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Nonnegative solutions of a class
of second order nonlinear differential equations

by S. Staněk (Olomouc)

Abstract. A differential equation of the form

(q(t)k(u)u′)′ = λf(t)h(u)u′

depending on the positive parameter λ is considered and nonnegative solutions u such that
u(0) = 0, u(t) > 0 for t > 0 are studied. Some theorems about the existence, uniqueness
and boundedness of solutions are given.

1. Introduction. In [6] the equation

(1) (k(u)u′)′ = f(t)u′

was considered and the author has given sufficient conditions for the exis-
tence and uniqueness of nonnegative solutions u such that u(0) = 0, u(t) > 0
for t > 0. This problem is connected with the description of the mathemat-
ical model of the infiltration of water. For more details see e.g. [3]–[5].

In [4] and [5] the existence and uniqueness of nonnegative solutions was
proved for the differential equations

(uu′)′ = (1− t)u′ (t ∈ [0, 1])

and

(uu′)′ = A−tu′ (A > 1) .

The methods are based on the special form of the equations and on the
Banach fixed point theorem. In [1] and [2], the following equation was
considered:

(k(u)u′)′ = (1− t)u′ .
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In this paper we consider the equation

(2) (q(t)k(u)u′)′ = f(t)h(u)u′

which is a generalization of (1), and give sufficient conditions for the exis-
tence and uniqueness of solutions u of (2) satisfying u(0) = 0, u(t) > 0 for
t > 0, as well as for their boundedness and unboundedness. In the last sec-
tion we discuss the dependence of solutions of the equation (q(t)k(u)u′)′ =
λf(t)h(u)u′ on the positive parameter λ and we consider the boundary value
problem (q(t)k(u)u′)′ = λf(t)h(u)u′, limt→∞ u(t;λ) = a (∈ (0,∞)). In ac-
cordance with [6] the proof of the existence theorem is based on an iter-
ative method and a monotone behaviour of some operator. The proof of
the uniqueness is different from the one in [6]. For the special case of (2),
namely (1), we obtain the same results as in [6] (where

∫∞
0

(k(s)/s) ds =∞
should be required).

2. Notations, lemmas. We will consider the differential equation (2)
in which q, k, f , h satisfy the following assumptions:

(H1) q ∈ C0([0,∞)), q(t) > 0 for all t > 0 and
∫
0

dt

q(t)
<∞;

(H2) k ∈ C0([0,∞)), k(0) = 0, k(u) > 0 for all u > 0;

(H3)
∫
0

k(s)
s

ds <∞ and
∞∫ k(s)

s
ds =∞;

(H4) f ∈ C1([0,∞)), f(t) > 0, f ′(t) ≤ 0 for all t ≥ 0;

(H5) h ∈ C0([0,∞)), h(u) ≥ 0 and the function H(u) :=
u∫

0

h(s) ds is

strictly increasing for all u ≥ 0;

(H6)
∫
0

k(u)
H(u)

du <∞ and
∞∫ k(u)
H(u)

du =∞.

By a solution of (2) we mean a function u ∈ C0([0,∞)) ∩ C1((0,∞))
such that u(0) = 0, u(t) > 0 for all t > 0, limt→0+ q(t)k(u(t))u′(t) = 0,
q(t)k(u(t))u′(t) is continuously differentiable for all t > 0 and (2) is satisfied
on (0,∞).

For u ∈ [0,∞) we define the strictly increasing functions K and V by

K(u) =
u∫

0

k(s) ds , V (u) =
u∫

0

k(s)
H(s)

ds .
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Clearly K ∈ C1([0,∞)), V ∈ C0([0,∞))∩C1((0,∞)), limu→∞K(u) =∞ =
limu→∞ V (u).

Set M = {u ;u ∈ C0([0,∞)), u(0) = 0, u(t) > 0 for t > 0}.

Lemma 1. If u is a solution of (2), then u is a solution of the integral
equation

(3) K(u(t)) =
t∫

0

(
f(s)
q(s)

− f ′(s)
t∫
s

dz

q(z)

)
H(u(s)) ds

and conversely , if u ∈M is a solution of (3), then u is a solution of (2).

