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Asymptotic behaviour of a transport equation

by Ryszard Rudnicki (Katowice)

Abstract. We study the asymptotic behaviour of the semigroup of Markov operators
generated by the equation ut + bux + cu = a

∫ ax
0

u(t, ax − y)µ(dy). We prove that for
a > 1 this semigroup is asymptotically stable. We show that for a ≤ 1 this semigroup,
properly normalized, converges to a limit which depends only on a.

1. Introduction. In this paper we investigate the integro-differential
equation

(1.1) ut + bux + cu = a
ax∫
0

u(t, ax− y)µ(dy) ,

where a and b are positive constants, c is a real number, µ is a finite Borel
measure on the interval [0,∞), and u : [0,∞) × [0,∞) → R satisfies the
initial-boundary condition

(1.2)
{
u(0, x) = v(x) ,
u(t, 0) = 0 .

Equation (1.1) has a probabilistic interpretation in the case when c =
µ([0,∞)). Namely, consider a particle moving with speed b in the interval
[0,∞). Assume that in every time interval [t, t + ∆t] the particle has the
probability c∆t+o(∆t) of changing its position from x to (x+ξ)/a, where ξ is
a random variable with distribution c−1µ, i.e. Prob(ξ ∈ A) = c−1µ(ξ ∈ A).
Denote by u(t, x) the probability density function of the position of the
particle at time t. Then (1.1) describes the evolution of u(t, x) in time. If
a = 1 and c = µ([0,∞)) then (1.1) is known as the integro-differential Takacs
equation and plays an important role in the theory of jump processes.

By means of a suitable substitution equation (1.1) may be converted into
a special case with b = c = 1 and µ([0,∞)) = 1. In this case (1.1) generates
a semigroup of Markov operators on L1[0,∞) given by Stv(x) = u(t, x). The
asymptotic behaviour of this semigroup as t → ∞ strongly depends on a.
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For a > 1 this semigroup was studied by Klaczak [3]. He proved that if the
measure µ is absolutely continuous with respect to the Lebesgue measure
and

∫
xµ(dx) < ∞, then the semigroup {St} is asymptotically stable. In

his proof he used the method of the lower bound function introduced by
Lasota and Yorke [4] and developed by D lotko and Lasota [1].

The main aim of this paper is to give the full description of the asymp-
totic properties of this semigroup. This description is given in Theorem 1
of Section 2. Sections 3 and 4 contain the proof of this theorem.

2. Main result. We denote by D the set of all nonnegative elements of
L1[0,∞) with norm one. The elements of D will be called densities. We will
assume that v ∈ D. By setting u(t, x) = 0 for t ≥ 0, x < 0 and µ(A) = 0
for A ⊂ (−∞, 0) equation (1.1) can be rewritten as

(2.1) ut + bux + cu = Pu(t, x) ,

where P : L1(R)→ L1(R) is given by

(2.2) Pf(x) = a
∫
f(ax− y)µ(dy) = a(f ∗ µ)(ax) .

From the Phillips perturbation theorem [2] equation (1.1) with the initial-
boundary condition (1.2) generates a semigroup {St} of linear operators on
L1(R) given by

(2.3) Stv(x) = u(t, x) = e−ct
∞∑
n=0

Tn(t)v(x) ,

where T0(t)v(x) = v(x− bt) and

(2.4) Tn+1(t)v(x) =
t∫

0

T0(t− s)PTn(s)v(x) ds .

It is easy to check that if v(x) = 0 for x < 0 then Pv(x) = 0 and T0(t)v(x) =
0 for x < 0 and t ≥ 0. Consequently, Stv(x) = 0 for x < 0 and t ≥ 0, which
implies that {St} is the semigroup generated by equation (1.1).

