ANNALES
POLONICI MATHEMATICI
LVIL1 (1992)

Asymptotic behaviour of a transport equation

by RyszarD RUDNICKI (Katowice)

Abstract. We study the asymptotic behaviour of the semigroup of Markov operators
. axr
generated by the equation ut + buz + cu = afo u(t,ax — y)u(dy). We prove that for

a > 1 this semigroup is asymptotically stable. We show that for a < 1 this semigroup,
properly normalized, converges to a limit which depends only on a.

1. Introduction. In this paper we investigate the integro-differential

equation

axr
(1.1) ug + buy +cu =a f u(t,ax —y) u(dy) ,

0
where a and b are positive constants, ¢ is a real number, p is a finite Borel
measure on the interval [0,00), and u : [0,00) x [0,00) — R satisfies the
initial-boundary condition

u(0,z) = v(z),
(1.2) {u(t,O) — 0.

Equation (1.1) has a probabilistic interpretation in the case when ¢ =
1([0,00)). Namely, consider a particle moving with speed b in the interval
[0,00). Assume that in every time interval [t,t + At] the particle has the
probability cAt+o(At) of changing its position from x to (z+¢)/a, where  is
a random variable with distribution ¢=!y, i.e. Prob(§ € A) = ¢ 1u(€ € A).
Denote by u(t,z) the probability density function of the position of the
particle at time t. Then (1.1) describes the evolution of u(¢,z) in time. If
a = 1and ¢ = p([0,00)) then (1.1) is known as the integro-differential Takacs
equation and plays an important role in the theory of jump processes.

By means of a suitable substitution equation (1.1) may be converted into
a special case with b = ¢ =1 and u([0,00)) = 1. In this case (1.1) generates
a semigroup of Markov operators on L]0, c0) given by Stv(x) = u(t, z). The
asymptotic behaviour of this semigroup as ¢t — oo strongly depends on a.
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For a > 1 this semigroup was studied by Klaczak [3]. He proved that if the
measure u is absolutely continuous with respect to the Lebesgue measure
and [z p(dr) < oo, then the semigroup {S'} is asymptotically stable. In
his proof he used the method of the lower bound function introduced by
Lasota and Yorke [4] and developed by Dlotko and Lasota [1].

The main aim of this paper is to give the full description of the asymp-
totic properties of this semigroup. This description is given in Theorem 1
of Section 2. Sections 3 and 4 contain the proof of this theorem.

2. Main result. We denote by D the set of all nonnegative elements of
L1[0, 00) with norm one. The elements of D will be called densities. We will
assume that v € D. By setting u(t,z) =0 for t > 0, z < 0 and u(A) =0
for A C (—00,0) equation (1.1) can be rewritten as

(2.1) ug + bug + cu = Pu(t, z),
where P : L}(R) — LI(R) is given by
(2.2) Pf(z)=a [ flax —y)u(dy) = a(f * p)(az).

From the Phillips perturbation theorem [2] equation (1.1) with the initial-
boundary condition (1.2) generates a semigroup {S*} of linear operators on
LY(R) given by

(2.3) Sto(z) = u(t,x) = > Tu(t)v(x)
n=0
where Ty (t)v(z) = v(z — bt) and

t
(2.4) Tt (t)v(z) = f To(t — s)PT,(s)v(x) ds.

0
It is easy to check that if v(z) = 0 for z < 0 then Pv(x) = 0 and Ty(t)v(x) =
0 for z < 0 and ¢t > 0. Consequently, S‘v(z) = 0 for z < 0 and ¢ > 0, which
implies that {S*} is the semigroup generated by equation (1.1).

Now observe that substituting u(t, ) = e u(pt,rx) into (1.1), where
p=1/d,r=0b/d, \=c¢/d—1, and d = p([0,00)) we obtain

(2.5) U+ Uy +U=a f u(t,ax —y) p(dy),

where @ is the probability measure on [0,00) given by f(A4) = u(rA)/d.
Since the properties of u can easily be deduced from the properties of @, in
the remainder of this paper we assume that b = ¢ = 1 and p([0,00)) = 1.
Let u be the solution of (1.1) satisfying the initial condition u(0,z) = v(x)

and let U(t,z) = [ u(t,y) dy. Let &(z) = [*_ 2ﬂe ~v*/2dy and ¢ = &',
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THEOREM 1. Assume that v € D and that v is bounded.

