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On topological invariants of vector bundles

by Zbigniew Szafraniec (Gdańsk)

Abstract. Let E →W be an oriented vector bundle, and let X(E) denote the Euler
number of E. The paper shows how to calculate X(E) in terms of equations which describe
E and W .

Introduction. Let F = (F1, . . . , Fk) : Rn → Rk, n − k > 0, be a
C1-map such that W = F−1(0) is compact and rank[DF (x)] ≡ k at every
x ∈ W . From the implicit function theorem W is an (n − k)-dimensional
C1-manifold.

Let G1, . . . , Gs : Rn→Rm, where m = s+n−k, be a family of C1-vector
functions, and assume that the vectors G1(x), . . . , Gs(x) are linearly inde-
pendent for every x ∈W . Define

E = {(x, y) ∈W × Rm | y ⊥ Gi(x), i = 1, . . . , s}

=
{

(x, y) ∈W × Rm
∣∣∣ ∑ yjG

j
i (x) = 0, i = 1, . . . , s

}
.

Clearly E is an (n− k)-dimensional vector bundle over W . In particular, if
s = k and Gi = gradFi then E becomes TW . Later we shall describe how
to orient W and E.

Let X(E) be the Euler number of the bundle E (see [1], Chapter 5.2).
The problem is how to calculate X(E) in terms of F and G1, . . . , Gs.

Let SR = {(x, λ) ∈ Rn×Rs | ‖x‖2 +‖λ‖2 = R2}, and let H : Rn×Rs →
Rm × Rk be the map given by

H(x, λ) =
( s∑

i=1

λiGi(x) , F (x)
)
,

where λ = (λ1, . . . , λs).
Take R > 0 such that W ⊂ {x ∈ Rn | ‖x‖ < R}. It is easy to see that

H|SR : SR → Rm × Rk − {0}. Since n+ s = m+ k, the topological degree
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deg(H|SR) of the map H|SR is well defined. We shall prove (see Theorem 4)
that

X(E) = (−1)n(s+k)+k deg(H|SR) .

As a corollary we get a formula (see Theorem 5) which expresses the
Euler characteristic χ(W ) in terms of F . A very similar formula has been
proved in [2]. The advantage of the present work is that it is usually
easy to find the appropriate value of R. The same is not necessarily true
in [2].

2. Preliminaries. We assume that every space Rn, n > 0, has the
canonical orientation corresponding to its canonical ordered basis.

Let F = (F1, . . . , Fk) : Rn → Rk be a C1-map as above. For each x ∈W
there is a natural inclusion TxW ⊂ Rn. Vectors ξk+1, . . . , ξn ∈ TxW are said
to be positively oriented if gradF1(x), . . . , gradFk(x), ξk+1, . . . , ξn form a
positively oriented basis in Rn. From now on we assume W to be equipped
with this orientation.

Let G1, . . . , Gs : Rn → Rm, m = s + n − k, and the vector bundle E
over W be as in the introduction. If E(x) is the fibre of E over x ∈ W
then there is a natural inclusion E(x) ⊂ Rm. Vectors vs+1, . . . , vm ∈ E(x)
are said to be positively oriented if G1(x), . . . , Gs(x), vs+1, . . . , vm form a
positively oriented basis in Rm. So E is an (n − k)-dimensional oriented
vector bundle.

Let

E′ = {(x, y) ∈W × Rm | y ∈ span(G1(x), . . . , Gs(x))} .

Then E′ is a trivial vector bundle over W such that E ⊕ E′ is trivial.
Let p : W → E be a C1-section of E such that p(x) = 0, for some

x ∈ W . There are C1-sections vs+1, . . . , vm : U → E defined in some open
neighbourhood U of x in W such that vs+1(x), . . . , vm(x) are linearly in-
dependent and positively oriented in E(x). The sections vs+1, . . . , vm de-
fine a trivialization of E over U , and thus there are unique C1-functions
ts+1, . . . , tm : U → R such that p =

∑m
i=s+1 tivi over U . Let (xk+1, . . . , xn)

be a positively oriented coordinate system in some neighbourhood of x
in W .

Definition. ind(p, x) = sign
∂(ts+1, . . . , tm)
∂(xk+1, . . . , xn)

(x).

One can prove that the definition of ind(p, x) does not depend on the
choice of vs+1, . . . , vm and (xk+1, . . . , xn). Note that if the section p is
transversal to the zero-section at x then ind(p, x) is the index of p at x
(see [1], Chapter 5.2).
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Let P = (P 1, . . . , Pm) : Rn → Rm be a C1-vector function. There
are sections p : W → E, p′ : W → E′ such that P |W = p + p′. Let
H̃ : Rn × Rs → Rm × Rk be given by

H̃(x, λ) =
(
P (x) +

s∑
d=1

λdGd(x), F (x)
)
.

Lemma 1. A point x ∈ Rn is in p−1(0) ⊂ W if and only if there is a
unique λ ∈ Rs such that H̃(x, λ) = 0.