Now observe that substituting u(t, x) = eλtu(pt, rx) into (1.1), where
p = 1/d, r = b/d, λ = c/d− 1, and d = µ([0,∞)) we obtain

(2.5) ut + ux + u = a
∫
u(t, ax− y)µ(dy) ,

where µ is the probability measure on [0,∞) given by µ(A) = µ(rA)/d.
Since the properties of u can easily be deduced from the properties of u, in
the remainder of this paper we assume that b = c = 1 and µ([0,∞)) = 1.
Let u be the solution of (1.1) satisfying the initial condition u(0, x) = v(x)
and let U(t, x) =

∫ x
0
u(t, y) dy. Let Φ(x) =

∫ x
−∞

1√
2π
e−y

2/2 dy and ϕ = Φ′.
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Theorem 1. Assume that v ∈ D and that v is bounded.

(a) If
∫∞
0

ln(1 + x)µ(dx) <∞ and a < 1, then U(t, a−
√
t x−t) converges

uniformly to Φ(x) on R as t→∞.
(b) If

∫∞
0

ln(1 +x)µ(dx) <∞ and a > 1, then there exists a continuous
density v0 independent of v such that u(t, x) converges uniformly to v0 as
t→∞. Moreover , Stv0 = v0 for t > 0.

(c) If a = 1, m =
∫
xµ(dx) < ∞, m > 0, and k =

∫
x2 µ(dx) < ∞,

then U(t,
√
kt x +mt + t) converges uniformly to Φ(x). Moreover , if µ has

a bounded density then
√
ktu(t,

√
kt x+mt+ t) converges uniformly to ϕ(x)

as t→∞.

R e m a r k 1. In the case b = c = 1 and µ([0,∞)) = 1, {St} is a semigroup
of Markov operators, i.e. StD ⊂ D for every t > 0. From this and from
Theorem 1(b), it follows immediately that if a > 1 and

∫
ln(1 + x)µ(dx) <

∞, then for every v ∈ D, Stv → v0 in L1. This generalizes the result of
Klaczak [3].

We divide the proof of Theorem 1 into a sequence of lemmas. In this
section we give a formula for Tn(t)v.

Lemma 1. Let

ϕ1(t, x, a) =


a

1− a
1[t,t/a](x) for a ∈ (0, 1) ,

a

a− 1
1[t/a,t](x) for a > 1 .

Define

(2.6) ϕn(t, x, a) =
t∫

0

aϕn−1(s, a(x− t+ s), a) ds

for t ≥ 0, x ≥ 0, a > 0, a 6= 1, and n ≥ 2. Then for n ≥ 1,

(2.7) Tn(t)v(x) = (ϕn ∗ Pnv)(t, x) =
∞∫
−∞

ϕn(t, y, a)Pnv(x− y) dy .

Lemma 1 follows immediately from (2.4) and the definition of P . Using
induction arguments it is easy to check the following lemma.

Lemma 2. Let x+ = x if x > 0 and x+ = 0 if x ≤ 0. Then for n ≥ 1 we
have

(2.8) ϕn(t, x, a) =
n∑
k=0

an,k,a(x− ta−k)n−1
+ ,

where

(2.9) an,k,a =
(−1)ka(n(n+1)+k(k−1))/2

(n− 1)!(1− a) . . . (1− ak)(1− a) . . . (1− an−k)
.
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Corollary 1. For every n ≥ 1 and a > 0, a 6= 1,

(2.10) ϕn(t, x, a−1) = a−nϕn(t, xa−n, a) .

3. Properties of ϕn. Although the functions ϕn are given explicitly
it is difficult to investigate their behaviour as n → ∞ using only formula
(2.8). Therefore we define, by induction, an auxiliary sequence of functions
ηn : [0,∞)→ R, n = 1, 2, . . . Let a ∈ (0, 1), η1(x) = (1− a)−11[a,1](x) and

(3.1) ηn(x) =


0 for x ≤ an ,

n
∞∫
x

(x− an)n−1

(z − an)n
ηn−1(z) dz for x > an .

Lemma 3. For every n ≥ 1,

(3.2) ϕn(t, x, a) =
tn−1an

n!
ηn

(
xan

t

)
.

