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On topological invariants of vector bundles

by ZBIGNIEW SZAFRANIEC (Gdarnisk)

Abstract. Let E — W be an oriented vector bundle, and let X(E) denote the Euler
number of E. The paper shows how to calculate X(F) in terms of equations which describe
E and W.

Introduction. Let F = (Fy,...,F) : R* — R¥, n—k > 0, be a
Cl-map such that W = F~1(0) is compact and rank[DF(x)] = k at every
x € W. From the implicit function theorem W is an (n — k)-dimensional
Cl-manifold.

Let G1,...,G, : R* —=R™, where m = s+n—k, be a family of C''-vector
functions, and assume that the vectors G1(z),...,Gs(z) are linearly inde-
pendent for every x € W. Define

E={(r,y) e WxR" |y L Gi(x), i=1,...,s}
:{(x,y)eWx]Rm‘ Zijg(:r):O, izl,...,s}.

Clearly F is an (n — k)-dimensional vector bundle over W. In particular, if
s = k and G; = grad F; then F becomes TW. Later we shall describe how
to orient W and E.

Let X(E) be the Euler number of the bundle E (see [1], Chapter 5.2).
The problem is how to calculate X(E) in terms of F' and Gy, ..., Gs.

Let Sg = {(x,\) € R" xR® | ||lz|>+ | \|*> = R?*}, and let H : R" x R® —
R™ x R* be the map given by

H(z,A) = (D NiGile), F(a)) |
i=1
where A = (A1,...,As).
Take R > 0 such that W C {x € R"™ | ||z|| < R}. It is easy to see that
H|Sg : Sp — R™ x R* — {0}. Since n + s = m + k, the topological degree
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deg(H|SR) of the map H|Sg is well defined. We shall prove (see Theorem 4)
that

X(E) = (=1)"+h+k qeg(H|SR) .

As a corollary we get a formula (see Theorem 5) which expresses the
Euler characteristic x(W) in terms of F. A very similar formula has been
proved in [2]. The advantage of the present work is that it is usually
easy to find the appropriate value of R. The same is not necessarily true
in [2].

2. Preliminaries. We assume that every space R", n > 0, has the
canonical orientation corresponding to its canonical ordered basis.

Let ' = (Fy,...,Fg) : R® — R* be a C'-map as above. For each z € W
there is a natural inclusion T,,W C R”. Vectors &x11,...,&, € T, W are said
to be positively oriented if grad Fi(x),...,grad Fx(x), &kt1,...,&, form a
positively oriented basis in R”. From now on we assume W to be equipped
with this orientation.

Let Gq,...,Gs : R* — R™, m = s+ n — k, and the vector bundle E
over W be as in the introduction. If E(x) is the fibre of F over x € W
then there is a natural inclusion E(z) C R™. Vectors vsi1,...,vm € E(x)
are said to be positively oriented if Gy(x),...,Gs(x),vs41,...,0y form a
positively oriented basis in R™. So FE is an (n — k)-dimensional oriented
vector bundle.

Let

E' ={(z,y) € W x R™ | y € span(G1(x),...,Gs(x))}.

Then E’ is a trivial vector bundle over W such that E @ E’ is trivial.

Let p : W — E be a Cl-section of E such that p(Z) = 0, for some
T € W. There are C'-sections vgy1,...,v, : U — E defined in some open
neighbourhood U of Z in W such that vsy1(Z),..., v, (Z) are linearly in-
dependent and positively oriented in F(Z). The sections vsy1, ..., v, de-
fine a trivialization of E over U, and thus there are unique C'-functions
tsi1,. .o tm 2 U — Rsuch that p = 37" | tiv; over U. Let (Zpq1,...,%n)
be a positively oriented coordinate system in some neighbourhood of T
in W.

O(tss1s---ytm)
O(Zpt1,--,Tn)

DEFINITION. ind(p,Z) = sign (T).

One can prove that the definition of ind(p,Z) does not depend on the
choice of vsy1,...,vy and (Tgy1,...,2,). Note that if the section p is
transversal to the zero-section at T then ind(p,Z) is the index of p at z
(see [1], Chapter 5.2).
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Let P = (P',...,P™) : R® — R™ be a Cl-vector function. There
are sections p : W — E, p/ : W — E’ such that P[W = p+ p’. Let
H :R" x R® — R™ x R¥ be given by

H(z,\) = (P(x) +3 " AaGa(z), F(x)) .
d=1

LEMMA 1. A point T € R™ is in p~1(0) C W if and only if there is a
unique X € R® such that H(z,\) = 0.