(a) If fooo In(1+ z) pu(dz) < 0o and a < 1, then U(t,a V%) converges
uniformly to @(x) on R ast — oo.

(b) If ;7 In(1+ ) p(dx) < oo and a > 1, then there exists a continuous
density vy independent of v such that u(t,z) converges uniformly to vy as
t — 00. Moreover, Stvy = vy for t > 0.

(¢) Ifa=1,m= [zu(dr) < oo, m >0, and k = [2? p(dz) < o,
then U(t, vkt x +mt +t) converges uniformly to (x). Moreover, if u has
a bounded density then vktu(t, vkt x4+ mt +1t) converges uniformly to o(x)
as t — o0.

Remark 1. Inthecase b = ¢ =1 and u([0,00)) = 1, {S*} is a semigroup
of Markov operators, i.e. StD C D for every t > 0. From this and from
Theorem 1(b), it follows immediately that if a > 1 and [ In(1 + z) p(dz) <
oo, then for every v € D, S'v — vy in L'. This generalizes the result of
Klaczak [3].

We divide the proof of Theorem 1 into a sequence of lemmas. In this
section we give a formula for T, (¢)v.

LEMMA 1. Let

a
T4 ie/a) (@) forae(0,1),
_ —a
¥1 (tv €, CL) = a
—Lian(@) fora>1.
Define
t
(26) (Pn(t, xa a/) = f a(pn_l(s, a(x — t + S)’ a) ds

0
fort>0,2>0,a>0,a#1, andn > 2. Then forn>1,

(2.7) To(t)v(x) = (pn *x PMo)(t,z) = f on(t,y,a)P ov(z —y) dy .

— o0

Lemma 1 follows immediately from (2.4) and the definition of P. Using
induction arguments it is easy to check the following lemma.

LEMMA 2. Let vy =z if x >0 and x4 =0 if x < 0. Then forn > 1 we
have

n
(2.8) on(t,x,a) = Z njoya(T — ta™F)1
k=0

where
(_1)ka(n(n+1)+k(k‘—1))/2

m=—D(1—a)...1=a*)(1—a)...(1 —ank)"

(2.9) an k,a =
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COROLLARY 1. For everyn >1 and a >0, a # 1,

(2.10) on(t, z, a_l) =a "pn(t,za " a).

3. Properties of ¢,. Although the functions ¢, are given explicitly
it is difficult to investigate their behaviour as n — oo using only formula
(2.8). Therefore we define, by induction, an auxiliary sequence of functions
M i [0,00) =R, n=1,2,... Let a € (0,1), m(z) = (1 —a) " '1,1)(x) and

0 for x < a”,

(3.1) N () = n 7 mnn_l(z) dz for x >a”.

LEMMA 3. For everyn > 1,

tn—lgn za™
(3'2) apn(t,a:,a) = nl nn( f ) .

Proof. Since ¢i(t,x,a) = 0 for x < ¢, it follows from (2.6) that
on(t,z,a) = 0 for z < ¢, n > 1. For n = 1 formula (3.2) is obvious.
Assume that (3.2) holds for n — 1. Then for x > ¢ we have

¢
on(t,z,a) = fatpn_l(s,a(x—t—i—s),a)ds

t n.n—2 n
B a™s (x —t+9)a
=/ <n—1)!””‘1< s >d$

antnfl oo n(a”a:/t _ an)nfl antnfl Ta®
f NMn—1(z)dz = oy Mn ..

Now we give a probabilistic interpretation of {n,}. Let Y1,Ya,... be a
sequence of independent random variables such that

hp(x) = (n+ 1)z" 1o 1)(2)
is the density of Y,,.