P r o o f. Since ϕ1(t, x, a) = 0 for x ≤ t, it follows from (2.6) that
ϕn(t, x, a) = 0 for x ≤ t, n > 1. For n = 1 formula (3.2) is obvious.
Assume that (3.2) holds for n− 1. Then for x > t we have

ϕn(t, x, a) =
t∫

0

aϕn−1(s, a(x− t+ s), a) ds

=
t∫

0

ansn−2

(n− 1)!
ηn−1

(
(x− t+ s)an

s

)
ds

=
antn−1

n!

∞∫
anx/t

n(anx/t− an)n−1

(z − an)n
ηn−1(z) dz =

antn−1

n!
ηn

(
xan

t

)
.

Now we give a probabilistic interpretation of {ηn}. Let Y1, Y2, . . . be a
sequence of independent random variables such that

hn(x) = (n+ 1)xn1[0,1](x)

is the density of Yn.

Lemma 4. Let X1 be a random variable independent of Y1, Y2, . . . and
with density η1. Then the random variables Xn, n ≥ 2, defined inductively
by

(3.3) Xn = (Xn−1 − an)Yn−1 + an ,

have densities ηn.

P r o o f. Since supp η1 = [a, 1] and supphn = [0, 1], we may assume
that a ≤ X1 ≤ 1 and 0 ≤ Yn ≤ 1. This implies that an ≤ Xn ≤ 1. Let
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x ∈ (an, 1). Then

Prob(Xn < x) = Prob((Xn−1 − an)Yn−1 + an < x)

=
∫∫
A

ηn−1(z)hn−1(y) dy dz ,

where

A = {(y, z) : an−1 ≤ z ≤ 1 , 0 ≤ y ≤ 1 , (z − an)y + an < x} .

Hence

Prob(Xn < x) =
x∫

0

1∫
0

ηn−1(z)hn−1(y) dy dz +
∞∫
x

ηn−1(z)
(
x− an

z − an

)n
dz.

This implies that the density of Xn is given by (3.1).

Lemma 5. Let

gn(x) =
1

n+ 1
ηn

(
x

n+ 1

)
.

Then there exists a continuous density g vanishing at ∞ such that gn con-
verges uniformly to g on [0,∞).

P r o o f. First we check that the sequence {gn} is relatively compact in
the topology of uniform convergence on [0,∞). Indeed, from (3.1) it follows
that

ηn(x) ≤
∞∫
x

n(x− an)n−1

(z − an)n
dz sup ηn−1 ≤

n

n− 1
sup ηn−1 .

This implies that

(3.4) sup ηn ≤ n sup η1 .

Integrating (3.1) by parts we obtain

ηn(x) =
n

n− 1
ηn−1(x) +

n

n− 1
(x− an)n−1

∞∫
x

η′n−1(z)
(z − an)n−1

dz .

Consequently,

η′n(x) = n(x− an)n−2
∞∫
x

η′n−1(z)
(z − an)n−1

dz ,

and

sup |η′n| ≤
n

n− 2
sup |η′n−1| .

This implies that

(3.5) sup |η′n| ≤ Cn2
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for n = 3, 4, . . . , and some constant C. From the definition of gn, (3.4)
and (3.5) it follows that the sequences {gn} and {g′n} are bounded. Let
X ′n = (n+ 1)Xn and Y ′n = n+2

n+1Yn. Then gn is the density of X ′n,

EY ′n = 1, EX ′n
2 = 1 +

1
(n+ 1)(n+ 3)

, Y ′n ≤
n+ 2
n+ 1

and

(3.6) X ′n+1 = X ′nY
′
n − (n+ 1)an+1Y ′n + (n+ 2)an+1 .

Since X ′n and Y ′n are independent, we have EX ′n+1 = EX ′n + an+1 and,
consequently,

(3.7) EX ′n = 1 + a+ . . .+ an ≤ 1
1− a

.