P r o o f. (⇒) If p(x) = 0 then P (x) = p′(x) ∈ E′(x), where E′(x) is the
fibre of E′ over x. The vectors G1(x), . . . , Gs(x) form a basis in E′(x), and
thus there is a unique λ = (λ1, . . . , λs) ∈ Rs such that

P (x) +
s∑

d=1

λdGd(x) = 0 .

Since x ∈W = F−1(0), we get H̃(x, λ) = 0.
(⇐) Clearly x ∈W , P (x) = p(x) + p′(x) ∈ span(G1(x), . . . , Gs(x)), and

so p(x) = 0.

From now on we assume that x ∈ p−1(0). Let λ ∈ Rs be as in Lemma 1.
Since n+ s = m+ k, the derivative matrix DH̃(x, λ) is a square matrix.

Lemma 2. ind(p, x) = (−1)n(s+k)+k sign det[DH̃(x, λ)].

P r o o f. We can find a coordinate system (x1, . . . , xn) in Rn such that

(1)
∂Fi

∂xj
(x) = 0 ,

for every 1 ≤ i ≤ k, j ≥ k + 1. Let

A =
[
∂Fi

∂xj
(x)
]
1≤i,j≤k

.

From (1) and from the fact that rank[DF (x)] = k we deduce that det[A] 6= 0.
For x = (x1, . . . , xn) ∈ Rn we write x = (x′, x′′), where x′ = (x1, . . . , xk)

∈ Rk, x′′ = (xk+1, . . . , xn) ∈ Rn−k. From the implicit function theorem
there is a germ of a C1-function ψ = (ψ1, . . . , ψk) : (Rn−k, x′′) → (Rk, x′)
such that

(2) Fi(ψ(x′′), x′′) ≡ 0 , 1 ≤ i ≤ k .

Since graphψ = W in some neighbourhood of x, we can treat (xk+1, . . . , xn)
as a coordinate system in some neighbourhood of x in W . From (1)

(3) the coordinate system (xk+1, . . . , xn) is positively oriented if and only
if det[A] > 0.
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From (1), (2), for every 1 ≤ i ≤ k, j ≥ k + 1 we have

∂

∂xj
[Fi(ψ(x′′), x′′)](x′′) =

∂Fi

∂x1
(x)

∂ψ1

∂xj
(x′′) + . . .+

∂Fi

∂xk
(x)

∂ψk

∂xj
(x′′) = 0 .

The matrix A is non-singular, and therefore

(4)
∂ψi

∂xj
(x′′) = 0 , for 1 ≤ i ≤ k , j ≥ k + 1 .

There are C1-vector maps Vs+1, . . . , Vm : Rn → Rm defined in some
neighbourhood of x such that Vs+1(x), . . . , Vm(x) form a positively oriented
basis in E(x). WriteGd = (G1

d, . . . , G
m
d ), 1 ≤ d ≤ s, and Vd = (V 1

d , . . . , V
m
d ),

s + 1 ≤ d ≤ m. Since s < m, after an orientation preserving change of
coordinates in Rm we may assume that

(5)
Gi

d(x) = δdi , for 1 ≤ d ≤ s ,
V i

d (x) = δdi , for s+ 1 ≤ d ≤ m,

where δdi is the Kronecker delta.
There are C1-functions T1, . . . , Tm : Rn → R defined in a neighbourhood

of x such that

P =
s∑

d=1

TdGd +
m∑

d=s+1

TdVd .

Since p(x) = 0, we have (T1(x), . . . , Ts(x)) = −λ and Ts+1(x) = . . . =
Tm(x) = 0. Let θ : (Rn−k, x′′) → (W,x) be given by θ(x′′) = (ψ(x′′), x′′),
and let pi = P i ◦ θ, ti = Ti ◦ θ, gi

d = Gi
d ◦ θ and vi

d = V i
d ◦ θ. Then

(6) (t1(x′′), . . . , ts(x′′)) = −λ , ts+1(x′′) = . . . = tm(x′′) = 0 .

Let Z : Rn → R be a C1-function and let z : Rn−k → R be given by
z = Z ◦ θ. From (4) we have

(7)
∂z

∂xj
(x′′) =

k∑
i=1

∂Z

∂xi
(x)

∂ψi

∂xj
(x′′) +

∂Z

∂xj
(x) =

∂Z

∂xj
(x) ,

for k + 1 ≤ j ≤ n.
Take i ∈ {s+ 1, . . . ,m}, j ∈ {k + 1, . . . , n}. Then

pi =
s∑

d=1

tdg
i
d +

m∑
d=s+1

tdv
i
d ,

and therefore, from (5) and (6),

∂pi

∂xj
(x′′) = −

s∑
d=1

λd
∂gi

d

∂xj
(x′′) +

∂ti
∂xj

(x′′) ,
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and so, from (7), we have

∂ti
∂xj

(x′′) =
∂P i

∂xj
(x) +

s∑
d=1

λd
∂Gi

d

∂xj
(x) .