LEMMA 4. Let Xy be a random variable independent of Y1,Y>,... and
with density n1. Then the random variables X, n > 2, defined inductively

by
(33) X, = (Xn—l — a”)Yn_l +a™,
have densities n,,.

Proof. Since suppn = [a,1] and supph, = [0,1], we may assume
that a < X; <1 and 0 <Y, < 1. This implies that a™ < X,, < 1. Let
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x € (a™,1). Then
Prob(X,, < z) = Prob((X,—1 —a")Y,—1 +a" < z)
ff Mn—1(2)hn-1(y) dy dz ,
A

where
A={(y,2):a" ' <2<1,0<y<1, (z—a")y+a" <a}.
Hence
Oo r—a™\"
Prob(X,, < z) f fﬁn 1 _1(y)dydz + mfnnl(z)(z_an> dz.

This implies that the density of X, is given by (3.1). =

LEMMA 5. Let

() 1 T
) = .
In nrim\n 1

Then there exists a continuous density g vanishing at oo such that g, con-
verges uniformly to g on [0, 00).

Proof. First we check that the sequence {g,} is relatively compact in
the topology of uniform convergence on [0, 00). Indeed, from (3.1) it follows
that

x TL xr — CL n
f B dz supn,—1 < SUp My —1 -
] n—1

This implies that
(3.4) supn, < nsupn .
Integrating (3.1) by parts we obtain

(@) = i (@) +

n—1 -1 z—an)nt
Consequently,
T
! n 2 n—1
(@) = n(w — a” j‘z_an dz,
X
and
sup [, < —— sup [,y
ni — n — 2 n—

This implies that
(3.5) sup |17, < Cn®
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for n = 3,4,..., and some constant C. From the definition of g,, (3.4)

and (3.5) it follows that the sequences {g,} and {g,,} are bounded. Let
X;, = (n+1)X, and Y, = 2£2Y,,. Then g, is the density of X,

1 n+2

EY'=1, EX'*’=14-——— re 22

" " (n+1)(n+3) "Tn+1

and
(3.6) X, = XY — (n+ 1)a"Y] + (n+2)a" "
Since X, and Y, are independent, we have EX,  , = EX/ + a"*! and,

consequently,

(3.7) EX,=14a+...+a" <

l—a’
This and the Chebyshev inequality imply
EX], 1

(3.8) Prob(X,, > M) < M S Mi—a)’

which yields

(3.9) A\/]; gn(z)dx < ]\4(11—a)'

Since {g,,} is bounded, there exists a constant K such that g}, (z) > —K for
x>0,n>3. Let xg > M; then

gn(x) > gn(x0) — K(x —29) for x € [x0, 20 + gn(z0)/K] .
From this it follows that

[ gnde > g2(0)/26)

M
Using (3.9) we obtain g, (zo) < (2K/((1 — a)M))"/? and, consequently,
(3.10) lim sup sup gn(z) =0.

M—oon>12>M

Condition (3.10) and boundedness of {g,,} and {g/, } imply that {g,} is rela-
tively compact. Moreover, from (3.9) it follows that all accumulation points
of {gn} are densities. Now, we show that {g,} has only one accumulation
point. Applying the inequality Y, < (n + 2)/(n + 1) to (3.6) we obtain
X/ > XY, Let
Znk = YAYA—H ce Ti—Hc—l .

Then X, > X, Z,. Since X],Y,,...,Y  , | are independent and
EZ, . =1, we have

n+1

(3.11) B(X} 5 = X0, Zog) = EX/ o — EX < T—.
—Qa
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Furthermore,