This and the Chebyshev inequality imply

(3.8) Prob(X ′n ≥M) ≤ EX ′n
M

≤ 1
M(1− a)

,

which yields

(3.9)
∞∫
M

gn(x) dx ≤ 1
M(1− a)

.

Since {g′n} is bounded, there exists a constant K such that g′n(x) ≥ −K for
x ≥ 0, n ≥ 3. Let x0 ≥M ; then

gn(x) ≥ gn(x0)−K(x− x0) for x ∈ [x0, x0 + gn(x0)/K] .

From this it follows that
∞∫
M

gn dx ≥ g2
n(x0)/(2K) .

Using (3.9) we obtain gn(x0) ≤ (2K/((1− a)M))1/2 and, consequently,

(3.10) lim
M→∞

sup
n≥1

sup
x≥M

gn(x) = 0 .

Condition (3.10) and boundedness of {gn} and {g′n} imply that {gn} is rela-
tively compact. Moreover, from (3.9) it follows that all accumulation points
of {gn} are densities. Now, we show that {gn} has only one accumulation
point. Applying the inequality Y ′n ≤ (n + 2)/(n + 1) to (3.6) we obtain
X ′n+1 ≥ X ′nY ′n. Let

Zn,k = Y ′nY
′
n+1 . . . Y

′
n+k−1 .

Then X ′n+k ≥ X ′nZn,k. Since X ′n, Y
′
n, . . . , Y

′
n+k−1 are independent and

EZn,k = 1, we have

(3.11) E(X ′n+k −X ′nZn,k) = EX ′n+k − EX ′n ≤
an+1

1− a
.
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Furthermore,

EZ2
n,k ≤

∞∏
j=n

(
1 +

1
j2

)
.

Thus D2Zn,k ≤ β(n), where limn→∞ β(n) = 0. Let δ and ε be fixed positive
numbers and choose n0(δ, ε) such that for n ≥ n0(δ, ε)

β(n) ≤ ε2δ3(1− a)2/108 and an+1 < εδ(1− a)/6 .

Then from (3.8), (3.11) and the Chebyshev inequality it follows that

Prob(|X ′n+k −X ′nZn,k| > ε/2) ≤ 2an+1/((1− a)ε) < δ/3 ,
Prob(|Zn,k − 1| > δε(1− a)/6) ≤ 36D2Zn,k/(δ2ε2(1− a)2) ≤ δ/3 ,

and
Prob(X ′n > 3/(δ(1− a))) ≤ δ/3 .

The last three inequalities imply

(3.12) Prob(|X ′n+k −X ′n| ≤ ε) > 1− δ
and, consequently, for every ε > 0 we have

(3.13) lim
n→∞,m→∞

Prob(|X ′m −X ′n| > ε) = 0 .

Hence X ′n converges in probability. It follows that {gn} has only one accu-
mulation point g. Since {gn} is relatively compact, gn converges uniformly
to g.

R e m a r k 2. Since g, g1, g2, . . . are densities and gn → g uniformly, gn
converges to g in L1.

Lemma 6. Let g be the function from Lemma 5 corresponding to a < 1.
Then

(3.14)
∫ ∣∣∣∣n!

tn
ϕn(t, x, a)− ang(anx)

∣∣∣∣ dx→ 0

and

(3.15)
n!
tn
ϕn(t, x, a−1) ⇒ g(x) on [0,∞)

as t→∞ and n/t→ 1.

This follows immediately from Lemmas 3 and 5, Corollary 1 and Re-
mark 2.

4. Convergence of solutions. We first examine the operator P. In
this section we assume that µ satisfies

(4.1)
∞∫
0

ln(1 + x)µ(dx) <∞ .
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Let v ∈ D and let µn,v denote the Borel measure on [0,∞) defined by

(4.2) µn,v(A) =
∫
A

Pnv dx .

Lemma 7. (i) If a > 1, then there exists a Borel probability measure
µ0 such that for every v ∈ D the measures µn,v converge weakly to µ0 as
n→∞.