Let mij be the above expression, and let M = [mij ]s+1≤i≤m,k+1≤j≤m.
From (1) and (5) it is easy to see that the derivative matrix DH̃(x, λ) has
the form  ? ? I

? M 0
A 0 0

 ,
where I is the s × s identity matrix, so det[DH̃(x, λ)] = (−1)n(s+k)+k ×
det[M ] det[A]. By (3),

ind(p, x) = (−1)n(s+k)+k sign det[DH̃(x, λ)] .

3. Main theorem. Let H : Rn × Rs → Rm × Rk be given by

H(x, λ) =
( s∑

i=1

λiGi(x), F (x)
)
.

Lemma 3. H−1(0) = W × {0}.

P r o o f. If (x, λ) ∈ H−1(0) then F (x) = 0, i.e. x ∈ W . By our assump-
tion, the vectors G1(x), . . . , Gs(x) are linearly independent, and so λ = 0.

Let BR = {(x, λ) | ‖x‖2 + ‖λ‖2 < R2} and SR = ∂BR. Since W is
compact, by the above lemma there is R > 0 such that H−1(0) ⊂ BR.
Hence H|SR : SR → Rm × Rk − {0}. Let deg(H|SR) be the topological
degree of H|SR.

Theorem 4. X(E) = (−1)n(s+k)+k deg(H|SR).

P r o o f. Let DR = {x ∈ Rn | ‖x‖ < R}. For each C1-map P : Rn → Rm

there are sections p : W → E, p′ : W → E′ such that P |W = p + p′. For
each ε > 0 we can choose P so that

(1) sup
x∈DR

‖P (x)‖ < ε ,

(2) if p(x) = 0 then ind(p, x) 6= 0, i.e. p is transversal to the zero-section.

Let H̃ = H̃(x, λ) = (P (x)+
∑s

i=1 λiGi(x), F (x)) . From (1) and Lemma
3 we can show (using Cramer’s rule) that H̃−1(0) lies close to W ×{0} and
thus, for small ε, H̃−1(0) ⊂ BR. The manifold W is compact and so, from
(2) and Lemma 1, H̃−1(0) is finite, say H̃−1(0) = {(x1, λ1), . . . , (xm, λm)}.
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Then p−1(0) = {x1, . . . , xm} and according to the definition of X(E) (see
[1], Chapter 5.2) and Lemma 2

X(E) =
m∑

j=1

ind(p, xj) = (−1)n(s+k)+k
m∑

j=1

sign det[DH̃(xj , λj)] .

Clearly the last sum equals deg(H̃|SR), and since H|SR and H̃|SR are ho-
motopic for ε small enough, we conclude that

X(E) = (−1)n(s+k)+k deg(H|SR) .

Clearly TW = {(x, y) ∈ W × Rn | y ⊥ gradFi(x), i = 1, . . . , k}. It is
well known that X(TW ) = χ(W ), where χ(W ) is the Euler characteristic of
W . Let H : Rn × Rk → Rn × Rk be given by

H(x, λ) =
( k∑

i=1

λi gradFi(x), F (x)
)
.

As above, there is R > 0 such that H−1(0) ⊂ BR and so we have a contin-
uous map H|SR : SR → Rn ×Rk −{0}. As a consequence of Theorem 4 we
have

Theorem 5. χ(W ) = (−1)k deg(H|SR).

A very similar version of the above theorem has been proved in [2].

Example 1. Let W = S2 = {x ∈ R3 | x2
1 + x2

2 + x2
3 − 1 = 0}, let

G = G(x) = (3 + x1x2 − x2
3, x1x2 − x2, x1 − x2x3), and let E1 = {(x, y) ∈

S2 × R3 | y ⊥ G(x)}. Then

H = H(x, λ)

= (3λ+ x1x2λ− x2
3λ, x1x2λ− x2λ, x1λ− x2x3λ, x

2
1 + x2

2 + x2
3 − 1)

and R = 2. Thanks to a computer program written by Marek Izydorek
and S lawomir Rybicki from the Mathematical Department of the Technical
University of Gdańsk we have been able to calculate that deg(H|S2) = 0,
so X(E) = 0.

Example 2. Let G = G(x) = (3x1 + x1x
2
2, 3x2 + x2x3, 3x3), and let

E2 = {(x, y) ∈ S2 × R3 | y ⊥ G(x)}. Then

H = H(x, λ) = (3x1λ+ x1x
2
2λ, 3x2λ+ x2x3λ, 3x3λ, x

2
1 + x2

2 + x2
3 − 1)

and R = 2. As above we have calculated that deg(H|S2) = −2, so X(E) = 2.

The author wants to express his gratitude to Marek Izydorek and S la-
womir Rybicki for their cooperation.
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WITA STWOSZA 57

80-952 GDAŃSK, POLAND
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