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Nonnegative solutions of a class
of second order nonlinear differential equations

by S. STANEK (Olomouc)

Abstract. A differential equation of the form
(a(®)k(u)u’)" = Af (&) h(u)u’

depending on the positive parameter ) is considered and nonnegative solutions u such that
u(0) = 0, u(t) > 0 for ¢ > 0 are studied. Some theorems about the existence, uniqueness
and boundedness of solutions are given.

1. Introduction. In [6] the equation

(1) (k(u)u) = f(O)

was considered and the author has given sufficient conditions for the exis-
tence and uniqueness of nonnegative solutions u such that u(0) = 0, u(t) > 0
for t > 0. This problem is connected with the description of the mathemat-
ical model of the infiltration of water. For more details see e.g. [3]-[5].

In [4] and [5] the existence and uniqueness of nonnegative solutions was
proved for the differential equations

(wu') = (1 —t)u"  (t€]0,1])
and
(uwu') = A7 (A>1).

The methods are based on the special form of the equations and on the
Banach fixed point theorem. In [1] and [2], the following equation was
considered:

(k(w)u') = (1 —t)u'.
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In this paper we consider the equation

(2) (q(®)k(u)u’)” = f(t)h(w)u’

which is a generalization of (1), and give sufficient conditions for the exis-
tence and uniqueness of solutions u of (2) satisfying w(0) = 0, u(¢) > 0 for
t > 0, as well as for their boundedness and unboundedness. In the last sec-
tion we discuss the dependence of solutions of the equation (q(¢)k(u)u')" =
Af(t)h(u)u' on the positive parameter A and we consider the boundary value
problem (q(t)k(u)u') = Af(t)h(u)u', lim;_ o u(t; A) = a (€ (0,00)). In ac-
cordance with [6] the proof of the existence theorem is based on an iter-
ative method and a monotone behaviour of some operator. The proof of
the uniqueness is different from the one in [6]. For the special case of (2),
namely (1), we obtain the same results as in [6] (where [ (k(s)/s)ds = oo
should be required).

2. Notations, lemmas. We will consider the differential equation (2)
in which g, k, f, h satisfy the following assumptions:

dt
(Hy) q€C°J0,)), q(t) > 0 for all ¢ > 0 and f — < 00;
g a(t)

(Hy) ke C%0,00)), k(0) =0, k(u) > 0 for all u > 0;
(H3) fk(ss)ds<ooand j‘Okf)dS:oo;

(Hy) feC([0,00)), f(t) >0, f'(t) <0 for all t > 0;

(Hs) h € C°J0,00)), h(u) > 0 and the function H(u) := fuh(s) ds is
0

strictly increasing for all u > 0;

H(u)) du < oo and f Z_((Z)> du = oo.
By a solution of (2) we mean a function u € C°([0,0)) N C1((0,0))
such that «(0) = 0, u(t) > 0 for all t > 0, lim; .o+ g(¢t)k(u(t))u/(t) = 0,
q(t)k(u(t))u'(t) is continuously differentiable for all ¢ > 0 and (2) is satisfied
n (0, 00).
For u € [0,00) we define the strictly increasing functions K and V' by

= f k(s)ds
0

(He)

—_~ —
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Clearly K € C([0,00)), V € C°([0,00))NC((0, 00)), limy 00 K(u) = 00 =
limy, o0 V().
Set M = {u;u € C°(]0,00)), u(0) =0, u(t) >0 for t > 0}.

LEMMA 1. If u is a solution of (2), then u is a solution of the integral
equation

3) Koy = [ (52 -1 [ 25 ) ) as
0

q(s) 7 q(z)
and conversely, if u € M is a solution of (3), then u is a solution of (2).

Proof. Let u be a solution of (2). Integrating (2) from a (> 0) to t, we
obtain

4 (K@) = q(lt) £t H () - f £'(s)H (u(s)) ds|
for t > 0, and integrating (4) from 0 to ¢, we have
K (u(t)) = f e H ) - f f(2)H (u(2) dz] ds
- f (221 f 5 ) as

and consequently, u is a solution of (3).
Now, let u € M be a solution of (3). Then

o =" [ (2D g [ s

J \g(s) e

for t > 0, where K ! denotes the inverse function to K on [0, c0). From (4)
it follows that v’ € C°((0,00)) and

1

VO = R

[FOH@®) — [ f(s)H (u(s)ds]
0
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therefore
(6) g(O)k(u()u'(t) = FO) H (u(t)) — [ f'(s)H (u(s))ds .
Hence

Jim g(Ok(u()u'(t) =0, a(®)k(u(®)'(t) € C*((0,00)),
(g@®k(u®)d' (1) = f)h(u®)u'(t) fort>0,
consequently, u is a solution of (2).