P r o o f. Let u be a solution of (2). Integrating (2) from a (> 0) to t, we
obtain

q(t)k(u(t))u′(t)− q(a)k(u(a))u′(a) =
t∫
a

f(s)h(u(s))u′(s) ds

= f(t)H(u(t))− f(a)H(u(a))−
t∫
a

f ′(s)H(u(s)) ds .

Let a→ 0+. We get

(4) (K(u(t)))′ =
1
q(t)

[
f(t)H(u(t))−

t∫
0

f ′(s)H(u(s)) ds
]

for t > 0, and integrating (4) from 0 to t, we have

K(u(t)) =
t∫

0

1
q(s)

[
f(s)H(u(s))−

s∫
0

f ′(z)H(u(z)) dz
]
ds

=
t∫

0

(
f(s)
q(s)

− f ′(s)
t∫
s

dz

q(z)

)
H(u(s)) ds ,

and consequently, u is a solution of (3).
Now, let u ∈M be a solution of (3). Then

(5) u(t) = K−1

[ t∫
0

(
f(s)
q(s)

− f ′(s)
t∫
s

dz

q(z)

)
H(u(s)) ds

]
for t ≥ 0, where K−1 denotes the inverse function to K on [0,∞). From (4)
it follows that u′ ∈ C0((0,∞)) and

u′(t) =
1

q(t)k(u(t))

[
f(t)H(u(t))−

t∫
0

f ′(s)H(u(s)) ds
]
,
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therefore

(6) q(t)k(u(t))u′(t) = f(t)H(u(t))−
t∫

0

f ′(s)H(u(s)) ds .

Hence

lim
t→0+

q(t)k(u(t))u′(t) = 0 , q(t)k(u(t))u′(t) ∈ C1((0,∞)) ,

(q(t)k(u(t))u′(t))′ = f(t)h(u(t))u′(t) for t > 0 ,

consequently, u is a solution of (2).

R e m a r k 1. It follows from Lemma 1 that solving (2) is equivalent to
solving the integral equation (3) in the set M .

Lemma 2. If u ∈M is a solution of (3), then

(7) V −1

( t∫
0

f(s)
q(s)

ds

)
≤ u(t) ≤ V −1

(
f(0)

t∫
0

ds

q(s)

)
for t ≥ 0 .

P r o o f. Let u ∈ M be a solution of (3). Then u′(t) > 0 for t > 0 and
(cf. (6))

f(t)H(u(t)) ≤ q(t)k(u(t))u′(t) ≤
[
f(t)−

t∫
0

f ′(s) ds
]
H(u(t))

= f(0)H(u(t)) ,

hence

(8)
f(t)
q(t)

≤ k(u(t))u′(t)
H(u(t))

= (V (u(t)))′ ≤ f(0)
q(t)

for t > 0 .

Integrating (8) from 0 to t, we obtain

(9)
t∫

0

f(s)
q(s)

ds ≤ V (u(t)) ≤ f(0)
t∫

0

ds

q(s)
for t ≥ 0

and (7) follows.
Define the operator T : M →M by

(Tu)(t) = K−1

[ t∫
0

(
f(s)
q(s)

− f ′(s)
t∫
s

dz

q(z)

)
H(u(s)) ds

]
for t ≥ 0

and set

ϕ(t) = V −1

( t∫
0

f(s)
q(s)

ds

)
, ϕ(t) = V −1

(
f(0)

t∫
0

ds

q(s)

)
for t ≥ 0 .
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Lemma 3. For t ∈ [0,∞),

(10) (Tϕ)(t) ≥ ϕ(t) , (T ϕ)(t) ≤ ϕ(t) .

