is a solution
of

(3.8) Au = by (z)ut(z) — b_(z)u"(z)

where u* (z) = max[u(z),0] and v~ (z) = ut(z) — u(z).
THEOREM 3.1. Under hypotheses (A)-(C), equation (3.3) has a solution.
Proof. We define

(3.9) G(u) =a(v)-2 [ F(z,u)dz
2
where a(u,v) = (Au,v), a(u) = a(u,u), u € D. Let N := P, ,, N(4 - ),
M = N+ nD. By (3.5) and (3.7) we have
(3.10) A <be(z) < Ay
If we put

B;= [ Wj(z)dz, j=1,2,

we have

G(v) < a(v) = Afloll® + By < By, vEN,

G(w) > a(w) - A,+1||w||2 —By>—-B;, weM,
by (3.7). Thus (1.1) and (1.2) are verified. Moreover, it is easily checked
that (3.4) implies that G(u) is continuously differentiable on D. Hence the
hypotheses of Theorem 1.1 are satisfied. Thus there is a sequence {ux} C D
and a number ¢ such that —B; < ¢ < B; and

(3~11) G’(uk) — C, G"(uk) —0.
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Since

(3.12) (G'(u), h) = 2a(u, h) — 2(f(z,u),h), wu,heD,

a solution of

(3.13) G'(uw)=0, weD,

is a solution of (3.3). I claim that the sequence satisfying (3.11) satisfies
(3.14) t2 :=a(ux) < C; .

To see this, assume that there is a renamed subsequence such that t, — oo.
Let @y = uk/ty. Then a(di) = 1. Hence there is a renamed subsequence
such that 4y — % weakly in D, strongly in L2({2) and a.e. in £2. By (3.11)
and (3.12)

(3.15) a(ug, h) — (f(z,ux),h) = 0, heD.

Consequently, u is a solution of (3.8). We shall show that this implies that
@ = 0. But (3.11) also gives

t2 -2 f F(z,up)dz — c.
[p}
This implies

(3.16) [ {b+(=2)@)? +b_(z)(@ )} dz =1,
n

which cannot hold if 4 = 0. Thus the ¢; are bounded. Hence there is a
renamed subsequence such that u; — u weakly in D, strongly in L%(§2)
and a.e. in f2. In this case (3.15) implies that u is a solution of (2.13) and
consequently of (3.3).

It remains to show that every solution of (3.8) vanishes identically. This
is done in

LEMMA 3.2. If u € D s a solution of (3.8) and (A)—(C) hold, then
u=0.

Proof Wecan writeu = v+w, whereve Nandw e M. Letu = w—v

and
_ [ by(z) when u(z) >0,
9(z) = {bt(m) whon u(s) < 0.

Then wu is a solution of
(3.17) Au = qu
and we have
a(w) —a(v) = e(w + v, w — v) = (Au, ¥) = (qu, u)

= (qlw + 9], w - v) = (qu, w) — (g, v).
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Hence 0 < a(w) — (qw, w) = a(v) — (qv,v) < 0 since

(3.18) /\1 S q(:l:) § /\l+1 s

(3.19) a(v) < Mol a(w) > Mallw|?.
Consequently,

(3.20) a(v) = (qv,u), a(w)= (qu,w).

This implies

A when v(z) #0,
q(z) = {Ai+1 when w(z) # 0,

and v € N(A - \;), w € N(A — A\i4+1)- In particular, v(z)w(z) = 0 and
by = N when v(z) > 0 since w(z) = 0 and u(z) > 0,

(z) = bo =X\ when v(z) < 0 since w(z) = 0 and u(z) < 0
7= b+ = Ai+1 when w(z) > 0 since v(z) = 0 and u(z) > 0,
b- = Aiy1 when w(z) < 0 since v(z) =0 and u(z) < 0
Thus
Av= v =byvt —b_v™, Aw=M pw=bywt —b_w™.

By hypothesis (C), v = w = 0. Hence u = 0, and the lemma and theorem
are proved. m

Proof of Theorem 1.2. If we take A = —A, D = Hy'*(£2), then
hypotheses (A) and (B) of Theorem 3.1 are satisfied. Hypothesis (C) is
also satisfied because no eigenfunction corresponding to A; or A4 satisfies
(3.8). Thus by Theorem 3.1 there is a u € D which satisfies (3.3). By (1.12),
f(z,u) € L2(£2). Elliptic regularity theory now shows that u € H?2(2).
Thus u is a strong solution of (1.11). =
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