Remark 1. It follows from Lemma 1 that solving (2) is equivalent to
solving the integral equation (3) in the set M.

LEMMA 2. If u € M is a solution of (3), then

t

(7) V—1<0ft§((j))ds> gu(t)gv—l(f(o)bj“q‘(i;) for t>0.

Proof. Let u € M be a solution of (3). Then u/(t) > 0 for ¢t > 0 and
(cf. (6))

FOH (u(t)) < q(t)k(u(t))u'(t) < [f(t) — [ rs) dS}H(U(t))
0

= f(0)H (u(t))
hence
PO kW ® o 0
R0 Ry 70 R TO B
Integrating (8) from 0 to ¢, we obtain
- 1) pds
(9) fq(s)dsg qu(s for t >0
and (7) follows.
Define the operator T': M — M by
¢ dz
(Tu)(t) = K~ [()f(—f sfq(z> s} fort >0

and set

»() =V_1<Oft ‘g((ji ds), (1) :V‘1<f(0) Oft (;g;) for t > 0.
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LEMMA 3. Fort € [0, 00),
(10) (To)(t) =2 ¢(t), (To)) <P(t).
Proof. Setting

awz(f(ﬂ@—fw>f‘”)H@@»@—K@@»
0

o) e
m0:!<§3—ﬂﬁfqé>mﬂw%—KW@)

for t > 0 we see that to prove Lemma 3 it is enough to show a(t) > 0 and
B(t) <0 on [0,00). Since

=11 wm—&bjf@mwmm—wwwwm
:—J;jf®HW®Mww,

ﬁ%%égHM»—Jﬂjf®Mﬂw%—KW@W@
_fwéfmm<m—ﬂgﬁ)jﬂ@%=o

for t > 0 and a(0) = 0 = B(0), we see a(t) > 0, 3(t) < 0 on [0,00) and
inequalities (10) are true.

3. Existence theorem. We define sequences {u,} C M, {v,} C M by
the recurrence formulas

forn=0,1,2,...
THEOREM 1. Let assumptions (Hy)—(Hg) be fulfilled. Then the limits
lim u,(t) =: u(t), lim v, (t) =: u(t)
n—oo n—oo

exist for all t > 0. The functions u, T are solutions of (2), and if u is any
solution of (2) then

(11) u(t) <wu(t) <u(t) fort>0.
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Proof. By Lemma 3 we have
ug(t) <wui(t), wvi(t) <wp(t) fort>0.
Since a, 8 € M and «(t) < §(t) for t > 0 implies (T'a)(t) < (T5)(t) for
t > 0, we deduce
p(t) =uo(t) Sui(t) < ... Sup(t) <. <wp(t) <o S oi(t) <wo(t) = ()

fort > 0 and n € N. Therefore the limits lim,, oo w, (t) =: w(t), lim,— o v, (t)
=:u(t) exist for all ¢t > 0, p(t) < u(t) <u(t) < p(t) on [0,00) and using the
Lebesgue theorem we see that u, @ are solutions of (3) and u,u € M.

If u € M is a solution of (3), by Lemma 2 we have

o(t) <u(t) <p(t) fort>0

and (11) follows by the monotonicity of T'.

LEMMA 3. If (2) admits two different solutions u and v, then u(t) # v(t)
for allt > 0.

Proof. Let u, v be two different solutions of (2). First, suppose there
exists a t; > 0 such that u(t) < v(t) for t € (0,¢1) and u(t1) = v(t1). Since
H(u(t)) — H(v(t)) <0 on (0,t1), we have

Ku(t)-K(w(t) = [ (Z((j—f'(s) [ q‘fj))<H<u<s>>—H<v<s>>>ds<o,

contradicting K (u(t1)) = K(v(t1)).
Secondly, suppose there exist 0 < t; < t9 such that u(t,) = v(t,) (n =
1,2) and u(t) # v(t) on (t1,t2). Suppose

u(t) <wv(t) forte (t1,t2).