(ii) If a < 1, then for every v ∈ D there exists v0 ∈ D such that the
functions vn(x) = a−nPnv(a−nx) converge in L1 to v0 as n→∞.

(iii) If a = 1, m =
∫
xµ(dx) <∞, k =

∫
x2 µ(dx) <∞, σ2 = k −m2 >

0, wn,v(x) =
√
nσPnv(nm + xσ

√
n) and Wn,v(x) =

∫ x
−∞ wn,v(y) dy then

Wn,v ⇒ Φ on R. Moreover , if µ has a bounded density then wn,v ⇒ ϕ
on R.

The proof is partly based on the technique developed by  Loskot [5] who
investigated iterates of random variables.

P r o o f. Let ξ1, ξ2, . . . be a sequence of independent random variables
with distribution µ, i.e. Prob(ξi ∈ A) = µ(A), and let X be a random
variable independent of ξ1, ξ2, . . . with density v. Then Pnv is the density
of

(4.3) ζn = a−nX + a−1ξ1 + . . .+ a−nξn .

Let a > 1. From the Kolmogorov three series theorem (see e.g. [7]) it
follows that

∑
a−nξn converges a.e. if

∞∑
n=1

E

(
a−nξn

1 + a−nξn

)
<∞ .

Since each ξn has distribution µ,
∞∑
n=1

E

(
a−nξn

1 + a−nξn

)
=
∞∑
n=1

∞∫
0

a−nx

1 + a−nx
µ(dx)

<
∞∫
0

∞∫
0

a−tx

1 + a−tx
µ(dx) dt = ln−1 a

∞∫
0

ln(1 + x)µ(dx) <∞ .

This implies that ζn converges a.e. to some random variable ζ and, conse-
quently, µn,v converges weakly to µ0, where µ0(A) = Prob(ζ ∈ A).

Let a < 1. Then vn is the density of anζn. Since the ξi have the
same distribution, from (4.3) it follows that vn is the density of X + ξ1 +
. . .+ an−1ξn. The series

∑
an−1ξn is a.e. convergent. This implies that vn

converges in L1 to some density.
Let a = 1. That Wn,v ⇒ Φ follows immediately from the central limit

theorem. If µ has a bounded density, then we apply the local form of the
central limit theorem (see e.g. [6]).
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P r o o f o f T h e o r e m 1. Let N(t) be the Poisson process, i.e.

Prob(N(t) = n) = pn,t = tne−n/n! .

Let
At,δ = {n ≥ 0 : |n− t| < δt}, δ > 0 .

Since EN(t) = t and D2N(t) = t, the Chebyshev inequality implies

(4.4)
∑

n 6∈At,δ

pn,t ≤ D2N(t)/(δt)2 = 1/(δ2t) .

C a s e 1: a < 1. Let ε > 0. Since Tn(t) = ϕn ∗ Pn, Lemma 7(ii) and
(3.14) imply that for every ε > 0 there exist t0 > 0 and δ > 0 such that

(4.5)
∫
|t−nn!Tn(t)v(x)− an(v0 ∗ g)(anx)| dx < ε

for t > t0 and n ∈ At,δ. By the definition of Tn(t)v,
∫
Tn(t)v = tn/n!. Let

(4.6) w(t, x) =
∞∑
n=0

pn,ta
n(v0 ∗ g)(anx) .

From (4.4) and (4.5) it follows that∫
|u(t, x)− w(t, x)| dx ≤

∞∑
n=0

∫
|e−tTn(t)v(x)− pn,tan(v0 ∗ g)(anx)| dx

<
∑

n∈At,δ

εpn,t +
∑

n 6∈At,δ

2pn,t < ε+ 2/(δ2t) .