Proof. (=) If p(z) = 0 then P(Z) = p/(Z) € E'(T), where E'(T) is the
fibre of E" over . The vectors G1(%),...,G4(T) form a basis in E'(Z), and
thus there is a unique A = (A1,...,As) € R® such that

S

P(f) + ZXde(E) =0.
d=1

(<) Clearly 7 € W, P(z) = p(T) + p'( ) € span(G1 (%), ...,Gs(T)), and
sop(Z)=0.m

From now on we assume that T € p~1(0). Let A € R® be as in Lemma 1.
Since n + s = m + k, the derivative matrix DH (T, \) is a square matrix.

LEMMA 2. ind(p, Z) = (—1)"TR)+k sign det[DH (7, N)].

Proof. We can find a coordinate system (z1,...,z,) in R™ such that
OF;
1 z)=0
(1) Sr@ =0,
forevery 1 <i¢<k,j>k+1. Let
OF;
A= [ (1:)] .
Ox; 1<i,j<k
From (1) and from the fact that rank[DF'(Z)] = k we deduce that det[A] # 0.
For z = (x1,...,z,) € R™ we write x = (2/,2”), where 2’ = (x1,...,xy)
€ R*, 2" = (2441,...,2,) € R**. From the implicit function theorem

there is a germ of a C'-function ¢ = (¢1,...,¢) : (R* % 7") — (RF 7))
such that

(2) F(p"),z"y=0, 1<i<k.

Since graph ) = W in some neighbourhood of Z, we can treat (xgy1,...,%n)
as a coordinate system in some neighbourhood of  in W. From (1)

(3)  the coordinate system (zj41,...,x,) is positively oriented if and only
if det[A] > 0.
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From (1), (2), for every 1 <i <k, j > k+ 1 we have
0 _ = %1 OF; _ Oy
Sy o) AW 7
SN = G @ )+t @) e

The matrix A is non-singular, and therefore

0Y;
(1) o

@) =0.

(@@ =0, for1<i<k,j>k+1.

There are C'-vector maps Viy1,...,V, : R® — R™ defined in some
neighbourhood of Z such that Vs11(), ..., V;,(Z) form a positively oriented
basis in E(Z). Write G4 = (Gh,...,G7),1 <d <s,and V; = (V},..., V"),
s+ 1 < d < m. Since s < m, after an orientation preserving change of

coordinates in R we may assume that
GY(T) =641, for1<d<s,
Vi(Z) =04, fors+1<d<m,

(5)

where 6,4; is the Kronecker delta.
There are C!-functions Ty, ..., T}, : R® — R defined in a neighbourhood

of T such that
P= ZTde—i- Z TyVy.
d=s+1

Since p(T) = 0, we have (T1(Z),...,Ts(T)) = —X and T, 41(T) = ... =
T(T) = 0. Let 6 : (R"* 7") — (W, %) be given by 0(z") = (¢(z"), 2"),
and let p' = P'of,t; =T, 00, g, = G400 and v, = Vi o §. Then
(6) (t (@), .. t(@)) ==X, ts1(@)=...=tn(@")=0.

Let Z : R® — R be a C'-function and let z : R®* — R be given by
z=Zo#. From (4) we have

(7) ;’;(x”)zaxl( )gfj( )+gfj( z) = gi( 7).,

fork+1<j<n.
Takeie {s+1,...,m},j7€{k+1,...,n}. Then

p' —th9d+ Z tavy ,

d=s+1

and therefore, from (5) and (6),

ap 7// _ agd 7// 8ti —1
8@3 Z)\ 83:] Ba:j @
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and so, from (7), we have

8ti7,,_8Pi7 S*aGfif

Lj

Let m;; be the above expression, and let M = [m;j]st1<i<m, k+1<j<m-

From (1) and (5) it is easy to see that the derivative matrix DH (%, \) has
the form

A |
? M 0],
A 0 0

where I is the s x s identity matrix, so det[DH(Z, N)] = (—1)n(s+h)+k
det[M]det[A]. By (3),

ind(p, z) = (—1)"TR+* sign det[DH (Z, )] . =

3. Main theorem. Let H : R" x R® — R™ x R* be given by
H(z,\) = (Z)\iGi(a:),F(m)) .
i=1

LEMMA 3. H-1(0) = W x {0}.