Then u'(t1) — v'(t1) < 0, v/(t2) — v'(t2) > 0, H(u(t)) — H(v(t)) < 0 on
(t1,t2), therefore

0 < q(ta)k(u(t2))(u'(ta) —v'(t2)) — q(ts)k(u(t))(u'(t1) —v'(t1))

—— [ PO H@E) - Ho(s) ds <0

and consequently, f/(t) = 0 on [t1,t3]. Hence u/(t1) = v'(¢1), f(t) =const
(=: k) for t € [t1,t2] and
K(u(t) - K(w(t) = [ =

t1

(H(u(s)) — H(v(s)))ds fort € [t1,ts].
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Then we have

0= K(u(t2) - Klolta)) = | 5 (H(u(s) ~ Ho(5)) ds.

which contradicts H(u(t)) — H(v(t)) # 0 for ¢ € (t1,t2).

4. Bounded and unbounded solutions

THEOREM 2. Let assumptions (Hy)—(Hg) be fulfilled. Then
(i) some (and then any) solution of (2) is bounded if and only if

g als) ’

(ii) some (and then any) solution of (2) is unbounded if and only if

F
Joals)
Proof. First observe that either [;* ds/q(s) < oo or [;* ds/q(s) = oc.

Suppose [ ds/q(s) < oo. Then according to Lemma 2 any solution
of (3) (and by Lemma 1 also any solution of (2)) is bounded.

Suppose [, ds/q(s) = oo and let u be a solution of (2). Then

Ku®) = [ (JC((S)—f'(s) de)H(u(s))ds for t > 0,

5 \als) q(2)

and for ¢ > t1, where 1 is a positive number, we have

= H(u(t1))f(t1) f —.

Therefore lim; ., K (u(t)) = oo and w is necessarily unbounded.
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5. Uniqueness theorem

THEOREM 3. Let assumptions (Hy)—(Hg) be fulfilled. Assume that there
exists € > 0 such that the modulus of continuity y(t) (:= sup{|q(t1) — q(t2)|;
t1,t2 € [0,¢], [t1 —t2| < t}) of q on [0,¢] satisfies

limsupy(t)/t < co.
t—0t+

Then (2) admits a unique solution.

Proof. According to Lemma 1 and Theorem 1, it is sufficient to show
that (3) admits a unique solution, that is, u = W, where u, @ are defined in
Theorem 1. Since 0 < u(t) <u(t) on (0,00), we see that v/(t) > 0, @'(t) > 0
for t > 0. Set u; = u, ug =, A; = limy_, o u;(t) and w; = ui_l, where u;
denotes the inverse function to u; (i = 1,2). Then

W' (z) :q(wi(x))k(a:)[ [ Flwi(s)h(s) dsr for z € (0, 4;), i =1,2
0
and
w;(x) = f q(wi(s))k(s){ f f(wi(2))h(2) dz]ilds for x € [0,4;), i=1,2.

Therefore, for x € [0, A1) we have
(12) (0 <) wi(z) — wa(z)

= [ (awr(s) ~ alwals)K)| [ Fua()h)dz] ds
0

Define a = wu;(e), X(z) = max{w(t) — wa(t);0 < t < a} for x € [0,qa).
Suppose X (z) > 0 on (0, a]. Then

|q(wi(2)) = q(wa(2))] < (X (2)) for z € [0,q]
and using (12) we have
wy(z) —wa(zr) < (LX(x) +Tvy(X(2)))V(x) for0<z<a,

where
1
T—=_ L=T1? "(¢ t).
fle)’ rel0e) A )fé“[%?; a(®)
Hence

X(x) < (LX(2) + T(X (2)))V (2)
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and
X

’Y(X((;)))V(x) > (1—LV(2)T™' forx e (0,a].
By the assumption of Theorem 2, limsup,_ o+ 7(X(z))/X(z) < o0,
therefore lim, o+ (7(X (z))/X (z))V (x) = 0, which contradicts the fact that
lim, o+ (1 — LV (z))T~! = T~!. This proves that there exists an interval
[0,0] (0 < b < o0) such that u; = uz on [0, b].

Assume u; # uz on [0,00) and let [0, c] be the maximal interval where

u1(t) = ua(t). Define

Y (t) = max{uz(s) —ui(s); c<s<t} fort>c.

Then Y(c¢) =0 and Y (¢) > 0 for all ¢ > ¢. Since

K(ua(t) - K(u(®) = [ (f B ps) [ “)<H<u2<s>>—H<u1<s>>>ds

for t > ¢, we have

t t
ug(t) —ui(t) < LY f( s) )fdz>ds fort € [c,c+1],

where

Ly = max{h(u) ;u € [ur(c), uz(c+ 1)} min{k(u) ;u € [ur(c),uz(c+1)]}] 7"
Hence
O g Y g
t)J]<Q@) A )!1q@)>d
and

q(s) q(=

which is a contradiction. This completes the proof.