P r o o f. Setting

α(t) =
t∫

0

(
f(s)
q(s)

− f ′(s)
t∫
s

dz

q(z)

)
H(ϕ(s)) ds−K(ϕ(t)) ,

β(t) =
t∫

0

(
f(s)
q(s)

− f ′(s)
t∫
s

dz

q(z)

)
H(ϕ(s)) ds−K(ϕ(t))

for t ≥ 0 we see that to prove Lemma 3 it is enough to show α(t) ≥ 0 and
β(t) ≤ 0 on [0,∞). Since

α′(t) =
f(t)
q(t)

H(ϕ(t))− 1
q(t)

t∫
0

f ′(s)H(ϕ(s)) ds−K ′(ϕ(t))ϕ′(t)

= − 1
q(t)

t∫
0

f ′(s)H(ϕ(s)) ds ≥ 0 ,

β′(t) =
f(t)
q(t)

H(ϕ(t))− 1
q(t)

t∫
0

f ′(s)H(ϕ(s)) ds−K ′(ϕ(t))ϕ′(t)

≤ f(t)− f(0)
q(t)

H(ϕ(t))− H(ϕ(t))
q(t)

t∫
0

f ′(s) ds = 0

for t > 0 and α(0) = 0 = β(0), we see α(t) ≥ 0, β(t) ≤ 0 on [0,∞) and
inequalities (10) are true.

3. Existence theorem. We define sequences {un} ⊂M , {vn} ⊂M by
the recurrence formulas

u0 = ϕ , un+1 = T (un) ,

v0 = ϕ , vn+1 = T (vn)

for n = 0, 1, 2, . . .

Theorem 1. Let assumptions (H1)–(H6) be fulfilled. Then the limits

lim
n→∞

un(t) =: u(t) , lim
n→∞

vn(t) =: u(t)

exist for all t ≥ 0. The functions u, u are solutions of (2), and if u is any
solution of (2) then

(11) u(t) ≤ u(t) ≤ u(t) for t ≥ 0 .
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P r o o f. By Lemma 3 we have

u0(t) ≤ u1(t) , v1(t) ≤ v0(t) for t ≥ 0 .

Since α, β ∈ M and α(t) ≤ β(t) for t ≥ 0 implies (Tα)(t) ≤ (Tβ)(t) for
t ≥ 0, we deduce

ϕ(t) = u0(t) ≤ u1(t) ≤ . . . ≤ un(t) ≤ . . . ≤ vn(t) ≤ . . . ≤ v1(t) ≤ v0(t) = ϕ(t)

for t ≥ 0 and n ∈ N. Therefore the limits limn→∞ un(t) =: u(t), limn→∞ vn(t)
=: u(t) exist for all t ≥ 0, ϕ(t) ≤ u(t) ≤ u(t) ≤ ϕ(t) on [0,∞) and using the
Lebesgue theorem we see that u, u are solutions of (3) and u, u ∈M .

If u ∈M is a solution of (3), by Lemma 2 we have

ϕ(t) ≤ u(t) ≤ ϕ(t) for t ≥ 0

and (11) follows by the monotonicity of T .

Lemma 3. If (2) admits two different solutions u and v, then u(t) 6= v(t)
for all t > 0.

P r o o f. Let u, v be two different solutions of (2). First, suppose there
exists a t1 > 0 such that u(t) < v(t) for t ∈ (0, t1) and u(t1) = v(t1). Since
H(u(t))−H(v(t)) < 0 on (0, t1), we have

K(u(t1))−K(v(t1)) =
t1∫
0

(
f(s)
q(s)
−f ′(s)

t1∫
s

dz

q(z)

)
(H(u(s))−H(v(s))) ds < 0,

contradicting K(u(t1)) = K(v(t1)).
Secondly, suppose there exist 0 < t1 < t2 such that u(tn) = v(tn) (n =

1, 2) and u(t) 6= v(t) on (t1, t2). Suppose

u(t) < v(t) for t ∈ (t1, t2) .

Then u′(t1) − v′(t1) ≤ 0, u′(t2) − v′(t2) ≥ 0, H(u(t)) − H(v(t)) < 0 on
(t1, t2), therefore

0 ≤ q(t2)k(u(t2))(u′(t2)− v′(t2))− q(t1)k(u(t1))(u′(t1)− v′(t1))

= −
t2∫
t1

f ′(s)(H(u(s))−H(v(s))) ds ≤ 0

and consequently, f ′(t) = 0 on [t1, t2]. Hence u′(t1) = v′(t1), f(t) =const
(=: k) for t ∈ [t1, t2] and

K(u(t))−K(v(t)) =
t∫

t1

k

q(s)
(H(u(s))−H(v(s))) ds for t ∈ [t1, t2] .
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Then we have

0 = K(u(t2))−K(v(t2)) =
t2∫
t1

k

q(s)
(H(u(s))−H(v(s))) ds ,

which contradicts H(u(t))−H(v(t)) 6= 0 for t ∈ (t1, t2).