EZ2 <] (1+ 12) :
— j
Thus D?Z,, ; < 8(n), where lim,,_,~, 3(n) = 0. Let ¢ and ¢ be fixed positive
numbers and choose ng(d, ) such that for n > ng(d,¢)
B(n) <e?63(1 —a)?/108 and o™ <e8(1—a)/6.
Then from (3.8), (3.11) and the Chebyshev inequality it follows that
Prob(|X] , — X, Zn x| > €/2) < 24" /((1 —a)e) < §/3,
Prob(|Z,x — 1| > 6e(1 — a)/6) < 36D*Z,, 1 /(6%c*(1 — a)?) < §/3,

and

Prob(X] > 3/(6(1 —a))) <4/3.
The last three inequalities imply

(3.12) Prob(|X) ., — X;| <e)>1-90
and, consequently, for every € > 0 we have
(3.13) lim  Prob(|X], — X, |>¢)=0.

n—00, M— 00

Hence X/, converges in probability. It follows that {g,} has only one accu-
mulation point g. Since {g,} is relatively compact, g, converges uniformly
tog. m

Remark 2. Since g, g1, g2, ... are densities and g, — ¢ uniformly, g,
converges to g in L'.

LEMMA 6. Let g be the function from Lemma 5 corresponding to a < 1.
Then

(3.14) 1l

and

(3.15)

|
%apn(t,x, a)—a"g(a"z)|dr — 0

n!
tn
ast — oo and n/t — 1.

on(t,z,a™t) = g(x)  on [0,00)
This follows immediately from Lemmas 3 and 5, Corollary 1 and Re-
mark 2.

4. Convergence of solutions. We first examine the operator P. In
this section we assume that p satisfies

(4.1) [ (1 +2) p(de) < .
0
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Let v € D and let iy, , denote the Borel measure on [0, 00) defined by

(4.2) pno(A) = [ Prvdz.
A

LEMMA 7. (i) If a > 1, then there exists a Borel probability measure
to such that for every v € D the measures [, converge weakly to jo as
n — 0.

(ii) If a < 1, then for every v € D there exists vg € D such that the
functions v, (z) = a~"P"v(a""z) converge in L' to vy as n — oc.

(iii) Ifa=1, m= [z p(dz) < oo, k= [2? p(dz) < 0, 02 =k —m? >
0, Wno(x) = VnoP"v(nm + zoy/n) and Wy o(z) = [*_ wy(y) dy then
Who = @ on R. Moreover, if p has a bounded density then wy, = ¢
on R.

The proof is partly based on the technique developed by Loskot [5] who
investigated iterates of random variables.

Proof. Let &,&,... be a sequence of independent random variables
with distribution p, i.e. Prob(§; € A) = u(A), and let X be a random
variable independent of &1,&5, ... with density v. Then P™v is the density
of

(4.3) Ch=a"X+a 6 +... +a"¢,.

Let @ > 1. From the Kolmogorov three series theorem (see e.g. [7]) it
follows that > a~"¢&, converges a.e. if

- a "
T;E<1+a_”§n> < 00.

Since each &, has distribution u,

;E(l—ka ”f) ;!1+a ng P u(dz)

< f f p(dz)dt =In"ta f In(1+ z) u(der) < 0o
0

This implies that ¢, converges a.e. to some random variable ¢ and, conse-
quently, i, ., converges weakly to g, where p9(A) = Prob(¢ € A).

Let a < 1. Then v, is the density of a™(,. Since the & have the
same distribution, from (4.3) it follows that v,, is the density of X + & +

.+ a"71g,. The series Y a" "1, is a.e. convergent. This implies that v,

converges in L' to some density.

Let a = 1. That W, , = @ follows immediately from the central limit
theorem. If 1 has a bounded density, then we apply the local form of the
central limit theorem (see e.g. [6]).
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Proof of Theorem 1. Let N(¢) be the Poisson process, i.e.
Prob(N(t) =n) = ppt =t"e " /nl.

Let
Ars={n>0:|n—t| <dt}, §>0.