This implies that u(t, ·)− w(t, ·) converges to 0 in L1 as t→∞. Let

W (t, x) =
x∫

−∞

w(t, y) dx, F (x) =
a−x∫
0

(v0 ∗ g)(y) dy

and H(t, x) = W (t, a−x). Then F is a distribution function and

H(t, x) =
∞∑
n=0

pn,tF (x− n) .

Let X be a random variable independent of N(t) with distribution function
F . Then H(t, x) are the distribution functions of the process N(t) + X.
Since (N(t)− t)/

√
t converges weakly to the normal distribution,

H(t, t+ x
√
t) ⇒ Φ(x) on R as t→∞ ,

which gives

U(t, a−
√
tx−t) ⇒ Φ(x) on R .
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C a s e 2: a > 1. From Lemma 7(i) and (3.15) it follows that t−nn!Tn(t)v
converges uniformly to g ∗ µ0 as n → ∞ and t → ∞ in such a way that
n/t→ 1. Since {gn} is bounded, there exists C > 0 such that

(4.7) sup
x
Tn(t)v ≤ sup

x
|ϕn(t, x, a)| ≤ tn−1C/(n− 1)! .

Now, using a similar argument to that in Case 1 we obtain u(t, ·) ⇒ g ∗ µ0

on [0,∞) as t→∞.
C a s e 3: a = 1. It is easy to observe that the solution u of (1.1) and

(1.2) is given by

(4.8) u(t, x) =
∞∑
n=0

pn,tP
nv(x− t) .

Let k > m2, Gn(x) =
∫ x
−∞ Pnv(y) dy and

Z(t, x) = U(t,
√
ktx+mt+ t) =

∞∑
n=0

pn,tGn(
√
ktx+mt) .

Let ε > 0. From Lemma 7(iii) it follows that there exists n0 > 0 such that

(4.9) |Gn(nm+ yσ
√
n)− Φ(y)| < ε

for n ≥ n0 and y ∈ R. This implies that∣∣∣∣Gn(
√
ktx+mt)− Φ

(√
ktx+m(t− n)

σ
√
n

)∣∣∣∣ < ε

for n ≥ n0. Let δ > 0 be such that |Φ(x/
√
n) − Φ(x/

√
t)| < ε for n ∈ At,δ

and x ∈ R. Then

(4.10)
∣∣∣∣Gn(

√
ktx+mt)− Φ

(√
ktx+m(t− n)

σ
√
t

)∣∣∣∣ < 2ε

for n ∈ At,δ, x ∈ R and sufficiently large t. Let

(4.11) W (t, x) =
∞∑
n=0

pn,tΦ

(√
ktx+m(t− n)

σ
√
t

)
.

Then
|Z(t, x)−W (t, x)| ≤ 2ε+ 2

∑
n 6∈At,δ

pn,t ≤ 2ε+ 2/(δ2t)

for sufficiently large t. This implies that

(4.12) lim
t→∞

sup
x∈R
|Z(t, x)−W (t, x)| = 0 .

Similarly, if v is a bounded function and µ has a bounded density then

(4.13) lim
t→∞

sup
x∈R
|z(t, x)− w(t, x)| = 0 ,
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where z(t, x) = ∂Z
∂x (t, x) and w(t, x) = ∂W

∂x (t, x) . Now let X be a random
variable independent of the process N(t) and with density ϕ. Then for every
t > 0 the function w(t, x) is the density of the random variable

Y (t) =
σX√
k

+
m(N(t)− t)√

kt
.

It is easy to check that the density of Y (t) converges uniformly to ϕ as
t→∞, which completes the proof in the case k > m2. If k = m2 then µ is
concentrated at x = m. This implies that

u(t, x) =
∞∑
n=0

pn,tv(x− nm− t) .

Now suppose that ξ is a random variable independent of the process N(t)
and with density function v. Then u(t, x) is the density of X(t) = ξ + t +
mN(t). Since the distribution function of (X(t)− t−mt)/(m

√
t) converges

uniformly to Φ as t→∞, we obtain

U(t,m
√
tx+mt+ t) ⇒ Φ(x) .
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