4. Bounded and unbounded solutions

Theorem 2. Let assumptions (H1)–(H6) be fulfilled. Then

(i) some (and then any) solution of (2) is bounded if and only if
∞∫
0

ds

q(s)
<∞ ,

(ii) some (and then any) solution of (2) is unbounded if and only if
∞∫
0

ds

q(s)
=∞ .

P r o o f. First observe that either
∫∞
0
ds/q(s) <∞ or

∫∞
0
ds/q(s) =∞.

Suppose
∫∞
0
ds/q(s) < ∞. Then according to Lemma 2 any solution

of (3) (and by Lemma 1 also any solution of (2)) is bounded.
Suppose

∫∞
0
ds/q(s) =∞ and let u be a solution of (2). Then

K(u(t)) =
t∫

0

(
f(s)
q(s)

− f ′(s)
t∫
s

dz

q(z)

)
H(u(s)) ds for t ≥ 0 ,

and for t ≥ t1, where t1 is a positive number, we have

K(u(t)) =
t1∫
0

(
f(s)
q(s)

− f ′(s)
t∫
s

dz

q(z)

)
H(u(s)) ds

+
t∫

t1

(
f(s)
q(s)

− f ′(s)
t∫
s

dz

q(z)

)
H(u(s)) ds

≥ H(u(t1))
t∫

t1

(
f(s)
q(s)

− f ′(s)
t∫
s

dz

q(z)

)
ds

= H(u(t1))f(t1)
t∫

t1

dz

q(z)
.

Therefore limt→∞K(u(t)) =∞ and u is necessarily unbounded.
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5. Uniqueness theorem

Theorem 3. Let assumptions (H1)–(H6) be fulfilled. Assume that there
exists ε > 0 such that the modulus of continuity γ(t) (:= sup{|q(t1)− q(t2)|;
t1, t2 ∈ [0, ε], |t1 − t2| ≤ t}) of q on [0, ε] satisfies

lim sup
t→0+

γ(t)/t <∞ .

Then (2) admits a unique solution.

P r o o f. According to Lemma 1 and Theorem 1, it is sufficient to show
that (3) admits a unique solution, that is, u = u, where u, u are defined in
Theorem 1. Since 0 < u(t) ≤ u(t) on (0,∞), we see that u′(t) > 0, u′(t) > 0
for t > 0. Set u1 = u, u2 = u, Ai = limt→∞ ui(t) and wi = u−1

i , where u−1
i

denotes the inverse function to ui (i = 1, 2). Then

w′i(x) = q(wi(x))k(x)
[ x∫

0

f(wi(s))h(s) ds
]−1

for x ∈ (0, Ai), i = 1, 2

and

wi(x) =
x∫

0

q(wi(s))k(s)
[ s∫

0

f(wi(z))h(z) dz
]−1

ds for x ∈ [0, Ai), i = 1, 2 .

Therefore, for x ∈ [0, A1) we have

(0 ≤) w1(x)− w2(x)(12)

=
x∫

0

(q(w1(s))− q(w2(s)))k(s)
[ s∫

0

f(w2(z))h(z) dz
]−1

ds

+
x∫

0

{
q(w1(s))k(s)

[ s∫
0

f(w1(z))h(z) dz
s∫

0

f(w2(z))h(z) dz
]−1

×
s∫

0

(f(w2(z))− f(w1(z)))h(z) dz
}
ds .

Define a = u1(ε), X(x) = max{w1(t) − w2(t) ; 0 ≤ t ≤ x} for x ∈ [0, a].
Suppose X(x) > 0 on (0, a]. Then

|q(w1(x))− q(w2(x))| ≤ γ(X(x)) for x ∈ [0, a]

and using (12) we have

w1(x)− w2(x) ≤ (LX(x) + Tγ(X(x)))V (x) for 0 ≤ x ≤ a ,
where

T =
1

f(ε)
, L = T 2 max

t∈[0,ε]
f ′(t) max

t∈[0,ε]
q(t) .