Since EN(t) =t and D?N(t) = t, the Chebyshev inequality implies
(4.4) > poy S DAN(#)/(5t)* = 1/(5%).
ngAss

Case 1: a < 1. Let € > 0. Since T,(t) = ¢, * P", Lemma 7(ii) and
(3.14) imply that for every ¢ > 0 there exist ¢y > 0 and § > 0 such that

(4.5) f [t7"n!T, (t)v(x) — a™ (v % g)(a™x)|dx <
for t >ty and n € A, 5. By the definition of T,,(¢)v, [T, (t)v =t"/nl. Let
(4.6) w(t,x) = meta"(vo xg)(a"z).

n=0

From (4.4) and (4.5) it follows that
[ lutt,z) —w(t,2)|dz <> [ |eT Tu(t)v(x) — pnsa”(vo * g)(a" )| dx
n=0

< D it D> 2png <e+2/(6%).

nEA s ngA¢ s
This implies that u(t,-) — w(t,-) converges to 0 in L' as t — oco. Let

T x

W(t,z) = [ w(ty)de, F(x)= [ (voxg)(y)dy
0

— 00

and H(t,z) = W(t,a=®). Then F is a distribution function and
H(t,x) = an,tF(a: —n).
n=0

Let X be a random variable independent of N (t) with distribution function
F. Then H(t,x) are the distribution functions of the process N(t) + X.
Since (N(t) —t)/+/t converges weakly to the normal distribution,

H(t,t+2vVt) = d(x) onRast— oo,
which gives

Ut,a V¥* ") = d(z) onR.
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Case 2: @ > 1. From Lemma 7(i) and (3.15) it follows that t~"n!T,,(t)v
converges uniformly to g * ug as n — oo and t — oo in such a way that
n/t — 1. Since {g,} is bounded, there exists C' > 0 such that

(4.7) sup T, (t)v < sup |, (t, ,a)] < " 1C/(n — 1)!.
Now, using a similar argument to that in Case 1 we obtain u(t,-) =2 g * o
on [0,00) as t — o0.

Case 3: a = 1. It is easy to observe that the solution u of (1.1) and
(1.2) is given by

(4.8) u(t,z) =Y pusP o(z—1).
n=0
Let k > m?, Gy(z) = [*__ P™v(y)dy and
Z(t,x) = Ut Vkte +mt +1) = Y ppiGn(Vhtz +mt).
n=0

Let € > 0. From Lemma 7(iii) it follows that there exists ng > 0 such that
(4.9) |Gn(nm + yov/n) — D(y)| < e
for n > ng and y € R. This implies that
Vktz +m(t — n)) ’
<e
oyv/n

for n > ng. Let § > 0 be such that |®(x//n) — ®(x/Vt)| < € for n € A5
and z € R. Then

‘Gn(\/ﬁx + mt) — @(

(4.10)

Gn(\/ﬁﬁmt)—@( e

for n € A; 5, + € R and sufficiently large t. Let

\/Ha?—i-m(t—n))‘ “ o9

> Vktz +m(t —n)
4.11 Wit x) = nt P .
(1.11) ) = Sopnp ()
Then
Z(t,x) = W(t,z)| <26 +2 Y pas < 26 +2/(5%)
ng A s
for sufficiently large ¢. This implies that
(4.12) tlim sup |Z(t,x) — W(t,z)|=0.

z€R

Similarly, if v is a bounded function and p has a bounded density then

(4.13) lim sup |2(t,z) — w(t,z)| =0,
R

t—00 ¢
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where z(t,x) = ‘g—f(t,a}) and w(t,z) = %—Vf(t,m) . Now let X be a random
variable independent of the process N(¢) and with density ¢. Then for every
t > 0 the function w(t, x) is the density of the random variable

oX m(N(t) —t)

Vk VEt

It is easy to check that the density of Y'(¢) converges uniformly to ¢ as
t — 00, which completes the proof in the case k > m?. If k = m? then u is
concentrated at x = m. This implies that

oo

u(t,x) = metv(x —nm —t).

n=0

Y(t) =

Now suppose that ¢ is a random variable independent of the process N(t)
and with density function v. Then u(t,z) is the density of X (¢) =+t +
mN (t). Since the distribution function of (X (¢) —t —mt)/(m+/t) converges
uniformly to @ as t — oo, we obtain

Ut,mVte +mt+1t) = &(z). m
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