1< Iy f (M_f’(s)f dz)>d5 fort € (c,c+1],

6. Dependence of solutions on the parameter. Consider the dif-
ferential equation

(13) (@@Oku’) = AfOh(u)u’, A >0

depending on the positive parameter A. Assume that assumptions (H;)—
(Hg) are satisfied. Set

o= (1) o=y )
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and define

¢ ¢
o =1 (3 [ () 10 [ ) Hee)as),
uo(t; A) = @(A), ungr(tA) = (Thun)(t),
vo(t;A) =2t A),  vnga(t;A) = (Town)(1)

for t € [0,00), A € (0,00) and n € N.

THEOREM 4. Let assumptions (Hy)—(Hg) be fulfilled. Then the limits
(14) nhi& un(t; N) = u(t; N, nlirgo U (6 A) = 1(t; N)
exist fort € [0,00) and A > 0. The functions u(t; \) and u(t; \) are solutions
of (13), and if u(t; \) is any solution of (13) then

(15) u(t; ) <wu(t;\) <a(t;\)  fort>0.
Moreover, for all 0 < Ay < Ay we have
(16) y(t; )\1> < g(t; )\2) , ﬁ(t; Al) < ﬂ(t; )\2) fOT t>0.

Proof. The proof of the existence of the limits lim,, o uy(¢; A) and
lim,, 00 vy (t; A) and of (15) is similar to the proof of Theorem 1 and therefore
it is omitted here.

Let 0 < A1 < Aa. Then ¢(t; A1) < @(t; X2), @(t; A1) < @(t; A2) and
(Th,u)(t) < (Tr,u)(t) for each u € M and t > 0. Since H is strictly
increasing on [0, 00), we have

Un(t; A1) < up(t;A2),  vn(t; A1) <vp(t;A2) fort>0and n €N,
and consequently,
u(t; A1) <wu(t;Ae),  a(t;Ar) <a(t;Ag) fort >0.

If v(to; A1) = v(to; A2) for a to > 0, where v is either u or @, then in view of
Lemma 1 we get

M ] (JC(S) — F(s) ] dz)H(v(s;Al))ds

g \a(s) q(2)

= ( f(s)_ "(s toﬁ v(s: S
= [ (-0 [ g )Heteaas

contradicting A\; < Ay and

f(t)_ ! toﬁ v(t; — v(t: or
(q(t) S tf q(s)>(H( (M) — H(u(t: A2))) <0 for t € (0,2] .

Hence (16) is proved.
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THEOREM 5. Let the assumptions of Theorem 3 be fulfilled and fooo ds/q(s)
< 00. Then for each a € (0,00) there exists a unique Ag > 0 such that equa-
tion (13) with A = Ao has a (necessarily unique) solution wu(t; \o) with

tlim u(t; o) = a.

Proof. According to Theorem 3 equation (13) has for each A > 0 a
unique solution u(t; A), and by Theorem 1 this solution is bounded. Since
u(t; A) is strictly increasing in ¢ on [0, 00), we can define g : (0,00) — (0, 00)
by

gN) = Jim u(t ).

According to Theorem 4, g is nondecreasing on (0, 00). If g(A1) = g(A2) for
some 0 < A1 < Ao, then

r(fs) T dz
— f(s) (H (u(s; A2)) — H(u(s; M1))) ds = 0,
Of <q(5) f Q(Z)>

contradicting H(u(t; A1) — H(u(t; A2)) < 0 for ¢ € (0,00). Hence g is
strictly increasing on (0, 00). To prove Theorem 5 it is enough to show that
g maps (0, 00) onto itself. First, we see from ¢(t; A) < u(t; \) < @(¢; A) that
limy_,o+ g(A) = 0 and limy_,, g(A) = co. Secondly, assume to the contrary

lim g(\) < lim g(\)
A=Ay A=At

for a Ao > 0. Setting

v1(t) = lim wu(t; N), wva(t) = hm u(t; A)  fort >0,
A=Ay )\—>)\

we get v1 # ve. On the other hand, using the Lebesgue dominated conver-
gence theorem as A — Ay and A — /\ar in the equality

u(t;)\):Kl[ ()f(j—f jq‘i) s)\))ds}

S

we see that
o f (-0 f e

fort >0andi=1,2.
Therefore vy, vo are solutions of (13) with A = \g, contradicting the fact
that equation (13) with A = )¢ has a unique solution.
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