Hence
X(x) ≤ (LX(x) + Tγ(X(x)))V (x)
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and
γ(X(x))
X(x)

V (x) ≥ (1− LV (x))T−1 for x ∈ (0, a] .

By the assumption of Theorem 2, lim supx→0+ γ(X(x))/X(x) < ∞,
therefore limx→0+(γ(X(x))/X(x))V (x) = 0, which contradicts the fact that
limx→0+(1 − LV (x))T−1 = T−1. This proves that there exists an interval
[0, b] (0 < b ≤ ∞) such that u1 = u2 on [0, b].

Assume u1 6≡ u2 on [0,∞) and let [0, c] be the maximal interval where
u1(t) = u2(t). Define

Y (t) = max{u2(s)− u1(s) ; c ≤ s ≤ t} for t ≥ c .

Then Y (c) = 0 and Y (t) > 0 for all t > c. Since

K(u2(t))−K(u1(t)) =
t∫
c

(
f(s)
q(s)

−f ′(s)
t∫
s

dz

q(z)

)
(H(u2(s))−H(u1(s))) ds

for t ≥ c, we have

u2(t)− u1(t) ≤ L1Y (t)
t∫
c

(
f(s)
q(s)

− f ′(s)
t∫
s

dz

q(z)

)
ds for t ∈ [c, c+ 1] ,

where

L1 = max{h(u) ;u ∈ [u1(c), u2(c+ 1)]}[min{k(u) ;u ∈ [u1(c), u2(c+ 1)]}]−1 .

Hence

Y (t) = L1Y (t)
t∫
c

(
f(s)
q(s)

− f ′(s)
t∫
s

dz

q(z)

)
ds

and

1 ≤ L1

t∫
c

(
f(s)
q(s)

− f ′(s)
t∫
s

dz

q(z)

)
ds for t ∈ (c, c+ 1] ,

which is a contradiction. This completes the proof.

6. Dependence of solutions on the parameter. Consider the dif-
ferential equation

(13) (q(t)k(u)u′)′ = λf(t)h(u)u′ , λ > 0 ,

depending on the positive parameter λ. Assume that assumptions (H1)–
(H6) are satisfied. Set

ϕ(t;λ) = V −1

(
λ

t∫
0

f(s)
q(s)

ds

)
, ϕ(t;λ) = V −1

(
λf(0)

t∫
0

dz

q(z)

)
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and define

(Tλu)(t) = K−1

(
λ

t∫
0

(
f(s)
q(s)

− f ′(s)
t∫
s

dz

q(z)

)
H(u(s)) ds

)
,

u0(t;λ) = ϕ(t;λ) , un+1(t;λ) = (Tλun)(t) ,

v0(t;λ) = ϕ(t;λ) , vn+1(t;λ) = (Tλvn)(t)

for t ∈ [0,∞), λ ∈ (0,∞) and n ∈ N.

Theorem 4. Let assumptions (H1)–(H6) be fulfilled. Then the limits

(14) lim
n→∞

un(t;λ) =: u(t;λ) , lim
n→∞

vn(t;λ) =: u(t;λ)

exist for t ∈ [0,∞) and λ > 0. The functions u(t;λ) and u(t;λ) are solutions
of (13), and if u(t;λ) is any solution of (13) then

(15) u(t;λ) ≤ u(t;λ) ≤ u(t;λ) for t ≥ 0 .

Moreover , for all 0 < λ1 < λ2 we have

(16) u(t;λ1) < u(t;λ2) , u(t;λ1) < u(t;λ2) for t > 0 .

P r o o f. The proof of the existence of the limits limn→∞ un(t;λ) and
limn→∞ vn(t;λ) and of (15) is similar to the proof of Theorem 1 and therefore
it is omitted here.