Proof. If (#,\) € H=1(0) then F(z) =0, i.e. z € W. By our assump-
tion, the vectors G1(z),...,Gs(x) are linearly independent, and so A = 0. =

Let Bg = {(z,A\) | ||z]|* + |A|*> < R?} and Sg = OBg. Since W is
compact, by the above lemma there is R > 0 such that H=1(0) C Bg.
Hence H|Sg : Sp — R™ x R¥ — {0}. Let deg(H|Sg) be the topological
degree of H|Sg.

THEOREM 4. X(E) = (—1)"+R)+F deg(H|SR).

Proof. Let Dg = {z € R" | ||z|| < R}. For each C'-map P : R" — R™
there are sections p: W — E, p' : W — E’ such that P|W = p + p’. For
each € > 0 we can choose P so that

(1) sup [[P(z)|| <e,
IEDR

(2) if p(z) = 0 then ind(p,z) # 0, i.e. pis transversal to the zero-section.
Let H = H(z,\) = (P(z) +>°°_ 1 MiGi(z), F(x)) . From (1) and Lemma

3 we can show (using Cramer’s rule) that H~*(0) lies close to W x {0} and
thus, for small ¢, H=1(0) C Bg. The manifold W is compact and so, from

(2) and Lemma 1, H=1(0) is finite, say H~(0) = {(z,A\!), ..., (™, A™)}.
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Then p~1(0) = {z!,...,2™} and according to the definition of X(E) (see
[1], Chapter 5.2) and Lemma 2
X(F) = Z ind(p, z’) = (—1)nsHh)+k Z sign det[DH (27, )] .

j=1 j=1

Clearly the last sum equals deg(H|Sg), and since H|Sg and H|Sg are ho-
motopic for € small enough, we conclude that
X(E) = (=1)"6TRFk deg(H|SR) . =

Clearly TW = {(xz,y) € W xR" | y L grad F;(x), i = 1,...,k}. It is
well known that X(TW) = x(W), where x (W) is the Euler characteristic of
W. Let H : R" x RF — R™ x R* be given by

H(z,\) = ( i: X grad Fy(z), F(a:)) :

As above, there is R > 0 such that H=1(0) C Bg and so we have a contin-
uous map H|Sg : Sg — R™ x R¥ — {0}. As a consequence of Theorem 4 we
have

THEOREM 5. x(W) = (—=1)* deg(H|SR). =
A very similar version of the above theorem has been proved in [2].

EXAMPLE 1. Let W = S? = {z € R3 | 22 + 2% + 23 — 1 = 0}, let
G = G(z) = (3 + z129 — 73,2179 — T2, 71 — 273), and let By = {(z,y) €
S?2 xR? |y L G(x)}. Then
H = H(z,\)
= (BA + z1@2\ — :ch, T1X2A — oA, T1A — TaX3 A, x% + iL'% + 1‘% - 1)

and R = 2. Thanks to a computer program written by Marek Izydorek
and Stawomir Rybicki from the Mathematical Department of the Technical
University of Gdarsk we have been able to calculate that deg(H|S2) = 0,
so X(E) = 0.

EXAMPLE 2. Let G = G(z) = (3z1 + 2123, 372 + 2273,323), and let
Ey ={(z,y) € S* xR3 |y L G(z)}. Then

H = H(x,\) = (321 + 2123\, 322\ + 2223, 323\, 5 + 23 + 75 — 1)
and R = 2. As above we have calculated that deg(H|S2) = —2, so X(F) = 2.

The author wants to express his gratitude to Marek Izydorek and Sta-
womir Rybicki for their cooperation.



Topological invariants of vector bundles 301

References

[1] M. W. Hirsch, Differential Topology, Springer, New York 1976.
[2] Z.Szafraniec, The Euler characteristic of algebraic complete intersections, J. Reine

Angew. Math. 397 (1989), 194—-201.

INSTITUTE OF MATHEMATICS
UNIVERSITY OF GDANSK
WITA STWOSZA 57

80-952 GDANSK, POLAND

Recu par la Rédaction le 5.10.1990
Révisé le 4.11.1991