Let 0 < λ1 < λ2. Then ϕ(t;λ1) < ϕ(t;λ2), ϕ(t;λ1) < ϕ(t;λ2) and
(Tλ1u)(t) < (Tλ2u)(t) for each u ∈ M and t > 0. Since H is strictly
increasing on [0,∞), we have

un(t;λ1) < un(t;λ2) , vn(t;λ1) < vn(t;λ2) for t > 0 and n ∈ N ,

and consequently,

u(t;λ1) ≤ u(t;λ2) , u(t;λ1) ≤ u(t;λ2) for t ≥ 0 .

If v(t0;λ1) = v(t0;λ2) for a t0 > 0, where v is either u or u, then in view of
Lemma 1 we get

λ1

t0∫
0

(
f(s)
q(s)

− f ′(s)
t0∫
s

dz

q(z)

)
H(v(s;λ1)) ds

= λ2

t0∫
0

(
f(s)
q(s)

− f ′(s)
t0∫
s

dz

q(z)

)
H(v(s;λ2)) ds ,

contradicting λ1 < λ2 and(
f(t)
q(t)

− f ′(t)
t0∫
t

ds

q(s)

)
(H(v(t;λ1))−H(v(t;λ2))) ≤ 0 for t ∈ (0, t0] .

Hence (16) is proved.
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Theorem 5. Let the assumptions of Theorem 3 be fulfilled and
∫∞
0
ds/q(s)

<∞. Then for each a ∈ (0,∞) there exists a unique λ0 > 0 such that equa-
tion (13) with λ = λ0 has a (necessarily unique) solution u(t;λ0) with

lim
t→∞

u(t;λ0) = a .

P r o o f. According to Theorem 3 equation (13) has for each λ > 0 a
unique solution u(t;λ), and by Theorem 1 this solution is bounded. Since
u(t;λ) is strictly increasing in t on [0,∞), we can define g : (0,∞)→ (0,∞)
by

g(λ) = lim
t→∞

u(t;λ) .

According to Theorem 4, g is nondecreasing on (0,∞). If g(λ1) = g(λ2) for
some 0 < λ1 < λ2, then

∞∫
0

(
f(s)
q(s)

− f ′(s)
∞∫
s

dz

q(z)

)
(H(u(s;λ2))−H(u(s;λ1))) ds = 0 ,

contradicting H(u(t;λ1)) − H(u(t;λ2)) < 0 for t ∈ (0,∞). Hence g is
strictly increasing on (0,∞). To prove Theorem 5 it is enough to show that
g maps (0,∞) onto itself. First, we see from ϕ(t;λ) ≤ u(t;λ) ≤ ϕ(t;λ) that
limλ→0+ g(λ) = 0 and limλ→∞ g(λ) =∞. Secondly, assume to the contrary

lim
λ→λ−0

g(λ) < lim
λ→λ+

0

g(λ)

for a λ0 > 0. Setting

v1(t) = lim
λ→λ−0

u(t;λ) , v2(t) = lim
λ→λ+

0

u(t;λ) for t ≥ 0 ,

we get v1 6= v2. On the other hand, using the Lebesgue dominated conver-
gence theorem as λ→ λ−0 and λ→ λ+

0 in the equality

u(t;λ) = K−1

[
λ

t∫
0

(
f(s)
q(s)

− f ′(s)
t∫
s

dz

q(z)

)
H(u(s;λ)) ds

]
we see that

vi(t) = K−1

[
λ0

t∫
0

(
f(s)
q(s)

− f ′(s)
t∫
s

dz

q(z)

)
H(vi(s)) ds

]
for t ≥ 0 and i = 1, 2.

Therefore v1, v2 are solutions of (13) with λ = λ0, contradicting the fact
that equation (13) with λ = λ0 has a unique solution.
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References

[1] F. V. Atk inson and L. A. Pe let ie r, Similarity profiles of flows through porous
media, Arch. Rational Mech. Anal. 42 (1971), 369–379.

[2] —, —, Similarity solutions of the nonlinear diffusion equation, ibid. 54 (1974), 373–
392.

[3] J. Bear, D. Zas lavsky and S. I rmay, Physical Principles of Water Percolation
and Seepage, UNESCO, 1968.

[4] J. Goncerzewicz, H. Marc inkowska, W. Okras i ń sk i and K. Tabisz, On the
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